1 /* === S Y N F I G ========================================================= */
3 ** \brief Color Gradient Class Member Definitions
8 ** Copyright (c) 2002-2005 Robert B. Quattlebaum Jr., Adrian Bentley
9 ** Copyright (c) 2007 Chris Moore
11 ** This package is free software; you can redistribute it and/or
12 ** modify it under the terms of the GNU General Public License as
13 ** published by the Free Software Foundation; either version 2 of
14 ** the License, or (at your option) any later version.
16 ** This package is distributed in the hope that it will be useful,
17 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 ** General Public License for more details.
22 /* ========================================================================= */
24 /* === H E A D E R S ======================================================= */
36 #include "exception.h"
42 /* === U S I N G =========================================================== */
46 using namespace synfig;
48 /* === M A C R O S ========================================================= */
50 /* === G L O B A L S ======================================================= */
52 /* === P R O C E D U R E S ================================================= */
54 /* === M E T H O D S ======================================================= */
56 synfig::Gradient::Gradient(const Color &c1, const Color &c2)
58 push_back(CPoint(0.0,c1));
59 push_back(CPoint(1.0,c2));
62 synfig::Gradient::Gradient(const Color &c1, const Color &c2, const Color &c3)
64 push_back(CPoint(0.0,c1));
65 push_back(CPoint(0.5,c2));
66 push_back(CPoint(1.0,c3));
69 // This sort algorithm MUST be stable
70 // ie: it must not change the order of items with the same value.
71 // I am using a bubble sort.
72 // This algorithm will sort a nearly-sorted list at ~O(N), and
73 // it will sort an inverse sorted list at ~O(N*N).
75 synfig::Gradient::sort()
77 stable_sort(begin(),end());
82 for(iter=begin();iter!=end();iter++)
84 for(next=iter, iter2=next--;iter2!=begin();iter2=next--)
101 static synfig::ColorAccumulator
102 supersample_helper(const synfig::Gradient::CPoint &color1, const synfig::Gradient::CPoint &color2, float begin, float end, float &weight)
104 if(color1.pos==color2.pos || color1.pos>=end || color2.pos<=begin)
107 return Color::alpha();
109 if(color1.pos>=begin && color2.pos<end)
111 weight=color2.pos-color1.pos;
112 ColorAccumulator ret=Color::blend(color2.color,color1.color, 0.5, Color::BLEND_STRAIGHT).premult_alpha()*weight;
115 if(color1.pos>=begin && color2.pos>=end)
117 weight=end-color1.pos;
118 float pos((end+color1.pos)*0.5);
119 float amount((pos-color1.pos)/(color2.pos-color1.pos));
120 //if(abs(amount)>1)amount=(amount>0)?1:-1;
121 ColorAccumulator ret(Color::blend(color2.color,color1.color, amount, Color::BLEND_STRAIGHT).premult_alpha()*weight);
124 if(color1.pos<begin && color2.pos<end)
126 weight=color2.pos-begin;
127 float pos((begin+color2.pos)*0.5);
128 float amount((pos-color1.pos)/(color2.pos-color1.pos));
129 //if(abs(amount)>1)amount=(amount>0)?1:-1;
130 ColorAccumulator ret(Color::blend(color2.color,color1.color, amount, Color::BLEND_STRAIGHT).premult_alpha()*weight);
133 synfig::error("color1.pos=%f",color1.pos);
134 synfig::error("color2.pos=%f",color2.pos);
135 synfig::error("begin=%f",begin);
136 synfig::error("end=%f",end);
139 return Color::alpha();
144 static void show_gradient(const Gradient::CPointList x)
147 for (Gradient::const_iterator iter = x.begin(); iter != x.end(); iter++)
148 printf("%3d : %.3f %s\n", i++, (*iter).pos, (*iter).color.get_string().c_str());
152 synfig::Gradient::operator+=(const Gradient &rhs)
