1 /*! ========================================================================
2 ** Extended Template Library
3 ** Bezier Template Class Implementation
6 ** Copyright (c) 2002 Robert B. Quattlebaum Jr.
7 ** Copyright (c) 2007 Chris Moore
9 ** This package is free software; you can redistribute it and/or
10 ** modify it under the terms of the GNU General Public License as
11 ** published by the Free Software Foundation; either version 2 of
12 ** the License, or (at your option) any later version.
14 ** This package is distributed in the hope that it will be useful,
15 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
16 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 ** General Public License for more details.
19 ** === N O T E S ===========================================================
21 ** This is an internal header file, included by other ETL headers.
22 ** You should not attempt to use it directly.
24 ** ========================================================================= */
26 /* === S T A R T =========================================================== */
28 #ifndef __ETL__BEZIER_H
29 #define __ETL__BEZIER_H
31 /* === H E A D E R S ======================================================= */
33 #include "_curve_func.h"
34 #include <cmath> // for ldexp
35 // #include <ETL/fixed> // not used
37 /* === M A C R O S ========================================================= */
39 #define MAXDEPTH 64 /* Maximum depth for recursion */
41 /* take binary sign of a, either -1, or 1 if >= 0 */
42 #define SGN(a) (((a)<0) ? -1 : 1)
44 /* find minimum of a and b */
46 #define MIN(a,b) (((a)<(b))?(a):(b))
49 /* find maximum of a and b */
51 #define MAX(a,b) (((a)>(b))?(a):(b))
54 #define BEZIER_EPSILON (ldexp(1.0,-MAXDEPTH-1)) /*Flatness control value */
55 //#define BEZIER_EPSILON 0.00005 /*Flatness control value */
56 #define DEGREE 3 /* Cubic Bezier curve */
57 #define W_DEGREE 5 /* Degree of eqn to find roots of */
59 /* === T Y P E D E F S ===================================================== */
61 /* === C L A S S E S & S T R U C T S ======================================= */
65 template<typename V,typename T> class bezier;
67 //! Cubic Bezier Curve Base Class
68 // This generic implementation uses the DeCasteljau algorithm.
69 // Works for just about anything that has an affine combination function
70 template <typename V,typename T=float>
71 class bezier_base : public std::unary_function<T,V>
82 affine_combo<value_type,time_type> affine_func;
85 bezier_base():r(0.0),s(1.0) { }
87 const value_type &a, const value_type &b, const value_type &c, const value_type &d,
88 const time_type &r=0.0, const time_type &s=1.0):
89 a(a),b(b),c(c),d(d),r(r),s(s) { sync(); }
96 operator()(time_type t)const
113 void evaluate(time_type t, value_type &f, value_type &df) const
117 value_type p1 = affine_func(
121 value_type p2 = affine_func(
126 f = affine_func(p1,p2,t);
131 void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; }
132 void set_r(time_type new_r) { r=new_r; }
133 void set_s(time_type new_s) { s=new_s; }
134 const time_type &get_r()const { return r; }
135 const time_type &get_s()const { return s; }
136 time_type get_dt()const { return s-r; }
138 bool intersect_hull(const bezier_base<value_type,time_type> &x)const
143 //! Bezier curve intersection function
144 /*! Calculates the time of intersection
145 ** for the calling curve.
147 ** I still have not figured out a good generic
148 ** method of doing this for a bi-infinite
149 ** cubic bezier curve calculated with the DeCasteljau
152 ** One method, although it does not work for the
153 ** entire bi-infinite curve, is to iteratively
154 ** intersect the hulls. However, we would only detect
155 ** intersections that occur between R and S.
157 ** It is entirely possible that a new construct similar
158 ** to the affine combination function will be necessary
159 ** for this to work properly.
