X-Git-Url: https://git.pterodactylus.net/?a=blobdiff_plain;f=libs%2Fsqlite3%2Fsqlite3.h;h=9630d9e715673c18fee480173baa1888d1cec4cb;hb=b7f3b3e6ae9dc527f02b5c06e2eeae0e9cac3ad8;hp=955dea0a1f695b67aaf74e407bba8725cbe8d698;hpb=6b896a9e1dc143bba86795be1e9336549db9b85f;p=fms.git diff --git a/libs/sqlite3/sqlite3.h b/libs/sqlite3/sqlite3.h index 955dea0..9630d9e 100644 --- a/libs/sqlite3/sqlite3.h +++ b/libs/sqlite3/sqlite3.h @@ -17,7 +17,7 @@ ** ** Some of the definitions that are in this file are marked as ** "experimental". Experimental interfaces are normally new -** features recently added to SQLite. We do not anticipate changes +** features recently added to SQLite. We do not anticipate changes ** to experimental interfaces but reserve to make minor changes if ** experience from use "in the wild" suggest such changes are prudent. ** @@ -30,7 +30,7 @@ ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. ** -** @(#) $Id: sqlite.h.in,v 1.278 2007/12/13 21:54:11 drh Exp $ +** @(#) $Id: sqlite.h.in,v 1.387 2008/08/05 17:53:23 drh Exp $ */ #ifndef _SQLITE3_H_ #define _SQLITE3_H_ @@ -52,8 +52,7 @@ extern "C" { #endif /* -** Make sure these symbols where not defined by some previous header -** file. +** Ensure these symbols were not defined by some previous header file. */ #ifdef SQLITE_VERSION # undef SQLITE_VERSION @@ -63,106 +62,145 @@ extern "C" { #endif /* -** CAPI3REF: Compile-Time Library Version Numbers {F10010} +** CAPI3REF: Compile-Time Library Version Numbers {H10010} +** +** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in +** the sqlite3.h file specify the version of SQLite with which +** that header file is associated. +** +** The "version" of SQLite is a string of the form "X.Y.Z". +** The phrase "alpha" or "beta" might be appended after the Z. +** The X value is major version number always 3 in SQLite3. +** The X value only changes when backwards compatibility is +** broken and we intend to never break backwards compatibility. +** The Y value is the minor version number and only changes when +** there are major feature enhancements that are forwards compatible +** but not backwards compatible. +** The Z value is the release number and is incremented with +** each release but resets back to 0 whenever Y is incremented. ** -** {F10011} The #define in the sqlite3.h header file named -** SQLITE_VERSION resolves to a string literal that identifies -** the version of the SQLite library in the format "X.Y.Z", where -** X is the major version number, Y is the minor version number and Z -** is the release number. The X.Y.Z might be followed by "alpha" or "beta". -** {END} For example "3.1.1beta". +** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. ** -** The X value is always 3 in SQLite. The X value only changes when -** backwards compatibility is broken and we intend to never break -** backwards compatibility. The Y value only changes when -** there are major feature enhancements that are forwards compatible -** but not backwards compatible. The Z value is incremented with -** each release but resets back to 0 when Y is incremented. +** INVARIANTS: ** -** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer -** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are as -** with SQLITE_VERSION. {END} For example, for version "3.1.1beta", -** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using -** version 3.1.1 or greater at compile time, programs may use the test -** (SQLITE_VERSION_NUMBER>=3001001). +** {H10011} The SQLITE_VERSION #define in the sqlite3.h header file shall +** evaluate to a string literal that is the SQLite version +** with which the header file is associated. ** -** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. +** {H10014} The SQLITE_VERSION_NUMBER #define shall resolve to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z +** are the major version, minor version, and release number. */ -#define SQLITE_VERSION "3.5.4" -#define SQLITE_VERSION_NUMBER 3005004 +#define SQLITE_VERSION "3.6.1" +#define SQLITE_VERSION_NUMBER 3006001 /* -** CAPI3REF: Run-Time Library Version Numbers {F10020} -** -** {F10021} The sqlite3_libversion_number() interface returns an integer -** equal to [SQLITE_VERSION_NUMBER]. {END} The value returned -** by this routine should only be different from the header values -** if the application is compiled using an sqlite3.h header from a -** different version of SQLite than library. Cautious programmers might -** include a check in their application to verify that -** sqlite3_libversion_number() always returns the value +** CAPI3REF: Run-Time Library Version Numbers {H10020} +** KEYWORDS: sqlite3_version +** +** These features provide the same information as the [SQLITE_VERSION] +** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated +** with the library instead of the header file. Cautious programmers might +** include a check in their application to verify that +** sqlite3_libversion_number() always returns the value ** [SQLITE_VERSION_NUMBER]. ** -** {F10022} The sqlite3_version[] string constant contains the text of the -** [SQLITE_VERSION] string. {F10023} The sqlite3_libversion() function returns -** a pointer to the sqlite3_version[] string constant. {END} The -** sqlite3_libversion() function -** is provided for DLL users who can only access functions and not +** The sqlite3_libversion() function returns the same information as is +** in the sqlite3_version[] string constant. The function is provided +** for use in DLLs since DLL users usually do not have direct access to string ** constants within the DLL. +** +** INVARIANTS: +** +** {H10021} The [sqlite3_libversion_number()] interface shall return +** an integer equal to [SQLITE_VERSION_NUMBER]. +** +** {H10022} The [sqlite3_version] string constant shall contain +** the text of the [SQLITE_VERSION] string. +** +** {H10023} The [sqlite3_libversion()] function shall return +** a pointer to the [sqlite3_version] string constant. */ SQLITE_EXTERN const char sqlite3_version[]; const char *sqlite3_libversion(void); int sqlite3_libversion_number(void); /* -** CAPI3REF: Test To See If The Library Is Threadsafe {F10100} -** -** {F10101} The sqlite3_threadsafe() routine returns nonzero -** if SQLite was compiled with its mutexes enabled or zero if -** SQLite was compiled with mutexes disabled. {END} If this -** routine returns false, then it is not safe for simultaneously -** running threads to both invoke SQLite interfaces. -** -** Really all this routine does is return true if SQLite was -** compiled with the -DSQLITE_THREADSAFE=1 option and false if -** compiled with -DSQLITE_THREADSAFE=0. If SQLite uses an -** application-defined mutex subsystem, malloc subsystem, collating -** sequence, VFS, SQL function, progress callback, commit hook, -** extension, or other accessories and these add-ons are not -** threadsafe, then clearly the combination will not be threadsafe -** either. Hence, this routine never reports that the library -** is guaranteed to be threadsafe, only when it is guaranteed not -** to be. +** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} +** +** SQLite can be compiled with or without mutexes. When +** the [SQLITE_THREADSAFE] C preprocessor macro is true, mutexes +** are enabled and SQLite is threadsafe. When that macro is false, +** the mutexes are omitted. Without the mutexes, it is not safe +** to use SQLite concurrently from more than one thread. +** +** Enabling mutexes incurs a measurable performance penalty. +** So if speed is of utmost importance, it makes sense to disable +** the mutexes. But for maximum safety, mutexes should be enabled. +** The default behavior is for mutexes to be enabled. +** +** This interface can be used by a program to make sure that the +** version of SQLite that it is linking against was compiled with +** the desired setting of the [SQLITE_THREADSAFE] macro. +** +** This interface only reports on the compile-time mutex setting +** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with +** SQLITE_THREADSAFE=1 then mutexes are enabled by default but +** can be fully or partially disabled using a call to [sqlite3_config()] +** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD], +** or [SQLITE_CONFIG_MUTEX]. The return value of this function shows +** only the default compile-time setting, not any run-time changes +** to that setting. +** +** INVARIANTS: +** +** {H10101} The [sqlite3_threadsafe()] function shall return nonzero if +** SQLite was compiled with the its mutexes enabled by default +** or zero if SQLite was compiled such that mutexes are +** permanently disabled. +** +** {H10102} The value returned by the [sqlite3_threadsafe()] function +** shall not change when mutex setting are modified at +** runtime using the [sqlite3_config()] interface and +** especially the [SQLITE_CONFIG_SINGLETHREAD], +** [SQLITE_CONFIG_MULTITHREAD], [SQLITE_CONFIG_SERIALIZED], +** and [SQLITE_CONFIG_MUTEX] verbs. */ int sqlite3_threadsafe(void); /* -** CAPI3REF: Database Connection Handle {F12000} +** CAPI3REF: Database Connection Handle {H12000} +** KEYWORDS: {database connection} {database connections} ** -** Each open SQLite database is represented by pointer to an instance of the -** opaque structure named "sqlite3". It is useful to think of an sqlite3 +** Each open SQLite database is represented by a pointer to an instance of +** the opaque structure named "sqlite3". It is useful to think of an sqlite3 ** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and -** [sqlite3_open_v2()] interfaces are its constructors -** and [sqlite3_close()] is its destructor. There are many other interfaces -** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and -** [sqlite3_busy_timeout()] to name but three) that are methods on this -** object. +** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()] +** is its destructor. There are many other interfaces (such as +** [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on an +** sqlite3 object. */ typedef struct sqlite3 sqlite3; - /* -** CAPI3REF: 64-Bit Integer Types {F10200} +** CAPI3REF: 64-Bit Integer Types {H10200} +** KEYWORDS: sqlite_int64 sqlite_uint64 ** -** Because there is no cross-platform way to specify such types +** Because there is no cross-platform way to specify 64-bit integer types ** SQLite includes typedefs for 64-bit signed and unsigned integers. -** {F10201} The sqlite_int64 and sqlite3_int64 types specify a -** 64-bit signed integer. {F10202} The sqlite_uint64 and -** sqlite3_uint64 types specify a 64-bit unsigned integer. {END} ** -** The sqlite3_int64 and sqlite3_uint64 are the preferred type -** definitions. The sqlite_int64 and sqlite_uint64 types are -** supported for backwards compatibility only. +** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions. +** The sqlite_int64 and sqlite_uint64 types are supported for backwards +** compatibility only. +** +** INVARIANTS: +** +** {H10201} The [sqlite_int64] and [sqlite3_int64] type shall specify +** a 64-bit signed integer. +** +** {H10202} The [sqlite_uint64] and [sqlite3_uint64] type shall specify +** a 64-bit unsigned integer. */ #ifdef SQLITE_INT64_TYPE typedef SQLITE_INT64_TYPE sqlite_int64; @@ -179,31 +217,62 @@ typedef sqlite_uint64 sqlite3_uint64; /* ** If compiling for a processor that lacks floating point support, -** substitute integer for floating-point +** substitute integer for floating-point. */ #ifdef SQLITE_OMIT_FLOATING_POINT # define double sqlite3_int64 #endif /* -** CAPI3REF: Closing A Database Connection {F12010} +** CAPI3REF: Closing A Database Connection {H12010} +** +** This routine is the destructor for the [sqlite3] object. ** -** {F12011} The sqlite3_close() interfaces destroys an [sqlite3] object -** allocated by a prior call to [sqlite3_open()], [sqlite3_open16()], or -** [sqlite3_open_v2()]. {F12012} Sqlite3_close() releases all -** memory used by the connection and closes all open files. {END}. +** Applications should [sqlite3_finalize | finalize] all [prepared statements] +** and [sqlite3_blob_close | close] all [BLOB handles] associated with +** the [sqlite3] object prior to attempting to close the object. +** The [sqlite3_next_stmt()] interface can be used to locate all +** [prepared statements] associated with a [database connection] if desired. +** Typical code might look like this: ** -** {F12013} If the database connection contains -** [sqlite3_stmt | prepared statements] that have not been finalized -** by [sqlite3_finalize()], then sqlite3_close() returns SQLITE_BUSY -** and leaves the connection open. {F12014} Giving sqlite3_close() -** a NULL pointer is a harmless no-op. {END} +**