154 bool print=false; // for debugging
155 if (print) { printf("\nadding lhs:\n"); show_gradient(this->cpoints); printf("\n"); }
156 if (print) { printf("adding rhs:\n"); show_gradient(rhs.cpoints); printf("\n"); }
158 const_iterator iter1 = begin(), iter2 = rhs.begin(), left_same, right_same;
160 if (iter1 != end()) left = *iter1;
161 if (iter2 != rhs.end()) right = *iter2;
162 int pos1 = 0, pos2 = 0;
165 // if there are cpoints in both gradients run through both until one runs out
166 if (iter1 != end() && iter2 != rhs.end())
168 // if the left one has the first cpoint
169 if (left.pos < right.pos)
171 // add on the right gradient's value at this point
172 if (print) printf("using pos %.2f from left %d in loop\n", left.pos, pos1++);
173 ret.push_back(CPoint(left.pos, left.color + rhs(left.pos)));
174 if(++iter1 == end()) break;
177 // if the right one has the first cpoint
178 else if (left.pos > right.pos)
180 // add on the left gradient's value at this point
181 if (print) printf("using pos %.2f from right %d in loop\n", right.pos, pos2++);
182 ret.push_back(CPoint(right.pos, right.color + (*this)(right.pos)));
183 if(++iter2 == rhs.end()) break;
186 // they both have a cpoint at the same time
189 int tpos1 = pos1, tpos2 = pos2;
190 // skip past all cpoints at the same position
191 for(left_same = ++iter1; iter1 != end() && (*iter1).pos == left.pos; iter1++, pos1++)
192 if (print) printf("skipping past pos %d in left\n", pos1);
193 for(right_same = ++iter2; iter2 != rhs.end() && (*iter2).pos == right.pos; iter2++, pos2++)
194 if (print) printf("skipping past pos %d in right\n", pos2);
196 // if there is only one cpoint at this position in each gradient,
197 // there's only one corresponding cpoint in the sum
198 if (iter1 == left_same && iter2 == right_same)
200 if (print) printf("two singles at left %d and right %d\n", pos1++, pos2++);
201 ret.push_back(CPoint(left.pos, left.color + right.color));
203 // otherwise we sum the first in each, and the last in each
206 if (print) printf("[copying %ld from left %d and %ld from right %d at %.2f]\n", iter1-left_same+1, tpos1, iter2-right_same+1, tpos2, left.pos);
207 // merge the front two cpoints
208 if (print) printf(" copy front from left %d right %d\n", tpos1++, tpos2++);
209 ret.push_back(CPoint(left.pos, left.color + right.color));
211 // merge the middle pairs of points - each middle point merges with its counterpart
212 while(left_same < iter1-1 && right_same < iter2-1)
214 old1 = *(left_same++);
215 old2 = *(right_same++);
216 if (print) printf(" copy middle from left %d and right %d\n", tpos1++, tpos2++);
217 ret.push_back(CPoint(old1.pos, old1.color+old2.color));
219 // if one gradient has more middle points than the other, merge the rest with the last point in the other gradient
220 for(old2 = (*(iter2-1)); left_same < iter1-1; left_same++)
223 if (print) printf(" copy middle from left %d plus end of right\n", tpos1++);
224 ret.push_back(CPoint(old1.pos, old1.color + old2.color));
226 for(old1 = (*(iter1-1)); right_same < iter2-1; right_same++)
229 if (print) printf(" copy middle from right %d plus end of left\n", tpos2++);
230 ret.push_back(CPoint(old2.pos, old1.color + old2.color));
232 // merge the back two cpoints
233 if (print) printf(" copy end from left %d right %d\n", pos1++, pos2++);
234 ret.push_back(CPoint(left.pos, (*(iter1-1)).color + (*(iter2-1)).color));
236 // make sure we update 'left' and 'right'
237 if (iter1 != end()) left=*iter1;
238 if (iter2 == rhs.end()) break;
240 if (iter1 == end()) break;
243 // one of the gradients has run out of points
244 // does the left one have points left?