161 ** For now, this function is BROKEN. (although it works
162 ** for the floating-point specializations, using newton's method)
164 time_type intersect(const bezier_base<value_type,time_type> &x, time_type near=0.0)const
169 /* subdivide at some time t into 2 separate curves left and right
174 * 1+2 * 0+3*1+3*2+3 l4,r1
180 0.1 2.3 -> 0.1 2 3 4 5.6
182 /* void subdivide(bezier_base *left, bezier_base *right, const time_type &time = (time_type)0.5) const
184 time_type t = (time-r)/(s-r);
189 //1st stage points to keep
194 lt.b = affine_func(a,b,t);
195 temp = affine_func(b,c,t);
196 rt.c = affine_func(c,d,t);
199 lt.c = affine_func(lt.b,temp,t);
200 rt.b = affine_func(temp,rt.c,t);
203 lt.d = rt.a = affine_func(lt.c,rt.b,t);
205 //set the time range for l,r (the inside values should be 1, 0 respectively)
209 //give back the curves
211 if(right) *right = rt;
219 operator[](int i) const
225 // Fast float implementation of a cubic bezier curve
227 class bezier_base<float,float> : public std::unary_function<float,float>
230 typedef float value_type;
231 typedef float time_type;
233 affine_combo<value_type,time_type> affine_func;
237 value_type _coeff[4];
238 time_type drs; // reciprocal of (s-r)
240 bezier_base():r(0.0),s(1.0),drs(1.0) { }
242 const value_type &a, const value_type &b, const value_type &c, const value_type &d,
243 const time_type &r=0.0, const time_type &s=1.0):
244 a(a),b(b),c(c),d(d),r(r),s(s),drs(1.0/(s-r)) { sync(); }
250 _coeff[1]= b*3 - a*3;
251 _coeff[2]= c*3 - b*6 + a*3;
252 _coeff[3]= d - c*3 + b*3 - a;
255 // Cost Summary: 4 products, 3 sums, and 1 difference.
257 operator()(time_type t)const
258 { t-=r; t*=drs; return _coeff[0]+(_coeff[1]+(_coeff[2]+(_coeff[3])*t)*t)*t; }
260 void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; drs=1.0/(s-r); }
261 void set_r(time_type new_r) { r=new_r; drs=1.0/(s-r); }
262 void set_s(time_type new_s) { s=new_s; drs=1.0/(s-r); }
263 const time_type &get_r()const { return r; }
264 const time_type &get_s()const { return s; }
265 time_type get_dt()const { return s-r; }
267 //! Bezier curve intersection function
268 /*! Calculates the time of intersection
269 ** for the calling curve.
271 time_type intersect(const bezier_base<value_type,time_type> &x, time_type t=0.0,int i=15)const
273 //BROKEN - the time values of the 2 curves should be independent
274 value_type system[4];
275 system[0]=_coeff[0]-x._coeff[0];
276 system[1]=_coeff[1]-x._coeff[1];
277 system[2]=_coeff[2]-x._coeff[2];
278 system[3]=_coeff[3]-x._coeff[3];
284 // Inner loop cost summary: 7 products, 5 sums, 1 difference
286 t-= (system[0]+(system[1]+(system[2]+(system[3])*t)*t)*t)/
287 (system[1]+(system[2]*2+(system[3]*3)*t)*t);
300 operator[](int i) const
305 // Fast double implementation of a cubic bezier curve
307 class bezier_base<double,float> : public std::unary_function<float,double>
310 typedef double value_type;
311 typedef float time_type;
313 affine_combo<value_type,time_type> affine_func;
317 value_type _coeff[4];
318 time_type drs; // reciprocal of (s-r)
320 bezier_base():r(0.0),s(1.0),drs(1.0) { }
322 const value_type &a, const value_type &b, const value_type &c, const value_type &d,
323 const time_type &r=0.0, const time_type &s=1.0):
324 a(a),b(b),c(c),d(d),r(r),s(s),drs(1.0/(s-r)) { sync(); }
330 _coeff[1]= b*3 - a*3;
331 _coeff[2]= c*3 - b*6 + a*3;
332 _coeff[3]= d - c*3 + b*3 - a;
335 // 4 products, 3 sums, and 1 difference.
337 operator()(time_type t)const
338 { t-=r; t*=drs; return _coeff[0]+(_coeff[1]+(_coeff[2]+(_coeff[3])*t)*t)*t; }
340 void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; drs=1.0/(s-r); }
341 void set_r(time_type new_r) { r=new_r; drs=1.0/(s-r); }
342 void set_s(time_type new_s) { s=new_s; drs=1.0/(s-r); }
343 const time_type &get_r()const { return r; }
344 const time_type &get_s()const { return s; }
345 time_type get_dt()const { return s-r; }
347 //! Bezier curve intersection function
348 /*! Calculates the time of intersection
349 ** for the calling curve.