+** sqlite3_stmt *pStmt;
+** while( (pStmt = sqlite3_next_stmt(db, 0))!=0 ){
+**     sqlite3_finalize(pStmt);
+** }
+** 
** -** {U12015} Passing this routine a database connection that has already been -** closed results in undefined behavior. {U12016} If other interfaces that -** reference the same database connection are pending (either in the -** same thread or in different threads) when this routine is called, -** then the behavior is undefined and is almost certainly undesirable. +** If [sqlite3_close()] is invoked while a transaction is open, +** the transaction is automatically rolled back. +** +** INVARIANTS: +** +** {H12011} A successful call to [sqlite3_close(C)] shall destroy the +** [database connection] object C. +** +** {H12012} A successful call to [sqlite3_close(C)] shall return SQLITE_OK. +** +** {H12013} A successful call to [sqlite3_close(C)] shall release all +** memory and system resources associated with [database connection] +** C. +** +** {H12014} A call to [sqlite3_close(C)] on a [database connection] C that +** has one or more open [prepared statements] shall fail with +** an [SQLITE_BUSY] error code. +** +** {H12015} A call to [sqlite3_close(C)] where C is a NULL pointer shall +** return SQLITE_OK. +** +** {H12019} When [sqlite3_close(C)] is invoked on a [database connection] C +** that has a pending transaction, the transaction shall be +** rolled back. +** +** ASSUMPTIONS: +** +** {A12016} The C parameter to [sqlite3_close(C)] must be either a NULL +** pointer or an [sqlite3] object pointer obtained +** from [sqlite3_open()], [sqlite3_open16()], or +** [sqlite3_open_v2()], and not previously closed. */ int sqlite3_close(sqlite3 *); @@ -215,85 +284,130 @@ int sqlite3_close(sqlite3 *); typedef int (*sqlite3_callback)(void*,int,char**, char**); /* -** CAPI3REF: One-Step Query Execution Interface {F12100} -** -** {F12101} The sqlite3_exec() interface evaluates zero or more -** UTF-8 encoded, semicolon-separated SQL statements in the zero-terminated -** string of its second argument. {F12102} The SQL -** statements are evaluated in the context of the database connection -** specified by in the first argument. -** {F12103} SQL statements are prepared one by one using -** [sqlite3_prepare()] or the equivalent, evaluated -** using one or more calls to [sqlite3_step()], then destroyed -** using [sqlite3_finalize()]. {F12104} The return value of -** sqlite3_exec() is SQLITE_OK if all SQL statement run -** successfully. -** -** {F12105} If one or more of the SQL statements handed to -** sqlite3_exec() are queries, then -** the callback function specified by the 3rd parameter is -** invoked once for each row of the query result. {F12106} -** If the callback returns a non-zero value then the query -** is aborted, all subsequent SQL statements -** are skipped and the sqlite3_exec() function returns the [SQLITE_ABORT]. -** -** {F12107} The 4th parameter to sqlite3_exec() is an arbitrary pointer -** that is passed through to the callback function as its first parameter. -** -** {F12108} The 2nd parameter to the callback function is the number of -** columns in the query result. {F12109} The 3rd parameter to the callback -** is an array of pointers to strings holding the values for each column -** as extracted using [sqlite3_column_text()]. NULL values in the result -** set result in a NULL pointer. All other value are in their UTF-8 -** string representation. {F12117} -** The 4th parameter to the callback is an array of strings -** obtained using [sqlite3_column_name()] and holding -** the names of each column, also in UTF-8. -** -** {F12110} The callback function may be NULL, even for queries. A NULL -** callback is not an error. It just means that no callback -** will be invoked. -** -** {F12112} If an error occurs while parsing or evaluating the SQL -** then an appropriate error message is written into memory obtained -** from [sqlite3_malloc()] and *errmsg is made to point to that message -** assuming errmsg is not NULL. -** {U12113} The calling function is responsible for freeing the memory -** using [sqlite3_free()]. -** {F12116} If [sqlite3_malloc()] fails while attempting to generate -** the error message, *errmsg is set to NULL. -** {F12114} If errmsg is NULL then no attempt is made to generate an -** error message. Is the return code SQLITE_NOMEM or the original -** error code? What happens if there are multiple errors? -** Do we get code for the first error, or is the choice of reported -** error arbitrary? -** -** {F12115} The return value is is SQLITE_OK if there are no errors and -** some other [SQLITE_OK | return code] if there is an error. -** The particular return value depends on the type of error. {END} +** CAPI3REF: One-Step Query Execution Interface {H12100} +** +** The sqlite3_exec() interface is a convenient way of running one or more +** SQL statements without having to write a lot of C code. The UTF-8 encoded +** SQL statements are passed in as the second parameter to sqlite3_exec(). +** The statements are evaluated one by one until either an error or +** an interrupt is encountered, or until they are all done. The 3rd parameter +** is an optional callback that is invoked once for each row of any query +** results produced by the SQL statements. The 5th parameter tells where +** to write any error messages. +** +** The error message passed back through the 5th parameter is held +** in memory obtained from [sqlite3_malloc()]. To avoid a memory leak, +** the calling application should call [sqlite3_free()] on any error +** message returned through the 5th parameter when it has finished using +** the error message. +** +** If the SQL statement in the 2nd parameter is NULL or an empty string +** or a string containing only whitespace and comments, then no SQL +** statements are evaluated and the database is not changed. +** +** The sqlite3_exec() interface is implemented in terms of +** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()]. +** The sqlite3_exec() routine does nothing to the database that cannot be done +** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()]. +** +** INVARIANTS: +** +** {H12101} A successful invocation of [sqlite3_exec(D,S,C,A,E)] +** shall sequentially evaluate all of the UTF-8 encoded, +** semicolon-separated SQL statements in the zero-terminated +** string S within the context of the [database connection] D. +** +** {H12102} If the S parameter to [sqlite3_exec(D,S,C,A,E)] is NULL then +** the actions of the interface shall be the same as if the +** S parameter were an empty string. +** +** {H12104} The return value of [sqlite3_exec()] shall be [SQLITE_OK] if all +** SQL statements run successfully and to completion. +** +** {H12105} The return value of [sqlite3_exec()] shall be an appropriate +** non-zero [error code] if any SQL statement fails. +** +** {H12107} If one or more of the SQL statements handed to [sqlite3_exec()] +** return results and the 3rd parameter is not NULL, then +** the callback function specified by the 3rd parameter shall be +** invoked once for each row of result. +** +** {H12110} If the callback returns a non-zero value then [sqlite3_exec()] +** shall abort the SQL statement it is currently evaluating, +** skip all subsequent SQL statements, and return [SQLITE_ABORT]. +** +** {H12113} The [sqlite3_exec()] routine shall pass its 4th parameter through +** as the 1st parameter of the callback. +** +** {H12116} The [sqlite3_exec()] routine shall set the 2nd parameter of its +** callback to be the number of columns in the current row of +** result. +** +** {H12119} The [sqlite3_exec()] routine shall set the 3rd parameter of its +** callback to be an array of pointers to strings holding the +** values for each column in the current result set row as +** obtained from [sqlite3_column_text()]. +** +** {H12122} The [sqlite3_exec()] routine shall set the 4th parameter of its +** callback to be an array of pointers to strings holding the +** names of result columns as obtained from [sqlite3_column_name()]. +** +** {H12125} If the 3rd parameter to [sqlite3_exec()] is NULL then +** [sqlite3_exec()] shall silently discard query results. +** +** {H12131} If an error occurs while parsing or evaluating any of the SQL +** statements in the S parameter of [sqlite3_exec(D,S,C,A,E)] and if +** the E parameter is not NULL, then [sqlite3_exec()] shall store +** in *E an appropriate error message written into memory obtained +** from [sqlite3_malloc()]. +** +** {H12134} The [sqlite3_exec(D,S,C,A,E)] routine shall set the value of +** *E to NULL if E is not NULL and there are no errors. +** +** {H12137} The [sqlite3_exec(D,S,C,A,E)] function shall set the [error code] +** and message accessible via [sqlite3_errcode()], +** [sqlite3_errmsg()], and [sqlite3_errmsg16()]. +** +** {H12138} If the S parameter to [sqlite3_exec(D,S,C,A,E)] is NULL or an +** empty string or contains nothing other than whitespace, comments, +** and/or semicolons, then results of [sqlite3_errcode()], +** [sqlite3_errmsg()], and [sqlite3_errmsg16()] +** shall reset to indicate no errors. +** +** ASSUMPTIONS: +** +** {A12141} The first parameter to [sqlite3_exec()] must be an valid and open +** [database connection]. +** +** {A12142} The database connection must not be closed while +** [sqlite3_exec()] is running. +** +** {A12143} The calling function should use [sqlite3_free()] to free +** the memory that *errmsg is left pointing at once the error +** message is no longer needed. +** +** {A12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()] +** must remain unchanged while [sqlite3_exec()] is running. */ int sqlite3_exec( sqlite3*, /* An open