248 if (print) printf("finish end from left %d\n", pos1++);
249 ret.push_back(CPoint(left.pos, left.color + rhs(left.pos)));
250 if(++iter1 == end()) break;
253 // the left one was empty, so maybe the right one has points left
254 else if (iter2 != rhs.end())
257 if (print) printf("finish end from right %d\n", pos2++);
258 ret.push_back(CPoint(right.pos, right.color + (*this)(right.pos)));
259 if(++iter2 == rhs.end()) break;
263 if (print) { printf("\nsummed ret:\n"); show_gradient(ret); printf("\n"); }
269 synfig::Gradient::operator-=(const Gradient &rhs)
271 return (*this)+=(rhs*-1);
275 synfig::Gradient::operator*=(const float &rhs)
280 for (iterator iter = cpoints.begin(); iter!=cpoints.end(); iter++)
281 (*iter).color *= rhs;
286 synfig::Gradient::operator/=(const float &rhs)
288 for (iterator iter = cpoints.begin(); iter!=cpoints.end(); iter++)
289 (*iter).color /= rhs;
294 synfig::Gradient::operator()(const Real &x,float supersample)const
297 return Color(0,0,0,0);
299 supersample=-supersample;
303 float begin_sample(x-supersample*0.5);
304 float end_sample(x+supersample*0.5);
306 if(cpoints.size()==1 || end_sample<=cpoints.front().pos || isnan(x))
307 return cpoints.front().color;
309 if(begin_sample>=cpoints.back().pos)
310 return cpoints.back().color;
313 if(end_sample>=back().pos)
314 end_sample=back().pos;
316 if(begin_sample<=front().pos)
317 begin_sample=front().pos;
320 const_iterator iter,next;
324 Real left = x-supersample/2, right = x+supersample/2;
326 if(left < front().pos) left = front().pos;
327 if(right > back().pos) right = back().pos;
329 //find using binary search...
330 const_iterator iterl,iterr;
332 //the binary search should give us the values BEFORE the point we're looking for...
333 iterl = binary_find(begin(),end(),left);
334 iterr = binary_find(iterl,end(),right);
336 //now integrate over the range of left to right...
340 iterr++; //let's look at the next one shall we :)
342 //interpolate neighboring colors
343 const Real one = iterr->pos - iterl->pos;
344 const Real lambda = (x - iterl->pos)/one;
346 //(1-l)iterl + (l)iterr
347 return iterl->color.premult_alpha()*(1-lambda) + iterr->color.premult_alpha()*lambda;
349 //return Color::blend(iterr->color,iterl->color,lambda,Color::BLEND_STRAIGHT);
352 //integration madness
353 const_iterator i = iterl, ie = iterr+1;
356 ColorAccumulator clast,cwork;
358 const Real lambda = (x - iterl->pos)/(iterr->pos - iterl->pos);
360 //premultiply because that's the form in which we can combine things...
361 clast = iterl->color.premult_alpha()*(1-lambda) + iterr->color.premult_alpha()*lambda;
362 //Color::blend((i+1)->color,i->color,(left - i->pos)/((i+1)->pos - i->pos),Color::BLEND_STRAIGHT);
365 ColorAccumulator accum = 0;
367 //loop through all the trapezoids and integrate them as we go...
368 // area of trap = (yi + yi1)*(xi1 - xi)
369 // yi = clast, xi = wlast, yi1 = i->color, xi1 = i->pos
371 for(;i<=iterr; wlast=i->pos,clast=i->color.premult_alpha(),++i)
373 const Real diff = i->pos - wlast;
374 if(diff > 0) //only accumulate if there will be area to add
376 cwork = i->color.premult_alpha();
377 accum += (cwork + clast)*diff;
382 const_iterator ibef = i-1;
383 const Real diff = right - ibef->pos;
387 const Real lambda = diff/(i->pos - ibef->pos);
388 cwork = ibef->color.premult_alpha()*(1-lambda) + i->color.premult_alpha()*lambda;
390 accum += (cwork + clast)*diff; //can probably optimize this more... but it's not too bad
394 accum /= supersample; //should be the total area it was sampled over...
