1 /* === S Y N F I G ========================================================= */
2 /*! \file blineconvert.cpp
3 ** \brief Template File
8 ** Copyright (c) 2002-2005 Robert B. Quattlebaum Jr., Adrian Bentley
10 ** This package is free software; you can redistribute it and/or
11 ** modify it under the terms of the GNU General Public License as
12 ** published by the Free Software Foundation; either version 2 of
13 ** the License, or (at your option) any later version.
15 ** This package is distributed in the hope that it will be useful,
16 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
17 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 ** General Public License for more details.
21 /* ========================================================================= */
23 /* === H E A D E R S ======================================================= */
32 #include "blineconvert.h"
34 #include <ETL/gaussian>
35 #include <ETL/hermite>
39 #include <synfig/general.h>
46 /* === U S I N G =========================================================== */
50 using namespace synfig;
52 /* === M A C R O S ========================================================= */
54 #define EPSILON (1e-10)
56 /* === G L O B A L S ======================================================= */
58 /* === P R O C E D U R E S ================================================= */
60 /* === M E T H O D S ======================================================= */
63 //Derivative Functions for numerical approximation
65 //bias == 0 will get F' at f3, bias < 0 will get F' at f1, and bias > 0 will get F' at f5
67 inline void FivePointdt(T &df, const T &f1, const T &f2, const T &f3, const T &f4, const T &f5, int bias)
72 df = (f1 - f2*8 + f4*8 - f5)*(1/12.0f);
76 df = (-f1*25 + f2*48 - f3*36 + f4*16 - f5*3)*(1/12.0f);
80 df = (f1*3 - f2*16 + f3*36 - f4*48 + f5*25)*(1/12.0f);
85 inline void ThreePointdt(T &df, const T &f1, const T &f2, const T &f3, int bias)
90 df = (-f1 + f3)*(1/2.0f);
94 df = (-f1*3 + f2*4 - f3)*(1/2.0f);
98 df = (f1 - f2*4 + f3*3)*(1/2.0f);
103 inline void ThreePointddt(T &df, const T &f1, const T &f2, const T &f3, int bias)
105 //a 3 point approximation pretends to have constant acceleration, so only one algorithm needed for left, middle, or right
106 df = (f1 -f2*2 + f3)*(1/2.0f);
109 // WARNING -- totaly broken
111 inline void FivePointddt(T &df, const T &f1, const T &f2, const T &f3, int bias)
117 //df = (- f1 + f2*16 - f3*30 + f4*16 - f5)*(1/12.0f);
121 df = (f1*7 - f2*26*4 + f3*19*6 - f4*14*4 + f5*11)*(1/12.0f);
125 df = (f1*3 - f2*16 + f3*36 - f4*48 + f5*25)*(1/12.0f);
127 //side ones don't work, use 3 point
130 //implement an arbitrary derivative
133 void DerivativeApprox(T &df, const T f[], const Real t[], int npoints, int indexval)
136 Lj(x) = PI_i!=j (x - xi) / PI_i!=j (xj - xi)
138 so Lj'(x) = SUM_k PI_i!=j|k (x - xi) / PI_i!=j (xj - xi)
141 unsigned int i,j,k,i0,i1;
143 Real Lpj,mult,div,tj;
144 Real tval = t[indexval];
147 for(j=0;j<npoints;++j)
153 for(k=0;k<npoints;++k)
155 if(k != j) //because there is no summand for k == j, since that term is missing from the original equation
158 for(i=0;i<npoints;++i)
166 Lpj += mult; //add into the summation
168 //since the ks follow the exact patern we need for the divisor (use that too)
173 //get the actual coefficient
176 //add it in to the equation
181 //END numerical derivatives
184 inline int sign(T f, T tol)
186 if(f < -tol) return -1;
187 if(f > tol) return 1;
191 void GetFirstDerivatives(const std::vector<synfig::Point> &f, unsigned int left, unsigned int right, char *out, unsigned int dfstride)