database */ - const char *sql, /* SQL to be evaluted */ + const char *sql, /* SQL to be evaluated */ int (*callback)(void*,int,char**,char**), /* Callback function */ void *, /* 1st argument to callback */ char **errmsg /* Error msg written here */ ); /* -** CAPI3REF: Result Codes {F10210} -** KEYWORDS: SQLITE_OK +** CAPI3REF: Result Codes {H10210} +** KEYWORDS: SQLITE_OK {error code} {error codes} +** KEYWORDS: {result code} {result codes} ** ** Many SQLite functions return an integer result code from the set shown -** above in order to indicates success or failure. +** here in order to indicates success or failure. ** -** {F10211} The result codes shown here are the only ones returned -** by SQLite in its default configuration. {F10212} However, the -** [sqlite3_extended_result_codes()] API can be used to set a database -** connectoin to return more detailed result codes. {END} +** New error codes may be added in future versions of SQLite. ** ** See also: [SQLITE_IOERR_READ | extended result codes] -** */ #define SQLITE_OK 0 /* Successful result */ /* beginning-of-error-codes */ @@ -328,52 +442,62 @@ int sqlite3_exec( /* end-of-error-codes */ /* -** CAPI3REF: Extended Result Codes {F10220} +** CAPI3REF: Extended Result Codes {H10220} +** KEYWORDS: {extended error code} {extended error codes} +** KEYWORDS: {extended result code} {extended result codes} ** ** In its default configuration, SQLite API routines return one of 26 integer -** [SQLITE_OK | result codes]. However, experience has shown that -** many of these result codes are too course-grained. They do not provide as +** [SQLITE_OK | result codes]. However, experience has shown that many of +** these result codes are too coarse-grained. They do not provide as ** much information about problems as programmers might like. In an effort to ** address this, newer versions of SQLite (version 3.3.8 and later) include ** support for additional result codes that provide more detailed information -** about errors. {F10221} The extended result codes are enabled or disabled -** for each database connection using the [sqlite3_extended_result_codes()] -** API. {END} -** -** Some of the available extended result codes are listed above. -** We expect the number of extended result codes will be expand -** over time. {U10422} Software that uses extended result codes should expect -** to see new result codes in future releases of SQLite. {END} -** -** {F10223} The symbolic name for an extended result code always contains -** a related primary result code as a prefix. {F10224} Primary result -** codes contain a single "_" character. {F10225} Extended result codes -** contain two or more "_" characters. {F10226} The numeric value of an -** extended result code can be converted to its -** corresponding primary result code by masking off the lower 8 bytes. {END} +** about errors. The extended result codes are enabled or disabled +** on a per database connection basis using the +** [sqlite3_extended_result_codes()] API. +** +** Some of the available extended result codes are listed here. +** One may expect the number of extended result codes will be expand +** over time. Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. ** ** The SQLITE_OK result code will never be extended. It will always ** be exactly zero. +** +** INVARIANTS: +** +** {H10223} The symbolic name for an extended result code shall contains +** a related primary result code as a prefix. +** +** {H10224} Primary result code names shall contain a single "_" character. +** +** {H10225} Extended result code names shall contain two or more "_" characters. +** +** {H10226} The numeric value of an extended result code shall contain the +** numeric value of its corresponding primary result code in +** its least significant 8 bits. */ -#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) -#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) -#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) -#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) -#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) -#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) -#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) -#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) -#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) -#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) -#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) -#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) - -/* -** CAPI3REF: Flags For File Open Operations {F10230} -** -** {F10231} Some combination of the these bit values are used as the -** third argument to the [sqlite3_open_v2()] interface and -** as fourth argument to the xOpen method of the +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) +#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8)) +#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8)) + +/* +** CAPI3REF: Flags For File Open Operations {H10230} +** +** These bit values are intended for use in the +** 3rd parameter to the [sqlite3_open_v2()] interface and +** in the 4th parameter to the xOpen method of the ** [sqlite3_vfs] object. */ #define SQLITE_OPEN_READONLY 0x00000001 @@ -388,24 +512,25 @@ int sqlite3_exec( #define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 #define SQLITE_OPEN_SUBJOURNAL 0x00002000 #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 +#define SQLITE_OPEN_NOMUTEX 0x00008000 /* -** CAPI3REF: Device Characteristics {F10240} +** CAPI3REF: Device Characteristics {H10240} ** -** {F10241} The xDeviceCapabilities method of the [sqlite3_io_methods] +** The xDeviceCapabilities method of the [sqlite3_io_methods] ** object returns an integer which is a vector of the these ** bit values expressing I/O characteristics of the mass storage ** device that holds the file that the [sqlite3_io_methods] -** refers to. {END} +** refers to. ** -** {F10242} The SQLITE_IOCAP_ATOMIC property means that all writes of -** any size are atomic. {F10243} The SQLITE_IOCAP_ATOMICnnn values +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values ** mean that writes of blocks that are nnn bytes in size and ** are aligned to an address which is an integer multiple of -** nnn are atomic. {F10244} The SQLITE_IOCAP_SAFE_APPEND value means +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means ** that when data is appended to a file, the data is appended ** first then the size of the file is extended, never the other -** way around. {F10245} The SQLITE_IOCAP_SEQUENTIAL property means that +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that ** information is written to disk in the same order as calls ** to xWrite(). */ @@ -422,11 +547,11 @@ int sqlite3_exec( #define SQLITE_IOCAP_SEQUENTIAL 0x00000400 /* -** CAPI3REF: File Locking Levels {F10250} +** CAPI3REF: File Locking Levels {H10250} ** -** {F10251} SQLite uses one of the following integer values as the second +** SQLite uses one of these integer values as the second ** argument to calls it makes to the xLock() and xUnlock() methods -** of an [sqlite3_io_methods] object. {END} +** of an [sqlite3_io_methods] object. */ #define SQLITE_LOCK_NONE 0 #define SQLITE_LOCK_SHARED 1 @@ -435,25 +560,24 @@ int sqlite3_exec( #define SQLITE_LOCK_EXCLUSIVE 4 /* -** CAPI3REF: Synchronization Type Flags {F10260} +** CAPI3REF: Synchronization Type Flags {H10260} ** -** {F10261} When SQLite invokes the xSync() method of an -** [sqlite3_io_methods] object it uses a combination of the +** When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of ** these integer values as the second argument. ** -** {F10262} When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** When the SQLITE_SYNC_DATAONLY flag is used, it means that the ** sync operation only needs to flush data to mass storage. Inode -** information need not be flushed. {F10263} The SQLITE_SYNC_NORMAL means -** to use normal fsync() semantics. {F10264} The SQLITE_SYNC_FULL flag means +** information need not be flushed. The SQLITE_SYNC_NORMAL flag means +** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means ** to use Mac OS-X style fullsync instead of fsync(). */ #define SQLITE_SYNC_NORMAL 0x00002 #define SQLITE_SYNC_FULL 0x00003 #define SQLITE_SYNC_DATAONLY 0x00010 - /* -** CAPI3REF: OS Interface Open File Handle {F11110} +** CAPI3REF: OS Interface Open File Handle {H11110} ** ** An [sqlite3_file] object represents an open file in the OS ** interface layer. Individual OS interface implementations will @@ -468,19 +592,20 @@ struct sqlite3_file { }; /* -** CAPI3REF: OS Interface File Virtual Methods Object {F11120} +** CAPI3REF: OS Interface File Virtual Methods Object {H11120} ** -** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to -** an instance of the this object. This object defines the -** methods used to perform various operations against the open file. +** Every file opened by the [sqlite3_vfs] xOpen method populates an +** [sqlite3_file] object (or, more commonly, a subclass of the +** [sqlite3_file] object) with a pointer to an instance of this object. +** This object defines the methods used to perform various operations +** against the open file represented by the [sqlite3_file] object. ** ** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or ** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). -* The second choice is an -** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to -** indicate that only the data of the file and not its inode needs to be -** synced. -** +** The second choice is a Mac OS-X style fullsync. The [SQLITE_SYNC_DATAONLY] +** flag may be ORed in to indicate that only the data of the file +** and not its inode needs to be synced. +** ** The integer values to xLock() and xUnlock() are one of **
    **
  • [SQLITE_LOCK_NONE], @@ -489,26 +614,24 @@ struct sqlite3_file { **
  • [SQLITE_LOCK_PENDING], or **
  • [SQLITE_LOCK_EXCLUSIVE]. **