395 return accum.demult_alpha();
398 next=begin(),iter=next++;
400 //add for optimization
401 next = binary_find(begin(),end(),(Real)begin_sample);
404 //! As a future optimization, this could be performed faster
405 //! using a binary search.
406 for(;iter<end();iter=next++)
408 if(next==end() || (x>=iter->pos && x<next->pos && iter->pos!=next->pos))
410 // If the supersample region falls square in between
411 // two CPoints, then we don't have to do anything special.
412 if(next!=end() && (!supersample || (iter->pos<=begin_sample && next->pos>=end_sample)))
414 const Real dist(next->pos-iter->pos);
415 const Real pos(x-iter->pos);
416 const Real amount(pos/dist);
417 return Color::blend(next->color,iter->color, amount, Color::BLEND_STRAIGHT);
419 // In this case our supersample region extends over one or more
420 // CPoints. So, we need to calculate our coverage amount.
421 ColorAccumulator pool(Color::alpha());
422 float divisor(0.0),weight(0);
424 const_iterator iter2,next2;
426 if(iter==begin() && iter->pos>x)
429 //weight*=iter->color.get_a();
430 pool+=ColorAccumulator(iter->color).premult_alpha()*weight;
435 while(iter2->pos>=begin_sample)
439 weight=iter2->pos-(begin_sample);
440 //weight*=iter2->color.get_a();
441 pool+=ColorAccumulator(iter2->color).premult_alpha()*weight;
446 pool+=supersample_helper(*iter2, *next2, begin_sample, end_sample, weight);
453 while(iter2->pos<=end_sample)
457 weight=(end_sample)-iter2->pos;
458 pool+=ColorAccumulator(iter2->color).premult_alpha()*weight;
462 pool+=supersample_helper(*iter2, *next2, begin_sample, end_sample, weight);
467 if(divisor && pool.get_a() && pool.is_valid())
470 pool.set_r(pool.get_r()/pool.get_a());
471 pool.set_g(pool.get_g()/pool.get_a());
472 pool.set_b(pool.get_b()/pool.get_a());
473 pool.set_a(pool.get_a()/divisor);
476 pool.set_r(pool.get_r()/pool.get_a());
477 pool.set_g(pool.get_g()/pool.get_a());
478 pool.set_b(pool.get_b()/pool.get_a());
482 return Color::alpha();
485 return Color::alpha();
489 // We should never get to this point.
491 synfig::error("synfig::Gradient::operator()(): Logic Error (x=%f)",x);
493 throw std::logic_error(strprintf("synfig::Gradient::operator()(): Logic Error (x=%f)",x));
496 synfig::Gradient::iterator
497 synfig::Gradient::proximity(const Real &x)
500 float dist(100000000);
501 float prev_pos(-0230);
502 // This algorithm requires a sorted list.
503 for(iter=begin();iter<end();iter++)
507 if(prev_pos==iter->pos)
508 new_dist=(abs(x-iter->pos-0.00001));
510 new_dist=(abs(x-iter->pos));
524 synfig::Gradient::const_iterator
525 synfig::Gradient::proximity(const Real &x)const
527 return const_cast<Gradient*>(this)->proximity(x);
530 float dist(100000000);
532 // This algorithm requires a sorted list.
533 for(iter=begin();iter<end();iter++)
535 const float new_dist(abs(x-iter->pos));
548 synfig::Gradient::iterator
549 synfig::Gradient::find(const UniqueID &id)
553 for(iter=begin();iter<end();iter++)
559 throw Exception::NotFound("synfig::Gradient::find(): Unable to find UniqueID in gradient");
562 synfig::Gradient::const_iterator
563 synfig::Gradient::find(const UniqueID &id)const
567 for(iter=begin();iter<end();iter++)
573 throw Exception::NotFound("synfig::Gradient::find()const: Unable to find UniqueID in gradient");