193 unsigned int current = left;
197 else if(right - left < 3)
199 synfig::Vector v = f[left+1] - f[left];
201 //set both to the one we want
202 *(synfig::Vector*)out = v;
204 *(synfig::Vector*)out = v;
207 else if(right - left < 6/*5*/) //should use 3 point
209 //left then middle then right
210 ThreePointdt(*(synfig::Vector*)out,f[left+0], f[left+1], f[left+2], -1);
214 for(;current < right-1; current++, out += dfstride)
216 ThreePointdt(*(synfig::Vector*)out,f[current-1], f[current], f[current+1], 0);
219 ThreePointdt(*(synfig::Vector*)out,f[right-3], f[right-2], f[right-1], 1);
223 }else //can use 5 point
225 //left 2 then middle bunch then right two
226 //may want to use 3 point for inner edge ones
228 FivePointdt(*(synfig::Vector*)out,f[left+0], f[left+1], f[left+2], f[left+3], f[left+4], -2);
230 FivePointdt(*(synfig::Vector*)out,f[left+1], f[left+2], f[left+3], f[left+4], f[left+5], -1);
234 for(;current < right-2; current++, out += dfstride)
236 FivePointdt(*(synfig::Vector*)out,f[current-2], f[current-1], f[current], f[current+1], f[current+2], 0);
239 FivePointdt(*(synfig::Vector*)out,f[right-5], f[right-4], f[right-3], f[right-2], f[right-1], 1);
241 FivePointdt(*(synfig::Vector*)out,f[right-6], f[right-5], f[right-4], f[right-3], f[right-2], 2);
247 void GetSimpleDerivatives(const std::vector<synfig::Point> &f, int left, int right,
248 std::vector<synfig::Point> &df, int outleft,
249 const std::vector<synfig::Real> &/*di*/)
252 int offset = 2; //df = 1/2 (f[i+o]-f[i-o])
254 assert((int)df.size() >= right-left+outleft); //must be big enough
256 for(i = left; i < right; ++i)
258 //right now indices (figure out distance later)
259 i1 = std::max(left,i-offset);
260 i2 = std::max(left,i+offset);
262 df[outleft++] = (f[i2] - f[i1])*0.5f;
266 //get the curve error from the double sample list of work points (hopefully that's enough)
267 Real CurveError(const synfig::Point *pts, unsigned int n, std::vector<synfig::Point> &work, int left, int right)
269 if(right-left < 2) return -1;
273 //get distances to each point
275 //synfig::Vector v,vt;
276 //synfig::Point p1,p2;
278 std::vector<synfig::Point>::const_iterator it;//,end = work.begin()+right;
280 //unsigned int size = work.size();
282 //for each line, get distance
284 for(i = 0; i < (int)n; ++i)
290 it = work.begin()+left;
291 //p2 = *it++; //put it at left+1
292 for(j = left/*+1*/; j < right; ++j,++it)
300 dtemp = v.mag_squared() > 1e-12 ? (vt*v)/v.mag_squared() : 0; //get the projected time value for the current line
302 //get distance to line segment with the time value clamped 0-1
303 if(dtemp >= 1) //use p+v
305 vt += v; //makes it pp - (p+v)
306 }else if(dtemp > 0) //use vt-proj
308 vt -= v*dtemp; // vt - proj_v(vt) //must normalize the projection vector to work
312 dtemp = vt.mag_squared();*/
314 dtemp = (pi - *it).mag_squared();
319 //accumulate the points' min distance from the curve
326 typedef synfigapp::BLineConverter::cpindex cpindex;
328 //has the index data and the tangent scale data (relevant as it may be)
329 int tesselate_curves(const std::vector<cpindex> &inds, const std::vector<Point> &f, const std::vector<synfig::Vector> &df, std::vector<Point> &work)
334 etl::hermite<Point> curve;
337 std::vector<cpindex>::const_iterator j = inds.begin(),j2, end = inds.end();
339 unsigned int ibase = inds[0].curind;
342 for(; j != end; j2 = j++)
344 //if this curve has invalid error (in j) then retesselate its work points (requires reparametrization, etc.)