-** xLock() increases the lock. xUnlock() decreases the lock. -** The xCheckReservedLock() method looks -** to see if any database connection, either in this -** process or in some other process, is holding an RESERVED, +** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method checks whether any database connection, +** either in this process or in some other process, is holding a RESERVED, ** PENDING, or EXCLUSIVE lock on the file. It returns true -** if such a lock exists and false if not. -** +** if such a lock exists and false otherwise. +** ** The xFileControl() method is a generic interface that allows custom ** VFS implementations to directly control an open file using the -** [sqlite3_file_control()] interface. The second "op" argument -** is an integer opcode. The third -** argument is a generic pointer which is intended to be a pointer -** to a structure that may contain arguments or space in which to +** [sqlite3_file_control()] interface. The second "op" argument is an +** integer opcode. The third argument is a generic pointer intended to +** point to a structure that may contain arguments or space in which to ** write return values. Potential uses for xFileControl() might be ** functions to enable blocking locks with timeouts, to change the ** locking strategy (for example to use dot-file locks), to inquire ** about the status of a lock, or to break stale locks. The SQLite -** core reserves opcodes less than 100 for its own use. +** core reserves all opcodes less than 100 for its own use. ** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. -** Applications that define a custom xFileControl method should use opcodes +** Applications that define a custom xFileControl method should use opcodes ** greater than 100 to avoid conflicts. ** ** The xSectorSize() method returns the sector size of the @@ -554,7 +677,7 @@ struct sqlite3_io_methods { int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); int (*xLock)(sqlite3_file*, int); int (*xUnlock)(sqlite3_file*, int); - int (*xCheckReservedLock)(sqlite3_file*); + int (*xCheckReservedLock)(sqlite3_file*, int *pResOut); int (*xFileControl)(sqlite3_file*, int op, void *pArg); int (*xSectorSize)(sqlite3_file*); int (*xDeviceCharacteristics)(sqlite3_file*); @@ -562,28 +685,28 @@ struct sqlite3_io_methods { }; /* -** CAPI3REF: Standard File Control Opcodes {F11310} +** CAPI3REF: Standard File Control Opcodes {H11310} ** ** These integer constants are opcodes for the xFileControl method -** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] +** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()] ** interface. ** -** {F11311} The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This -** opcode cases the xFileControl method to write the current state of +** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode causes the xFileControl method to write the current state of ** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], ** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) -** into an integer that the pArg argument points to. {F11312} This capability +** into an integer that the pArg argument points to. This capability ** is used during testing and only needs to be supported when SQLITE_TEST ** is defined. */ #define SQLITE_FCNTL_LOCKSTATE 1 /* -** CAPI3REF: Mutex Handle {F17110} +** CAPI3REF: Mutex Handle {H17110} ** ** The mutex module within SQLite defines [sqlite3_mutex] to be an -** abstract type for a mutex object. {F17111} The SQLite core never looks -** at the internal representation of an [sqlite3_mutex]. {END} It only +** abstract type for a mutex object. The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. It only ** deals with pointers to the [sqlite3_mutex] object. ** ** Mutexes are created using [sqlite3_mutex_alloc()]. @@ -591,27 +714,31 @@ struct sqlite3_io_methods { typedef struct sqlite3_mutex sqlite3_mutex; /* -** CAPI3REF: OS Interface Object {F11140} +** CAPI3REF: OS Interface Object {H11140} ** -** An instance of this object defines the interface between the -** SQLite core and the underlying operating system. The "vfs" +** An instance of the sqlite3_vfs object defines the interface between +** the SQLite core and the underlying operating system. The "vfs" ** in the name of the object stands for "virtual file system". ** -** The iVersion field is initially 1 but may be larger for future -** versions of SQLite. Additional fields may be appended to this -** object when the iVersion value is increased. +** The value of the iVersion field is initially 1 but may be larger in +** future versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. Note that the structure +** of the sqlite3_vfs object changes in the transaction between +** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not +** modified. ** ** The szOsFile field is the size of the subclassed [sqlite3_file] ** structure used by this VFS. mxPathname is the maximum length of ** a pathname in this VFS. ** -** Registered vfs modules are kept on a linked list formed by +** Registered sqlite3_vfs objects are kept on a linked list formed by ** the pNext pointer. The [sqlite3_vfs_register()] ** and [sqlite3_vfs_unregister()] interfaces manage this list ** in a thread-safe way. The [sqlite3_vfs_find()] interface -** searches the list. +** searches the list. Neither the application code nor the VFS +** implementation should use the pNext pointer. ** -** The pNext field is the only fields in the sqlite3_vfs +** The pNext field is the only field in the sqlite3_vfs ** structure that SQLite will ever modify. SQLite will only access ** or modify this field while holding a particular static mutex. ** The application should never modify anything within the sqlite3_vfs @@ -620,23 +747,28 @@ typedef struct sqlite3_mutex sqlite3_mutex; ** The zName field holds the name of the VFS module. The name must ** be unique across all VFS modules. ** -** {F11141} SQLite will guarantee that the zFilename string passed to -** xOpen() is a full pathname as generated by xFullPathname() and -** that the string will be valid and unchanged until xClose() is -** called. {END} So the [sqlite3_file] can store a pointer to the +** {H11141} SQLite will guarantee that the zFilename parameter to xOpen +** is either a NULL pointer or string obtained +** from xFullPathname(). SQLite further guarantees that +** the string will be valid and unchanged until xClose() is +** called. {END} Because of the previous sentense, +** the [sqlite3_file] can safely store a pointer to the ** filename if it needs to remember the filename for some reason. +** If the zFilename parameter is xOpen is a NULL pointer then xOpen +** must invite its own temporary name for the file. Whenever the +** xFilename parameter is NULL it will also be the case that the +** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE]. ** -** {F11142} The flags argument to xOpen() includes all bits set in +** {H11142} The flags argument to xOpen() includes all bits set in ** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] ** or [sqlite3_open16()] is used, then flags includes at least ** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END} ** If xOpen() opens a file read-only then it sets *pOutFlags to -** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be -** set. -** -** {F11143} SQLite will also add one of the following flags to the xOpen() +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set. +** +** {H11143} SQLite will also add one of the following flags to the xOpen() ** call, depending on the object being opened: -** +** **
    **
  • [SQLITE_OPEN_MAIN_DB] **
  • [SQLITE_OPEN_MAIN_JOURNAL] @@ -648,59 +780,56 @@ typedef struct sqlite3_mutex sqlite3_mutex; **
{END} ** ** The file I/O implementation can use the object type flags to -** changes the way it deals with files. For example, an application -** that does not care about crash recovery or rollback, might make -** the open of a journal file a no-op. Writes to this journal are -** also a no-op. Any attempt to read the journal return SQLITE_IOERR. -** Or the implementation might recognize the a database file will -** be doing page-aligned sector reads and writes in a random order -** and set up its I/O subsystem accordingly. -** -** {F11144} SQLite might also add one of the following flags to the xOpen -** method: -** +** change the way it deals with files. For example, an application +** that does not care about crash recovery or rollback might make +** the open of a journal file a no-op. Writes to this journal would +** also be no-ops, and any attempt to read the journal would return +** SQLITE_IOERR. Or the implementation might recognize that a database +** file will be doing page-aligned sector reads and writes in a random +** order and set up its I/O subsystem accordingly. +** +** SQLite might also add one of the following flags to the xOpen method: +** **
    **
  • [SQLITE_OPEN_DELETEONCLOSE] **
  • [SQLITE_OPEN_EXCLUSIVE] **
-** -** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be -** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE] -** will be set for TEMP databases, journals and for subjournals. -** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened +** +** {H11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. {H11146} The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases, journals and for subjournals. +** +** {H11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened ** for exclusive access. This flag is set for all files except -** for the main database file. {END} -** -** {F11148} At least szOsFile bytes of memory is allocated by SQLite -** to hold the [sqlite3_file] structure passed as the third -** argument to xOpen. {END} The xOpen method does not have to +** for the main database file. +** +** {H11148} At least szOsFile bytes of memory are allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. {END} The xOpen method does not have to ** allocate the structure; it should just fill it in. -** -** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] -** to test for the existance of a file, -** or [SQLITE_ACCESS_READWRITE] to test to see -** if a file is readable and writable, or [SQLITE_ACCESS_READ] -** to test to see if a file is at least readable. {END} The file can be a +** +** {H11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to +** test whether a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test whether a file is at least readable. {END} The file can be a ** directory. -** -** {F11150} SQLite will always allocate at least mxPathname+1 byte for -** the output buffers for xGetTempname and xFullPathname. {F11151} The exact -** size of the output buffer is also passed as a parameter to both -** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN -** should be returned. As this is handled as a fatal error by SQLite, -** vfs implementations should endeavor to prevent this by setting -** mxPathname to a sufficiently large value. -** +** +** {H11150} SQLite will always allocate at least mxPathname+1 bytes for the +** output buffer xFullPathname. {H11151} The exact size of the output buffer +** is also passed as a parameter to both methods. {END} If the output buffer +** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is +** handled as a fatal error by SQLite, vfs implementations should endeavor +** to prevent this by setting mxPathname to a sufficiently large value. +** ** The xRandomness(), xSleep(), and xCurrentTime() interfaces ** are not strictly a part of the filesystem, but they are ** included in the VFS structure for completeness. ** The xRandomness() function attempts to return nBytes bytes ** of good-quality randomness into zOut. The return value is -** the actual number of bytes of randomness obtained. The -** xSleep() method cause the calling thread to sleep for at +** the actual number of bytes of randomness obtained. +** The xSleep() method causes the calling thread to sleep for at ** least the number of microseconds given. The xCurrentTime() -** method returns a Julian Day Number for the current date and -** time. +** method returns a Julian Day Number for the current date and time. */ typedef struct sqlite3_vfs sqlite3_vfs; struct sqlite3_vfs { @@ -713,8 +842,7 @@ struct sqlite3_vfs { int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, int flags, int *pOutFlags); int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); - int (*xAccess)(sqlite3_vfs*, const