351 time_type intersect(const bezier_base<value_type,time_type> &x, time_type t=0.0,int i=15)const
353 //BROKEN - the time values of the 2 curves should be independent
354 value_type system[4];
355 system[0]=_coeff[0]-x._coeff[0];
356 system[1]=_coeff[1]-x._coeff[1];
357 system[2]=_coeff[2]-x._coeff[2];
358 system[3]=_coeff[3]-x._coeff[3];
364 // Inner loop: 7 products, 5 sums, 1 difference
366 t-= (system[0]+(system[1]+(system[2]+(system[3])*t)*t)*t)/
367 (system[1]+(system[2]*2+(system[3]*3)*t)*t);
380 operator[](int i) const
386 // Fast double implementation of a cubic bezier curve
389 template <class T,unsigned int FIXED_BITS>
390 class bezier_base<fixed_base<T,FIXED_BITS> > : std::unary_function<fixed_base<T,FIXED_BITS>,fixed_base<T,FIXED_BITS> >
393 typedef fixed_base<T,FIXED_BITS> value_type;
394 typedef fixed_base<T,FIXED_BITS> time_type;
397 affine_combo<value_type,time_type> affine_func;
401 value_type _coeff[4];
402 time_type drs; // reciprocal of (s-r)
404 bezier_base():r(0.0),s(1.0),drs(1.0) { }
406 const value_type &a, const value_type &b, const value_type &c, const value_type &d,
407 const time_type &r=0, const time_type &s=1):
408 a(a),b(b),c(c),d(d),r(r),s(s),drs(1.0/(s-r)) { sync(); }
412 drs=time_type(1)/(s-r);
414 _coeff[1]= b*3 - a*3;
415 _coeff[2]= c*3 - b*6 + a*3;
416 _coeff[3]= d - c*3 + b*3 - a;
419 // 4 products, 3 sums, and 1 difference.
421 operator()(time_type t)const
422 { t-=r; t*=drs; return _coeff[0]+(_coeff[1]+(_coeff[2]+(_coeff[3])*t)*t)*t; }
424 void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; drs=time_type(1)/(s-r); }
425 void set_r(time_type new_r) { r=new_r; drs=time_type(1)/(s-r); }
426 void set_s(time_type new_s) { s=new_s; drs=time_type(1)/(s-r); }
427 const time_type &get_r()const { return r; }
428 const time_type &get_s()const { return s; }
429 time_type get_dt()const { return s-r; }
431 //! Bezier curve intersection function
432 //! Calculates the time of intersection
433 // for the calling curve.
435 time_type intersect(const bezier_base<value_type,time_type> &x, time_type t=0,int i=15)const
437 value_type system[4];
438 system[0]=_coeff[0]-x._coeff[0];
439 system[1]=_coeff[1]-x._coeff[1];
440 system[2]=_coeff[2]-x._coeff[2];
441 system[3]=_coeff[3]-x._coeff[3];
447 // Inner loop: 7 products, 5 sums, 1 difference
449 t-=(time_type) ( (system[0]+(system[1]+(system[2]+(system[3])*t)*t)*t)/
450 (system[1]+(system[2]*2+(system[3]*3)*t)*t) );
463 operator[](int i) const
473 template <typename V, typename T>
474 class bezier_iterator
478 struct iterator_category {};
479 typedef V value_type;
480 typedef T difference_type;
486 bezier_base<V,T> curve;
492 operator*(void)const { return curve(t); }
493 const surface_iterator&
496 { t+=dt; return &this; }
498 const surface_iterator&
500 { hermite_iterator _tmp=*this; t+=dt; return _tmp; }
502 const surface_iterator&
504 { t-=dt; return &this; }
506 const surface_iterator&
508 { hermite_iterator _tmp=*this; t-=dt; return _tmp; }
512 operator+(difference_type __n) const
513 { return surface_iterator(data+__n[0]+__n[1]*pitch,pitch); }
516 operator-(difference_type __n) const
517 { return surface_iterator(data-__n[0]-__n[1]*pitch,pitch); }
522 template <typename V,typename T=float>
523 class bezier : public bezier_base<V,T>
526 typedef V value_type;
528 typedef float distance_type;
529 typedef bezier_iterator<V,T> iterator;
530 typedef bezier_iterator<V,T> const_iterator;
532 distance_func<value_type> dist;
534 using bezier_base<V,T>::get_r;