347 //get the stepsize etc. for the number of points in here
348 unsigned int n = j->curind - j2->curind + 1; //thats the number of points in the span
349 unsigned int k, kend, i0, i3;
350 //so reset the right chunk
352 Real t, dt = 1/(Real)(n*2-2); //assuming that they own only n points
354 //start at first intermediate
357 i0 = j2->curind; i3 = j->curind;
358 k = (i0-ibase)*2; //start on first intermediary point (2x+1)
359 kend = (i3-ibase)*2; //last point to set (not intermediary)
361 //build hermite curve, it's easier
364 curve.t1() = df[i0]*(df[i0].mag_squared() > 1e-4 ? j2->tangentscale/df[i0].mag() : j2->tangentscale);
365 curve.t2() = df[i3]*(df[i3].mag_squared() > 1e-4 ? j->tangentscale/df[i3].mag() : j->tangentscale);
368 //MUST include the end point (since we are ignoring left one)
369 for(; k < kend; ++k, t += dt)
374 work[k] = curve(1); //k == kend, t == 1 -> c(t) == p2
382 synfigapp::BLineConverter::BLineConverter()
390 synfigapp::BLineConverter::clear()
405 synfigapp::BLineConverter::operator () (std::list<synfig::BLinePoint> &out, const std::list<synfig::Point> &in,const std::list<synfig::Real> &in_w)
407 //Profiling information
408 /*etl::clock::value_type initialprocess=0, curveval=0, breakeval=0, disteval=0;
409 etl::clock::value_type preproceval=0, tesseval=0, erroreval=0, spliteval=0;
410 unsigned int numpre=0, numtess=0, numerror=0, numsplit=0;
411 etl::clock_realtime timer,total;*/
419 //removing digitization error harder than expected
421 //intended to fix little pen errors caused by the way people draw (tiny juts in opposite direction)
422 //Different solutions
423 // Average at both end points (will probably eliminate many points at each end of the samples)
424 // Average after the break points are found (weird points would still affect the curve)
425 // Just always get rid of breaks at the beginning and end if they are a certain distance apart
426 // This is will be current approach so all we do now is try to remove duplicate points
428 //remove duplicate points - very bad for fitting
433 std::list<synfig::Point>::const_iterator i = in.begin(), end = in.end();
434 std::list<synfig::Real>::const_iterator iw = in_w.begin();
437 if(in.size() == in_w.size())
439 for(;i != end; ++i,++iw)
441 //eliminate duplicate points
452 //eliminate duplicate points
460 //initialprocess = timer();
465 //get curvature information
470 synfig::Vector v1,v2;
472 cvt.resize(f.size());
477 for(i = 1; i < (int)f.size()-1; ++i)
479 i0 = std::max(0,i - 2);
480 i1 = std::min((int)(f.size()-1),i + 2);
485 cvt[i] = (v1*v2)/(v1.mag()*v2.mag());
489 //curveval = timer();
490 //synfig::info("calculated curvature");
492 //find corner points and interpolate inside those
495 //break at sharp derivative points
496 //TODO tolerance should be set based upon digitization resolution (length dependent index selection)
497 Real tol = 0; //break tolerance, for the cosine of the change in angle (really high curvature or something)
498 Real fixdistsq = 4*width*width; //the distance to ignore breaks at the end points (for fixing stuff)
501 int maxi = -1, last=0;
506 for(i = 1; i < cvt.size()-1; ++i)
508 //insert if too sharp (we need to break the tangents to insert onto the break list)
521 //synfig::info("break: %d-%d",maxi+1,cvt.size());
532 //postprocess for breaks too close to eachother
534 Point p = f[brk.front()];
537 for(i = 1; i < brk.size()-1; ++i) //do not want to include end point...
539 d = (f[brk[i]] - p).mag_squared();
540 if(d > fixdistsq) break; //don't want to group breaks if we ever get over the dist...
542 //want to erase all points before...