char *zName, int flags); - int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut); int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); @@ -723,229 +851,670 @@ struct sqlite3_vfs { int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); int (*xSleep)(sqlite3_vfs*, int microseconds); int (*xCurrentTime)(sqlite3_vfs*, double*); + int (*xGetLastError)(sqlite3_vfs*, int, char *); /* New fields may be appended in figure versions. The iVersion ** value will increment whenever this happens. */ }; /* -** CAPI3REF: Flags for the xAccess VFS method {F11190} +** CAPI3REF: Flags for the xAccess VFS method {H11190} ** -** {F11191} These integer constants can be used as the third parameter to +** {H11191} These integer constants can be used as the third parameter to ** the xAccess method of an [sqlite3_vfs] object. {END} They determine -** the kind of what kind of permissions the xAccess method is -** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method -** simply checks to see if the file exists. {F11193} With -** SQLITE_ACCESS_READWRITE, the xAccess method checks to see -** if the file is both readable and writable. {F11194} With -** SQLITE_ACCESS_READ the xAccess method -** checks to see if the file is readable. +** what kind of permissions the xAccess method is looking for. +** {H11192} With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks whether the file exists. +** {H11193} With SQLITE_ACCESS_READWRITE, the xAccess method +** checks whether the file is both readable and writable. +** {H11194} With SQLITE_ACCESS_READ, the xAccess method +** checks whether the file is readable. */ #define SQLITE_ACCESS_EXISTS 0 #define SQLITE_ACCESS_READWRITE 1 #define SQLITE_ACCESS_READ 2 /* -** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} +** CAPI3REF: Initialize The SQLite Library {H10130} +** +** The sqlite3_initialize() routine initializes the +** SQLite library. The sqlite3_shutdown() routine +** deallocates any resources that were allocated by sqlite3_initialize(). +** +** A call to sqlite3_initialize() is an "effective" call if it is +** the first time sqlite3_initialize() is invoked during the lifetime of +** the process, or if it is the first time sqlite3_initialize() is invoked +** following a call to sqlite3_shutdown(). Only an effective call +** of sqlite3_initialize() does any initialization. All other calls +** are harmless no-ops. +** +** Among other things, sqlite3_initialize() shall invoke +** sqlite3_os_init(). Similarly, sqlite3_shutdown() +** shall invoke sqlite3_os_end(). +** +** The sqlite3_initialize() routine returns SQLITE_OK on success. +** If for some reason, sqlite3_initialize() is unable to initialize +** the library (perhaps it is unable to allocate a needed resource such +** as a mutex) it returns an [error code] other than SQLITE_OK. +** +** The sqlite3_initialize() routine is called internally by many other +** SQLite interfaces so that an application usually does not need to +** invoke sqlite3_initialize() directly. For example, [sqlite3_open()] +** calls sqlite3_initialize() so the SQLite library will be automatically +** initialized when [sqlite3_open()] is called if it has not be initialized +** already. However, if SQLite is compiled with the SQLITE_OMIT_AUTOINIT +** compile-time option, then the automatic calls to sqlite3_initialize() +** are omitted and the application must call sqlite3_initialize() directly +** prior to using any other SQLite interface. For maximum portability, +** it is recommended that applications always invoke sqlite3_initialize() +** directly prior to using any other SQLite interface. Future releases +** of SQLite may require this. In other words, the behavior exhibited +** when SQLite is compiled with SQLITE_OMIT_AUTOINIT might become the +** default behavior in some future release of SQLite. +** +** The sqlite3_os_init() routine does operating-system specific +** initialization of the SQLite library. The sqlite3_os_end() +** routine undoes the effect of sqlite3_os_init(). Typical tasks +** performed by these routines include allocation or deallocation +** of static resources, initialization of global variables, +** setting up a default [sqlite3_vfs] module, or setting up +** a default configuration using [sqlite3_config()]. +** +** The application should never invoke either sqlite3_os_init() +** or sqlite3_os_end() directly. The application should only invoke +** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init() +** interface is called automatically by sqlite3_initialize() and +** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate +** implementations for sqlite3_os_init() and sqlite3_os_end() +** are built into SQLite when it is compiled for unix, windows, or os/2. +** When built for other platforms (using the SQLITE_OS_OTHER=1 compile-time +** option) the application must supply a suitable implementation for +** sqlite3_os_init() and sqlite3_os_end(). An application-supplied +** implementation of sqlite3_os_init() or sqlite3_os_end() +** must return SQLITE_OK on success and some other [error code] upon +** failure. +*/ +int sqlite3_initialize(void); +int sqlite3_shutdown(void); +int sqlite3_os_init(void); +int sqlite3_os_end(void); + +/* +** CAPI3REF: Configuring The SQLite Library {H10145} +** EXPERIMENTAL +** +** The sqlite3_config() interface is used to make global configuration +** changes to SQLite in order to tune SQLite to the specific needs of +** the application. The default configuration is recommended for most +** applications and so this routine is usually not necessary. It is +** provided to support rare applications with unusual needs. +** +** The sqlite3_config() interface is not threadsafe. The application +** must insure that no other SQLite interfaces are invoked by other +** threads while sqlite3_config() is running. Furthermore, sqlite3_config() +** may only be invoked prior to library initialization using +** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()]. +** Note, however, that sqlite3_config() can be called as part of the +** implementation of an application-defined [sqlite3_os_init()]. +** +** The first argument to sqlite3_config() is an integer +** [SQLITE_CONFIG_SINGLETHREAD | configuration option] that determines +** what property of SQLite is to be configured. Subsequent arguments +** vary depending on the [SQLITE_CONFIG_SINGLETHREAD | configuration option] +** in the first argument. +** +** When a configuration option is set, sqlite3_config() returns SQLITE_OK. +** If the option is unknown or SQLite is unable to set the option +** then this routine returns a non-zero [error code]. +*/ +int sqlite3_config(int, ...); + +/* +** CAPI3REF: Configure database connections {H10180} +** EXPERIMENTAL +** +** The sqlite3_db_config() interface is used to make configuration +** changes to a [database connection]. The interface is similar to +** [sqlite3_config()] except that the changes apply to a single +** [database connection] (specified in the first argument). The +** sqlite3_db_config() interface can only be used immediately after +** the database connection is created using [sqlite3_open()], +** [sqlite3_open16()], or [sqlite3_open_v2()]. +** +** The second argument to sqlite3_db_config(D,V,...) is the +** configuration verb - an integer code that indicates what +** aspect of the [database connection] is being configured. +** The only choice for this value is [SQLITE_DBCONFIG_LOOKASIDE]. +** New verbs are likely to be added in future releases of SQLite. +** Additional arguments depend on the verb. +*/ +int sqlite3_db_config(sqlite3*, int op, ...); + +/* +** CAPI3REF: Memory Allocation Routines {H10155} +** EXPERIMENTAL +** +** An instance of this object defines the interface between SQLite +** and low-level memory allocation routines. +** +** This object is used in only one place in the SQLite interface. +** A pointer to an instance of this object is the argument to +** [sqlite3_config()] when the configuration option is +** [SQLITE_CONFIG_MALLOC]. By creating an instance of this object +** and passing it to [sqlite3_config()] during configuration, an +** application can specify an alternative memory allocation subsystem +** for SQLite to use for all of its dynamic memory needs. +** +** Note that SQLite comes with a built-in memory allocator that is +** perfectly adequate for the overwhelming majority of applications +** and that this object is only useful to a tiny minority of applications +** with specialized memory allocation requirements. This object is +** also used during testing of SQLite in order to specify an alternative +** memory allocator that simulates memory out-of-memory conditions in +** order to verify that SQLite recovers gracefully from such +** conditions. +** +** The xMalloc, xFree, and xRealloc methods must work like the +** malloc(), free(), and realloc() functions from the standard library. +** +** xSize should return the allocated size of a memory allocation +** previously obtained from xMalloc or xRealloc. The allocated size +** is always at least as big as the requested size but may be larger. +** +** The xRoundup method returns what would be the allocated size of +** a memory allocation given a particular requested size. Most memory +** allocators round up memory allocations at least to the next multiple +** of 8. Some allocators round up to a larger multiple or to a power of 2. +** +** The xInit method initializes the memory allocator. (For example, +** it might allocate any require mutexes or initialize internal data +** structures. The xShutdown method is invoked (indirectly) by +** [sqlite3_shutdown()] and should deallocate any resources acquired +** by xInit. The pAppData pointer is used as the only parameter to +** xInit and xShutdown. +*/ +typedef struct sqlite3_mem_methods sqlite3_mem_methods; +struct sqlite3_mem_methods { + void *(*xMalloc)(int); /* Memory allocation function */ + void (*xFree)(void*); /* Free a prior allocation */ + void *(*xRealloc)(void*,int); /* Resize an allocation */ + int (*xSize)(void*); /* Return the size of an allocation */ + int (*xRoundup)(int); /* Round up request size to allocation size */ + int (*xInit)(void*); /* Initialize the memory allocator */ + void (*xShutdown)(void*); /* Deinitialize the memory allocator */ + void *pAppData; /* Argument to xInit() and xShutdown() */ +}; + +/* +** CAPI3REF: Configuration Options {H10160} +** EXPERIMENTAL +** +** These constants are the available integer configuration options that +** can be passed as the first argument to the [sqlite3_config()] interface. +** +** New configuration options may be added in future releases of SQLite. +** Existing configuration options might be discontinued. Applications +** should check the return code from [sqlite3_config()] to make sure that +** the call worked. The [sqlite3_config()] interface will return a +** non-zero [error code] if a discontinued or unsupported configuration option +** is invoked. +** +**
+**
SQLITE_CONFIG_SINGLETHREAD
+**
There are no arguments to this option. This option disables +** all mutexing and puts SQLite into a mode where it can only be used +** by a single thread.