535 using bezier_base<V,T>::get_s;
536 using bezier_base<V,T>::get_dt;
540 bezier(const value_type &a, const value_type &b, const value_type &c, const value_type &d):
541 bezier_base<V,T>(a,b,c,d) { }
544 const_iterator begin()const;
545 const_iterator end()const;
547 time_type find_closest(bool fast, const value_type& x, int i=7)const
551 value_type array[4] = {
552 bezier<V,T>::operator[](0),
553 bezier<V,T>::operator[](1),
554 bezier<V,T>::operator[](2),
555 bezier<V,T>::operator[](3)};
556 return NearestPointOnCurve(x, array);
560 time_type r(0), s(1);
561 float t((r+s)*0.5); /* half way between r and s */
565 // compare 33% of the way between r and s with 67% of the way between r and s
566 if(dist(operator()((s-r)*(1.0/3.0)+r), x) <
567 dist(operator()((s-r)*(2.0/3.0)+r), x))
577 distance_type find_distance(time_type r, time_type s, int steps=7)const
579 const time_type inc((s-r)/steps);
581 distance_type ret(0);
582 value_type last(operator()(r));
584 for(r+=inc;r<s;r+=inc)
586 const value_type n(operator()(r));
587 ret+=dist.uncook(dist(last,n));
590 ret+=dist.uncook(dist(last,operator()(r)))*(s-(r-inc))/inc;
595 distance_type length()const { return find_distance(get_r(),get_s()); }
597 /* subdivide at some time t into 2 separate curves left and right
602 * 1+2 * 0+3*1+3*2+3 l4,r1
608 0.1 2.3 -> 0.1 2 3 4 5.6
610 void subdivide(bezier *left, bezier *right, const time_type &time = (time_type)0.5) const
612 time_type t=(time-get_r())/get_dt();
616 const value_type& a((*this)[0]);
617 const value_type& b((*this)[1]);
618 const value_type& c((*this)[2]);
619 const value_type& d((*this)[3]);
621 //1st stage points to keep
626 lt[1] = affine_func(a,b,t);
627 temp = affine_func(b,c,t);
628 rt[2] = affine_func(c,d,t);
631 lt[2] = affine_func(lt[1],temp,t);
632 rt[1] = affine_func(temp,rt[2],t);
635 lt[3] = rt[0] = affine_func(lt[2],rt[1],t);
637 //set the time range for l,r (the inside values should be 1, 0 respectively)
644 //give back the curves
646 if(right) *right = rt;
650 void evaluate(time_type t, value_type &f, value_type &df) const
652 t=(t-get_r())/get_dt();
654 const value_type& a((*this)[0]);
655 const value_type& b((*this)[1]);
656 const value_type& c((*this)[2]);
657 const value_type& d((*this)[3]);
659 const value_type p1 = affine_func(
663 const value_type p2 = affine_func(
668 f = affine_func(p1,p2,t);
675 * Evaluate a Bezier curve at a particular parameter value
676 * Fill in control points for resulting sub-curves if "Left" and
677 * "Right" are non-null.
679 * int degree; Degree of bezier curve
680 * value_type *VT; Control pts
681 * time_type t; Parameter value
682 * value_type *Left; RETURN left half ctl pts
683 * value_type *Right; RETURN right half ctl pts
685 static value_type Bezier(value_type *VT, int degree, time_type t, value_type *Left, value_type *Right)
687 int i, j; /* Index variables */
688 value_type Vtemp[W_DEGREE+1][W_DEGREE+1];
690 /* Copy control points */
691 for (j = 0; j <= degree; j++)
694 /* Triangle computation */
695 for (i = 1; i <= degree; i++)
696 for (j =0 ; j <= degree - i; j++)
698 Vtemp[i][j][0] = (1.0 - t) * Vtemp[i-1][j][0] + t * Vtemp[i-1][j+1][0];
699 Vtemp[i][j][1] = (1.0 - t) * Vtemp[i-1][j][1] + t * Vtemp[i-1][j+1][1];
703 for (j = 0; j <= degree; j++)
704 Left[j] = Vtemp[j][0];
707 for (j = 0; j <= degree; j++)
708 Right[j] = Vtemp[degree-j][j];
710 return (Vtemp[degree][0]);
715 * Count the number of times a Bezier control polygon
716 * crosses the 0-axis. This number is >= the number of roots.