544 brk.erase(brk.begin(),brk.begin()+i-1);
548 for(i = brk.size()-2; i > 0; --i) //start at one in from the end
550 d = (f[brk[i]] - p).mag_squared();
551 if(d > fixdistsq) break; //don't want to group breaks if we ever get over the dist
553 if(i != brk.size()-2)
554 brk.erase(brk.begin()+i+2,brk.end()); //erase all points that we found... found none if i has not advanced
555 //must not include the one we ended up on
557 //breakeval = timer();
558 //synfig::info("found break points: %d",brk.size());
560 //get the distance calculation of the entire curve (for tangent scaling)
568 di.resize(f.size()); d_i.resize(f.size());
570 for(unsigned int i = 0; i < f.size();)
572 d += (d_i[i] = (p2-p1).mag());
579 //disteval = timer();
580 //synfig::info("calculated distance");
582 //now break at every point - calculate new derivatives each time
585 //must be sure that the break points are 3 or more apart
586 //then must also store the breaks which are not smooth, etc.
587 //and figure out tangents between there
589 //for each pair of break points (as long as they are far enough apart) recursively subdivide stuff
590 //ignore the detected intermediate points
592 unsigned int i0=0,i3=0,is=0;
597 Real errortol = smoothness*pixelwidth; //???? what the hell should this value be
602 //intemp = f; //don't want to smooth out the corners
604 bool breaktan = false, setwidth;
605 a.set_split_tangent_flag(false);
606 //a.set_width(width);
609 setwidth = (f.size() == f_w.size());
611 for(j = 0; j < (int)brk.size() - 1; ++j)
613 //for b[j] to b[j+1] subdivide and stuff
617 unsigned int size = i3-i0+1; //must include the end points
621 ftemp.assign(f.begin()+i0, f.begin()+i3+1);
623 gaussian_blur_3(ftemp.begin(),ftemp.end(),false);
626 GetFirstDerivatives(ftemp,0,size,(char*)&df[0],sizeof(df[0]));
627 //GetSimpleDerivatives(ftemp,0,size,df,0,di);
628 //< don't have to worry about indexing stuff as it is all being taken car of right now
629 //preproceval += timer();
632 work.resize(size*2-1); //guarantee that all points will be tesselated correctly (one point inbetween every 2 adjacent points)
634 //if size of work is size*2-1, the step size should be 1/(size*2 - 2)
635 //Real step = 1/(Real)(size*2 - 1);
637 //start off with break points as indices
639 curind.push_back(cpindex(i0,di[i3]-di[i0],0)); //0 error because no curve on the left
640 curind.push_back(cpindex(i3,di[i3]-di[i0],-1)); //error needs to be reevaluated
641 done = false; //we want to loop
643 unsigned int dcount = 0;
645 //while there are still enough points between us, and the error is too high subdivide (and invalidate neighbors that share tangents)
648 //tesselate all curves with invalid error values
652 /*numtess += */tesselate_curves(curind,f,df,work);
653 //tesseval += timer();
655 //now get all error values
657 for(i = 1; i < (int)curind.size(); ++i)
659 if(curind[i].error < 0) //must have been retesselated, so now recalculate error value
661 //evaluate error from points (starting at current index)
662 int size = curind[i].curind - curind[i-1].curind + 1;
663 curind[i].error = CurveError(&f[curind[i-1].curind], size,
664 work,(curind[i-1].curind - i0)*2,(curind[i].curind - i0)*2+1);
666 /*if(curind[i].error > 1.0e5)
668 synfig::info("Holy crap %d-%d error %f",curind[i-1].curind,curind[i].curind,curind[i].error);
669 curind[i].error = -1;
670 numtess += tesselate_curves(curind,f,df,work);
671 curind[i].error = CurveError(&f[curind[i-1].curind], size,
672 work,0,work.size());//(curind[i-1].curind - i0)*2,(curind[i].curind - i0)*2+1);
677 //erroreval += timer();
682 //check each error to see if it's too big, if so, then subdivide etc.