+** +**
SQLITE_CONFIG_MULTITHREAD
+**
There are no arguments to this option. This option disables +** mutexing on [database connection] and [prepared statement] objects. +** The application is responsible for serializing access to +** [database connections] and [prepared statements]. But other mutexes +** are enabled so that SQLite will be safe to use in a multi-threaded +** environment.
+** +**
SQLITE_CONFIG_SERIALIZED
+**
There are no arguments to this option. This option enables +** all mutexes including the recursive +** mutexes on [database connection] and [prepared statement] objects. +** In this mode (which is the default when SQLite is compiled with +** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access +** to [database connections] and [prepared statements] so that the +** application is free to use the same [database connection] or the +** same [prepared statement] in different threads at the same time. +** +**

This configuration option merely sets the default mutex +** behavior to serialize access to [database connections]. Individual +** [database connections] can override this setting +** using the [SQLITE_OPEN_NOMUTEX] flag to [sqlite3_open_v2()].

+** +**
SQLITE_CONFIG_MALLOC
+**
This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mem_methods] structure. The argument specifies +** alternative low-level memory allocation routines to be used in place of +** the memory allocation routines built into SQLite.
+** +**
SQLITE_CONFIG_GETMALLOC
+**
This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods] +** structure is filled with the currently defined memory allocation routines. +** This option can be used to overload the default memory allocation +** routines with a wrapper that simulations memory allocation failure or +** tracks memory usage, for example.
+** +**
SQLITE_CONFIG_MEMSTATUS
+**
This option takes single argument of type int, interpreted as a +** boolean, which enables or disables the collection of memory allocation +** statistics. When disabled, the following SQLite interfaces become +** non-operational: +**
    +**
  • [sqlite3_memory_used()] +**
  • [sqlite3_memory_highwater()] +**
  • [sqlite3_soft_heap_limit()] +**
  • [sqlite3_status()] +**
+**
+** +**
SQLITE_CONFIG_SCRATCH
+**
This option specifies a static memory buffer that SQLite can use for +** scratch memory. There are three arguments: A pointer to the memory, the +** size of each scratch buffer (sz), and the number of buffers (N). The sz +** argument must be a multiple of 16. The sz parameter should be a few bytes +** larger than the actual scratch space required due internal overhead. +** The first +** argument should point to an allocation of at least sz*N bytes of memory. +** SQLite will use no more than one scratch buffer at once per thread, so +** N should be set to the expected maximum number of threads. The sz +** parameter should be 6 times the size of the largest database page size. +** Scratch buffers are used as part of the btree balance operation. If +** The btree balancer needs additional memory beyond what is provided by +** scratch buffers or if no scratch buffer space is specified, then SQLite +** goes to [sqlite3_malloc()] to obtain the memory it needs.
+** +**
SQLITE_CONFIG_PAGECACHE
+**
This option specifies a static memory buffer that SQLite can use for +** the database page cache. There are three arguments: A pointer to the +** memory, the size of each page buffer (sz), and the number of pages (N). +** The sz argument must be a power of two between 512 and 32768. The first +** argument should point to an allocation of at least sz*N bytes of memory. +** SQLite will use the memory provided by the first argument to satisfy its +** memory needs for the first N pages that it adds to cache. If additional +** page cache memory is needed beyond what is provided by this option, then +** SQLite goes to [sqlite3_malloc()] for the additional storage space. +** The implementation might use one or more of the N buffers to hold +** memory accounting information.
+** +**
SQLITE_CONFIG_HEAP
+**
This option specifies a static memory buffer that SQLite will use +** for all of its dynamic memory allocation needs beyond those provided +** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE]. +** There are three arguments: A pointer to the memory, the number of +** bytes in the memory buffer, and the minimum allocation size. If +** the first pointer (the memory pointer) is NULL, then SQLite reverts +** to using its default memory allocator (the system malloc() implementation), +** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. If the +** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or +** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory +** allocator is engaged to handle all of SQLites memory allocation needs.
+** +**
SQLITE_CONFIG_MUTEX
+**
This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mutex_methods] structure. The argument specifies +** alternative low-level mutex routines to be used in place +** the mutex routines built into SQLite.
+** +**
SQLITE_CONFIG_GETMUTEX
+**
This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mutex_methods] structure. The +** [sqlite3_mutex_methods] +** structure is filled with the currently defined mutex routines. +** This option can be used to overload the default mutex allocation +** routines with a wrapper used to track mutex usage for performance +** profiling or testing, for example.
+** +**
SQLITE_CONFIG_LOOKASIDE
+**
This option takes two arguments that determine the default +** memory allcation lookaside optimization. The first argument is the +** size of each lookaside buffer slot and the second is the number of +** slots allocated to each database connection.
+** +**
+*/ +#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ +#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */ +#define SQLITE_CONFIG_SERIALIZED 3 /* nil */ +#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */ +#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */ +#define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */ +#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */ +#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */ +#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */ +#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */ +#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */ +#define SQLITE_CONFIG_CHUNKALLOC 12 /* int threshold */ +#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */ + +/* +** CAPI3REF: Configuration Options {H10170} +** EXPERIMENTAL +** +** These constants are the available integer configuration options that +** can be passed as the second argument to the [sqlite3_db_config()] interface. +** +** New configuration options may be added in future releases of SQLite. +** Existing configuration options might be discontinued. Applications +** should check the return code from [sqlite3_db_config()] to make sure that +** the call worked. The [sqlite3_db_config()] interface will return a +** non-zero [error code] if a discontinued or unsupported configuration option +** is invoked. +** +**
+**
SQLITE_DBCONFIG_LOOKASIDE
+**
This option takes three additional arguments that determine the +** [lookaside memory allocator] configuration for the [database connection]. +** The first argument (the third parameter to [sqlite3_db_config()] is a +** pointer to a memory buffer to use for lookaside memory. The first +** argument may be NULL in which case SQLite will allocate the lookaside +** buffer itself using [sqlite3_malloc()]. The second argument is the +** size of each lookaside buffer slot and the third argument is the number of +** slots. The size of the buffer in the first argument must be greater than +** or equal to the product of the second and third arguments.