718 * value_type *VT; Control pts of Bezier curve
720 static int CrossingCount(value_type *VT)
723 int n_crossings = 0; /* Number of zero-crossings */
724 int sign, old_sign; /* Sign of coefficients */
726 sign = old_sign = SGN(VT[0][1]);
727 for (i = 1; i <= W_DEGREE; i++)
729 sign = SGN(VT[i][1]);
730 if (sign != old_sign) n_crossings++;
738 * ControlPolygonFlatEnough :
739 * Check if the control polygon of a Bezier curve is flat enough
740 * for recursive subdivision to bottom out.
742 * value_type *VT; Control points
744 static int ControlPolygonFlatEnough(value_type *VT)
746 int i; /* Index variable */
747 distance_type distance[W_DEGREE]; /* Distances from pts to line */
748 distance_type max_distance_above; /* maximum of these */
749 distance_type max_distance_below;
750 time_type intercept_1, intercept_2, left_intercept, right_intercept;
751 distance_type a, b, c; /* Coefficients of implicit */
752 /* eqn for line from VT[0]-VT[deg] */
753 /* Find the perpendicular distance */
754 /* from each interior control point to */
755 /* line connecting VT[0] and VT[W_DEGREE] */
757 distance_type abSquared;
759 /* Derive the implicit equation for line connecting first *
760 * and last control points */
761 a = VT[0][1] - VT[W_DEGREE][1];
762 b = VT[W_DEGREE][0] - VT[0][0];
763 c = VT[0][0] * VT[W_DEGREE][1] - VT[W_DEGREE][0] * VT[0][1];
765 abSquared = (a * a) + (b * b);
767 for (i = 1; i < W_DEGREE; i++)
769 /* Compute distance from each of the points to that line */
770 distance[i] = a * VT[i][0] + b * VT[i][1] + c;
771 if (distance[i] > 0.0) distance[i] = (distance[i] * distance[i]) / abSquared;
772 if (distance[i] < 0.0) distance[i] = -(distance[i] * distance[i]) / abSquared;
776 /* Find the largest distance */
777 max_distance_above = max_distance_below = 0.0;
779 for (i = 1; i < W_DEGREE; i++)
781 if (distance[i] < 0.0) max_distance_below = MIN(max_distance_below, distance[i]);
782 if (distance[i] > 0.0) max_distance_above = MAX(max_distance_above, distance[i]);
785 /* Implicit equation for "above" line */
786 intercept_1 = -(c + max_distance_above)/a;
788 /* Implicit equation for "below" line */
789 intercept_2 = -(c + max_distance_below)/a;
791 /* Compute intercepts of bounding box */
792 left_intercept = MIN(intercept_1, intercept_2);
793 right_intercept = MAX(intercept_1, intercept_2);
795 return 0.5 * (right_intercept-left_intercept) < BEZIER_EPSILON ? 1 : 0;
799 * ComputeXIntercept :
800 * Compute intersection of chord from first control point to last
803 * value_type *VT; Control points
805 static time_type ComputeXIntercept(value_type *VT)
807 distance_type YNM = VT[W_DEGREE][1] - VT[0][1];
808 return (YNM*VT[0][0] - (VT[W_DEGREE][0] - VT[0][0])*VT[0][1]) / YNM;
813 * Given a 5th-degree equation in Bernstein-Bezier form, find
814 * all of the roots in the interval [0, 1]. Return the number
817 * value_type *w; The control points
818 * time_type *t; RETURN candidate t-values
819 * int depth; The depth of the recursion
821 static int FindRoots(value_type *w, time_type *t, int depth)
824 value_type Left[W_DEGREE+1]; /* New left and right */
825 value_type Right[W_DEGREE+1]; /* control polygons */
826 int left_count; /* Solution count from */
827 int right_count; /* children */
828 time_type left_t[W_DEGREE+1]; /* Solutions from kids */
829 time_type right_t[W_DEGREE+1];
831 switch (CrossingCount(w))
834 { /* No solutions here */
838 { /* Unique solution */
839 /* Stop recursion when the tree is deep enough */
840 /* if deep enough, return 1 solution at midpoint */
841 if (depth >= MAXDEPTH)
843 t[0] = (w[0][0] + w[W_DEGREE][0]) / 2.0;
846 if (ControlPolygonFlatEnough(w))
848 t[0] = ComputeXIntercept(w);
855 /* Otherwise, solve recursively after */
856 /* subdividing control polygon */
857 Bezier(w, W_DEGREE, 0.5, Left, Right);
858 left_count = FindRoots(Left, left_t, depth+1);
859 right_count = FindRoots(Right, right_t, depth+1);
861 /* Gather solutions together */
862 for (i = 0; i < left_count; i++) t[i] = left_t[i];
863 for (i = 0; i < right_count; i++) t[i+left_count] = right_t[i];
865 /* Send back total number of solutions */
866 return (left_count+right_count);
870 * ConvertToBezierForm :
871 * Given a point and a Bezier curve, generate a 5th-degree
872 * Bezier-format equation whose solution finds the point on the
873 * curve nearest the user-defined point.