683 int indsize = (int)curind.size();
684 Real maxrelerror = 0;
685 int maxi = -1;//, numpoints;
688 //get the maximum error and split there
689 for(i = 1; i < indsize; ++i)
691 //numpoints = curind[i].curind - curind[i-1].curind + 1;
693 if(curind[i].error > maxrelerror && curind[i].curind - curind[i-1].curind > 2) //only accept if it's valid
695 maxrelerror = curind[i].error;
700 //split if error is too great
701 if(maxrelerror > errortol)
703 //add one to the left etc
704 unsigned int ibase = curind[maxi-1].curind, itop = curind[maxi].curind,
705 ibreak = (ibase + itop)/2;
708 assert(ibreak < f.size());
710 //synfig::info("Split %d -%d- %d, error: %f", ibase,ibreak,itop,maxrelerror);
714 //invalidate current error of the changed tangents and add an extra segment
715 //enforce minimum tangents property
716 curind[maxi].error = -1;
717 curind[maxi-1].error = -1;
718 if(maxi+1 < indsize) curind[maxi+1].error = -1; //if there is a curve segment beyond this it will be effected as well
720 scale = di[itop] - di[ibreak];
721 scale2 = maxi+1 < indsize ? di[curind[maxi+1].curind] - di[itop] : scale; //to the right valid?
722 curind[maxi].tangentscale = std::min(scale, scale2);
724 scale = di[ibreak] - di[ibase];
725 scale2 = maxi >= 2 ? di[ibase] - di[curind[maxi-2].curind] : scale; // to the left valid -2 ?
726 curind[maxi-1].tangentscale = std::min(scale, scale2);
728 scale = std::min(di[ibreak] - di[ibase], di[itop] - di[ibreak]);
730 curind.insert(curind.begin()+maxi,cpindex(ibreak, scale, -1));
731 //curind.push_back(cpindex(ibreak, scale, -1));
732 //std::sort(curind.begin(), curind.end());
738 //spliteval += timer();
743 //insert the last point too (just set tangent for now
744 is = curind[0].curind;
746 //first point inherits current tangent status
748 if(v.mag_squared() > EPSILON)
749 v *= (curind[0].tangentscale/v.mag());
753 else a.set_tangent2(v);
756 if(setwidth)a.set_width(f_w[is]);
759 a.set_split_tangent_flag(false); //won't need to break anymore
762 for(i = 1; i < (int)curind.size()-1; ++i)
764 is = curind[i].curind;
766 //first point inherits current tangent status
768 if(v.mag_squared() > EPSILON)
769 v *= (curind[i].tangentscale/v.mag());
771 a.set_tangent(v); // always inside, so guaranteed to be smooth
773 if(setwidth)a.set_width(f_w[is]);
778 //set the last point's data
779 is = curind.back().curind; //should already be this
782 if(v.mag_squared() > EPSILON)
783 v *= (curind.back().tangentscale/v.mag());
786 a.set_split_tangent_flag(true);
789 //will get the vertex and tangent 2 from next round
793 a.set_split_tangent_flag(false);
795 a.set_width(f_w[i3]);
798 /*etl::clock::value_type totaltime = total(),
799 misctime = totaltime - initialprocess - curveval - breakeval - disteval
800 - preproceval - tesseval - erroreval - spliteval;
803 "Curve Convert Profile:\n"
804 "\tInitial Preprocess: %f\n"
805 "\tCurvature Calculation: %f\n"
806 "\tBreak Calculation: %f\n"
807 "\tDistance Calculation: %f\n"
808 " Algorithm: (numtimes,totaltime)\n"
809 "\tPreprocess step: (%d,%f)\n"
810 "\tTesselation step: (%d,%f)\n"
811 "\tError step: (%d,%f)\n"
812 "\tSplit step: (%d,%f)\n"
813 " Num Input: %d, Num Output: %d\n"
814 " Total time: %f, Misc time: %f\n",
815 initialprocess, curveval,breakeval,disteval,
816 numpre,preproceval,numtess,tesseval,numerror,erroreval,numsplit,spliteval,
817 in.size(),out.size(),
818 totaltime,misctime);*/
824 void synfigapp::BLineConverter::EnforceMinWidth(std::list<synfig::BLinePoint> &bline, synfig::Real min_pressure)
826 std::list<synfig::BLinePoint>::iterator i = bline.begin(),
829 for(i = bline.begin(); i != end; ++i)
831 if(i->get_width() < min_pressure)
833 i->set_width(min_pressure);