+** +**
+*/ +#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ + + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes {H12200} +** +** The sqlite3_extended_result_codes() routine enables or disables the +** [extended result codes] feature of SQLite. The extended result +** codes are disabled by default for historical compatibility considerations. +** +** INVARIANTS: ** -** {F12201} The sqlite3_extended_result_codes() routine enables or disables the -** [SQLITE_IOERR_READ | extended result codes] feature on a database -** connection if its 2nd parameter is -** non-zero or zero, respectively. {F12202} -** By default, SQLite API routines return one of only 26 integer -** [SQLITE_OK | result codes]. {F12203} When extended result codes -** are enabled by this routine, the repetoire of result codes can be -** much larger and can (hopefully) provide more detailed information -** about the cause of an error. +** {H12201} Each new [database connection] shall have the +** [extended result codes] feature disabled by default. ** -** {F12204} The second argument is a boolean value that turns extended result -** codes on and off. {F12205} Extended result codes are off by default for -** backwards compatibility with older versions of SQLite. +** {H12202} The [sqlite3_extended_result_codes(D,F)] interface shall enable +** [extended result codes] for the [database connection] D +** if the F parameter is true, or disable them if F is false. */ int sqlite3_extended_result_codes(sqlite3*, int onoff); /* -** CAPI3REF: Last Insert Rowid {F12220} +** CAPI3REF: Last Insert Rowid {H12220} ** -** {F12221} Each entry in an SQLite table has a unique 64-bit signed -** integer key called the "rowid". {F12222} The rowid is always available +** Each entry in an SQLite table has a unique 64-bit signed +** integer key called the "rowid". The rowid is always available ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those -** names are not also used by explicitly declared columns. {F12223} If +** names are not also used by explicitly declared columns. If ** the table has a column of type INTEGER PRIMARY KEY then that column -** is another an alias for the rowid. -** -** {F12224} This routine returns the rowid of the most recent -** successful INSERT into the database from the database connection -** shown in the first argument. {F12225} If no successful inserts -** have ever occurred on this database connection, zero is returned. -** -** {F12226} If an INSERT occurs within a trigger, then the rowid of the -** inserted row is returned by this routine as long as the trigger -** is running. {F12227} But once the trigger terminates, the value returned -** by this routine reverts to the last value inserted before the -** trigger fired. -** -** {F12228} An INSERT that fails due to a constraint violation is not a -** successful insert and does not change the value returned by this -** routine. {F12229} Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** is another alias for the rowid. +** +** This routine returns the rowid of the most recent +** successful INSERT into the database from the [database connection] +** in the first argument. If no successful INSERTs +** have ever occurred on that database connection, zero is returned. +** +** If an INSERT occurs within a trigger, then the rowid of the inserted +** row is returned by this routine as long as the trigger is running. +** But once the trigger terminates, the value returned by this routine +** reverts to the last value inserted before the trigger fired. +** +** An INSERT that fails due to a constraint violation is not a +** successful INSERT and does not change the value returned by this +** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, ** and INSERT OR ABORT make no changes to the return value of this -** routine when their insertion fails. {F12231} When INSERT OR REPLACE +** routine when their insertion fails. When INSERT OR REPLACE ** encounters a constraint violation, it does not fail. The ** INSERT continues to completion after deleting rows that caused ** the constraint problem so INSERT OR REPLACE will always change -** the return value of this interface. +** the return value of this interface. +** +** For the purposes of this routine, an INSERT is considered to +** be successful even if it is subsequently rolled back. +** +** INVARIANTS: +** +** {H12221} The [sqlite3_last_insert_rowid()] function returns the rowid +** of the most recent successful INSERT performed on the same +** [database connection] and within the same or higher level +** trigger context, or zero if there have been no qualifying inserts. +** +** {H12223} The [sqlite3_last_insert_rowid()] function returns the +** same value when called from the same trigger context +** immediately before and after a ROLLBACK. +** +** ASSUMPTIONS: ** -** {UF12232} If another thread does a new insert on the same database connection -** while this routine is running and thus changes the last insert rowid, -** then the return value of this routine is undefined. +** {A12232} If a separate thread performs a new INSERT on the same +** database connection while the [sqlite3_last_insert_rowid()] +** function is running and thus changes the last insert rowid, +** then the value returned by [sqlite3_last_insert_rowid()] is +** unpredictable and might not equal either the old or the new +** last insert rowid. */ sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); /* -** CAPI3REF: Count The Number Of Rows Modified {F12240} +** CAPI3REF: Count The Number Of Rows Modified {H12240} ** -** {F12241} This function returns the number of database rows that were changed +** This function returns the number of database rows that were changed ** or inserted or deleted by the most recently completed SQL statement -** on the connection specified by the first parameter. {F12242} Only -** changes that are directly specified by the INSERT, UPDATE, or -** DELETE statement are counted. Auxiliary changes caused by -** triggers are not counted. {F12243} Use the [sqlite3_total_changes()] function +** on the [database connection] specified by the first parameter. +** Only changes that are directly specified by the INSERT, UPDATE, +** or DELETE statement are counted. Auxiliary changes caused by +** triggers are not counted. Use the [sqlite3_total_changes()] function ** to find the total number of changes including changes caused by triggers. ** -** {F12244} Within the body of a trigger, the sqlite3_changes() interface -** can be called to find the number of +** A "row change" is a change to a single row of a single table +** caused by an INSERT, DELETE, or UPDATE statement. Rows that +** are changed as side effects of REPLACE constraint resolution, +** rollback, ABORT processing, DROP TABLE, or by any other +** mechanisms do not count as direct row changes. +** +** A "trigger context" is a scope of execution that begins and +** ends with the script of a trigger. Most SQL statements are +** evaluated outside of any trigger. This is the "top level" +** trigger context. If a trigger fires from the top level, a +** new trigger context is entered for the duration of that one +** trigger. Subtriggers create subcontexts for their duration. +** +** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does +** not create a new trigger context. +** +** This function returns the number of direct row changes in the +** most recent INSERT, UPDATE, or DELETE statement within the same +** trigger context. +** +** Thus, when called from the top level, this function returns the +** number of changes in the most recent INSERT, UPDATE, or DELETE +** that also occurred at the top level. Within the body of a trigger, +** the sqlite3_changes() interface can be called to find the number of ** changes in the most recently completed INSERT, UPDATE, or DELETE ** statement within the body of the same trigger. -** -** {F12245} All changes are counted, even if they are later undone by a -** ROLLBACK or ABORT. {F12246} Except, changes associated with creating and -** dropping tables are not counted. -** -** {F12247} If a callback invokes [sqlite3_exec()] or [sqlite3_step()] -** recursively, then the changes in the inner, recursive call are -** counted together with the changes in the outer call. -** -** {F12248} SQLite implements the command "DELETE FROM table" without -** a WHERE clause by dropping and recreating the table. (This is much -** faster than going through and deleting individual elements from the -** table.) Because of this optimization, the change count for -** "DELETE FROM table" will be zero regardless of the number of elements -** that were originally in the table. {F12251} To get an accurate count -** of the number of rows deleted, use +** However, the number returned does not include changes +** caused by subtriggers since those have their own context. +** +** SQLite implements the command "DELETE FROM table" without a WHERE clause +** by dropping and recreating the table. (This is much faster than going +** through and deleting individual elements from the table.) Because of this +** optimization, the deletions in "DELETE FROM table" are not row changes and +** will not be counted by the sqlite3_changes() or [sqlite3_total_changes()] +** functions, regardless of the number of elements that were originally +** in the table. To get an accurate count of the number of rows deleted, use ** "DELETE FROM table WHERE 1" instead. ** -** {UF12252} If another thread makes changes on the same database connection -** while this routine is running then the return value of this routine -** is undefined. +** INVARIANTS: +** +** {H12241} The [sqlite3_changes()] function shall return the number of +** row changes caused by the most recent INSERT, UPDATE, +** or DELETE statement on the same database connection and +** within the same or higher trigger context, or zero if there have +** not been any qualifying row changes. +** +** {H12243} Statements of the form "DELETE FROM tablename" with no +** WHERE clause shall cause subsequent calls to +** [sqlite3_changes()] to return zero, regardless of the +** number of rows originally in the table. +** +** ASSUMPTIONS: +** +** {A12252} If a separate thread makes changes on the same database connection +** while [sqlite3_changes()] is running then the value returned +** is unpredictable and not meaningful. */ int sqlite3_changes(sqlite3*); /* -** CAPI3REF: Total Number Of Rows Modified {F12260} -*** -** {F12261} This function returns the number of database rows that have been -** modified by INSERT, UPDATE or DELETE statements since the database handle -** was opened. {F12262} The count includes UPDATE, INSERT and DELETE -** statements executed as part of trigger programs. {F12263} All changes -** are counted as soon as the statement that makes them is completed -** (when the statement handle is passed to [sqlite3_reset()] or -** [sqlite3_finalize()]). {END} -** -** See also the [sqlite3_change()] interface. -** -** {F12265} SQLite implements the command "DELETE FROM table" without -** a WHERE clause by dropping and recreating the table. (This is much -** faster than going -** through and deleting individual elements form the table.) Because of -** this optimization, the change count for "DELETE FROM table" will be -** zero regardless of the number of elements that were originally in the -** table. To get an accurate count of the number of rows deleted, use +** CAPI3REF: Total Number Of Rows Modified {H12260} +** +** This function returns the number of row changes caused by INSERT, +** UPDATE or DELETE statements since the [database connection] was opened. +** The