875 * value_type& P; The point to find t for
876 * value_type *VT; The control points
878 static void ConvertToBezierForm(const value_type& P, value_type *VT, value_type w[W_DEGREE+1])
880 int i, j, k, m, n, ub, lb;
881 int row, column; /* Table indices */
882 value_type c[DEGREE+1]; /* VT(i)'s - P */
883 value_type d[DEGREE]; /* VT(i+1) - VT(i) */
884 distance_type cdTable[3][4]; /* Dot product of c, d */
885 static distance_type z[3][4] = { /* Precomputed "z" for cubics */
886 {1.0, 0.6, 0.3, 0.1},
887 {0.4, 0.6, 0.6, 0.4},
888 {0.1, 0.3, 0.6, 1.0}};
890 /* Determine the c's -- these are vectors created by subtracting */
891 /* point P from each of the control points */
892 for (i = 0; i <= DEGREE; i++)
895 /* Determine the d's -- these are vectors created by subtracting */
896 /* each control point from the next */
897 for (i = 0; i <= DEGREE - 1; i++)
898 d[i] = (VT[i+1] - VT[i]) * 3.0;
900 /* Create the c,d table -- this is a table of dot products of the */
902 for (row = 0; row <= DEGREE - 1; row++)
903 for (column = 0; column <= DEGREE; column++)
904 cdTable[row][column] = d[row] * c[column];
906 /* Now, apply the z's to the dot products, on the skew diagonal */
907 /* Also, set up the x-values, making these "points" */
908 for (i = 0; i <= W_DEGREE; i++)
910 w[i][0] = (distance_type)(i) / W_DEGREE;
916 for (k = 0; k <= n + m; k++)
920 for (i = lb; i <= ub; i++)
923 w[i+j][1] += cdTable[j][i] * z[j][i];
929 * NearestPointOnCurve :
930 * Compute the parameter value of the point on a Bezier
931 * curve segment closest to some arbitrary, user-input point.
932 * Return the point on the curve at that parameter value.
934 * value_type& P; The user-supplied point
935 * value_type *VT; Control points of cubic Bezier
937 static time_type NearestPointOnCurve(const value_type& P, value_type VT[4])
939 value_type w[W_DEGREE+1]; /* Ctl pts of 5th-degree curve */
940 time_type t_candidate[W_DEGREE]; /* Possible roots */
941 int n_solutions; /* Number of roots found */
942 time_type t; /* Parameter value of closest pt */
944 /* Convert problem to 5th-degree Bezier form */
945 ConvertToBezierForm(P, VT, w);
947 /* Find all possible roots of 5th-degree equation */
948 n_solutions = FindRoots(w, t_candidate, 0);
950 /* Compare distances of P to all candidates, and to t=0, and t=1 */
952 distance_type dist, new_dist;
956 /* Check distance to beginning of curve, where t = 0 */
957 dist = (P - VT[0]).mag_squared();
960 /* Find distances for candidate points */
961 for (i = 0; i < n_solutions; i++)
963 p = Bezier(VT, DEGREE, t_candidate[i], (value_type *)NULL, (value_type *)NULL);
964 new_dist = (P - p).mag_squared();
972 /* Finally, look at distance to end point, where t = 1.0 */
973 new_dist = (P - VT[DEGREE]).mag_squared();
981 /* Return the point on the curve at parameter value t */
988 /* === E X T E R N S ======================================================= */
990 /* === E N D =============================================================== */