count includes all changes from all trigger contexts. However, +** the count does not include changes used to implement REPLACE constraints, +** do rollbacks or ABORT processing, or DROP table processing. +** The changes are counted as soon as the statement that makes them is +** completed (when the statement handle is passed to [sqlite3_reset()] or +** [sqlite3_finalize()]). +** +** SQLite implements the command "DELETE FROM table" without a WHERE clause +** by dropping and recreating the table. (This is much faster than going +** through and deleting individual elements from the table.) Because of this +** optimization, the deletions in "DELETE FROM table" are not row changes and +** will not be counted by the sqlite3_changes() or [sqlite3_total_changes()] +** functions, regardless of the number of elements that were originally +** in the table. To get an accurate count of the number of rows deleted, use ** "DELETE FROM table WHERE 1" instead. ** -** {U12264} If another thread makes changes on the same database connection -** while this routine is running then the return value of this routine -** is undefined. {END} +** See also the [sqlite3_changes()] interface. +** +** INVARIANTS: +** +** {H12261} The [sqlite3_total_changes()] returns the total number +** of row changes caused by INSERT, UPDATE, and/or DELETE +** statements on the same [database connection], in any +** trigger context, since the database connection was created. +** +** {H12263} Statements of the form "DELETE FROM tablename" with no +** WHERE clause shall not change the value returned +** by [sqlite3_total_changes()]. +** +** ASSUMPTIONS: +** +** {A12264} If a separate thread makes changes on the same database connection +** while [sqlite3_total_changes()] is running then the value +** returned is unpredictable and not meaningful. */ int sqlite3_total_changes(sqlite3*); /* -** CAPI3REF: Interrupt A Long-Running Query {F12270} +** CAPI3REF: Interrupt A Long-Running Query {H12270} ** -** {F12271} This function causes any pending database operation to abort and -** return at its earliest opportunity. {END} This routine is typically +** This function causes any pending database operation to abort and +** return at its earliest opportunity. This routine is typically ** called in response to a user action such as pressing "Cancel" ** or Ctrl-C where the user wants a long query operation to halt ** immediately. ** -** {F12272} It is safe to call this routine from a thread different from the -** thread that is currently running the database operation. {U12273} But it -** is not safe to call this routine with a database connection that +** It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. But it +** is not safe to call this routine with a [database connection] that ** is closed or might close before sqlite3_interrupt() returns. ** -** If an SQL is very nearly finished at the time when sqlite3_interrupt() -** is called, then it might not have an opportunity to be interrupted. -** It might continue to completion. -** {F12274} The SQL operation that is interrupted will return -** [SQLITE_INTERRUPT]. {F12275} If the interrupted SQL operation is an -** INSERT, UPDATE, or DELETE that is inside an explicit transaction, -** then the entire transaction will be rolled back automatically. -** {F12276} A call to sqlite3_interrupt() has no effect on SQL statements +** If an SQL operation is very nearly finished at the time when +** sqlite3_interrupt() is called, then it might not have an opportunity +** to be interrupted and might continue to completion. +** +** An SQL operation that is interrupted will return [SQLITE_INTERRUPT]. +** If the interrupted SQL operation is an INSERT, UPDATE, or DELETE +** that is inside an explicit transaction, then the entire transaction +** will be rolled back automatically. +** +** A call to sqlite3_interrupt() has no effect on SQL statements ** that are started after sqlite3_interrupt() returns. +** +** INVARIANTS: +** +** {H12271} The [sqlite3_interrupt()] interface will force all running +** SQL statements associated with the same database connection +** to halt after processing at most one additional row of data. +** +** {H12272} Any SQL statement that is interrupted by [sqlite3_interrupt()] +** will return [SQLITE_INTERRUPT]. +** +** ASSUMPTIONS: +** +** {A12279} If the database connection closes while [sqlite3_interrupt()] +** is running then bad things will likely happen. */ void sqlite3_interrupt(sqlite3*); /* -** CAPI3REF: Determine If An SQL Statement Is Complete {F10510} +** CAPI3REF: Determine If An SQL Statement Is Complete {H10510} ** ** These routines are useful for command-line input to determine if the ** currently entered text seems to form complete a SQL statement or ** if additional input is needed before sending the text into ** SQLite for parsing. These routines return true if the input string ** appears to be a complete SQL statement. A statement is judged to be -** complete if it ends with a semicolon and is not a fragment of a -** CREATE TRIGGER statement. These routines do not parse the SQL and -** so will not detect syntactically incorrect SQL. -** -** {F10511} These functions return true if the given input string -** ends with a semicolon optionally followed by whitespace or -** comments. {F10512} For sqlite3_complete(), -** the parameter must be a zero-terminated UTF-8 string. {F10513} For -** sqlite3_complete16(), a zero-terminated machine byte order UTF-16 string -** is required. {F10514} These routines return false if the terminal -** semicolon is within a comment, a string literal or a quoted identifier -** (in other words if the final semicolon is not really a separate token -** but part of a larger token) or if the final semicolon is -** in between the BEGIN and END keywords of a CREATE TRIGGER statement. -** {END} +** complete if it ends with a semicolon token and is not a fragment of a +** CREATE TRIGGER statement. Semicolons that are embedded within +** string literals or quoted identifier names or comments are not +** independent tokens (they are part of the token in which they are +** embedded) and thus do not count as a statement terminator. +** +** These routines do not parse the SQL statements thus +** will not detect syntactically incorrect SQL. +** +** INVARIANTS: +** +** {H10511} A successful evaluation of [sqlite3_complete()] or +** [sqlite3_complete16()] functions shall +** return a numeric 1 if and only if the last non-whitespace +** token in their input is a semicolon that is not in between +** the BEGIN and END of a CREATE TRIGGER statement. +** +** {H10512} If a memory allocation error occurs during an invocation +** of [sqlite3_complete()] or [sqlite3_complete16()] then the +** routine shall return [SQLITE_NOMEM]. +** +** ASSUMPTIONS: +** +** {A10512} The input to [sqlite3_complete()] must be a zero-terminated +** UTF-8 string. +** +** {A10513} The input to [sqlite3_complete16()] must be a zero-terminated +** UTF-16 string in native byte order. */ int sqlite3_complete(const char *sql); int sqlite3_complete16(const void *sql); /* -** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310} -** -** {F12311} This routine identifies a callback function that might be -** invoked whenever an attempt is made to open a database table -** that another thread or process has locked. -** {F12312} If the busy callback is NULL, then [SQLITE_BUSY] -** or [SQLITE_IOERR_BLOCKED] -** is returned immediately upon encountering the lock. -** {F12313} If the busy callback is not NULL, then the -** callback will be invoked with two arguments. {F12314} The -** first argument to the handler is a copy of the void* pointer which -** is the third argument to this routine. {F12315} The second argument to -** the handler is the number of times that the busy handler has -** been invoked for this locking event. {F12316} If the +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {H12310} +** +** This routine sets a callback function that might be invoked whenever +** an attempt is made to open a database table that another thread +** or process has locked. +** +** If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. If the busy callback +** is not NULL, then the callback will be invoked with two arguments. +** +** The first argument to the handler is a copy of the void* pointer which +** is the third argument to sqlite3_busy_handler(). The second argument to +** the handler callback is the number of times that the busy handler has +** been invoked for this locking event. If the ** busy callback returns 0, then no additional attempts are made to ** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. -** {F12317} If the callback returns non-zero, then another attempt +** If the callback returns non-zero, then another attempt ** is made to open the database for reading and the cycle repeats. ** -** The presence of a busy handler does not guarantee that -** it will be invoked when there is lock contention. {F12319} -** If SQLite determines that invoking the busy handler could result in -** a deadlock, it will go ahead and return [SQLITE_BUSY] or -** [SQLITE_IOERR_BLOCKED] instead of invoking the -** busy handler. {END} +** The presence of a busy handler does not guarantee that it will be invoked +** when there is lock contention. If SQLite determines that invoking the busy +** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler. ** Consider a scenario where one process is holding a read lock that ** it is trying to promote to a reserved lock and ** a second process is holding a reserved lock that it is trying @@ -957,74 +1526,118 @@ int sqlite3_complete16(const void *sql); ** will induce the first process to release its read lock and allow ** the second process to proceed. ** -** {F12321} The default busy callback is NULL. {END} +** The default busy callback is NULL. ** -** {F12322} The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] ** when SQLite is in the middle of a large transaction where all the -** changes will not fit into the in-memory cache. {F12323} SQLite will +** changes will not fit into the in-memory cache. SQLite will ** already hold a RESERVED lock on the database file, but it needs ** to promote this lock to EXCLUSIVE so that it can spill cache ** pages into the database file without harm to concurrent -** readers. {F12324} If it is unable to promote the lock, then the in-memory +** readers. If it is unable to promote the lock, then the in-memory ** cache will be left in an inconsistent state and so the error ** code is promoted from the relatively benign [SQLITE_BUSY] to -** the more severe [SQLITE_IOERR_BLOCKED]. {F12325} This error code promotion -** forces an automatic rollback of the changes. {END} See the -** +** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion +** forces an automatic rollback of the changes. See the +** ** CorruptionFollowingBusyError wiki page for a discussion of why ** this is important. -** -** {F12326} Sqlite is re-entrant, so the busy handler may start a new -** query. {END} (It is not clear why anyone would every want to do this, -** but it is allowed, in theory.) {U12327} But the busy handler may not -** close the database. Closing the database from a busy handler will delete -** data structures out from under the executing query and will -** probably result in a segmentation fault or other runtime error. {END} -** -** {F12328} There can only be a single busy handler defined for each database -** connection. Setting a new busy handler clears any previous one. -** {F12329} Note that calling [sqlite3_busy_timeout()] will also set or clear -** the busy handler. -** -** {F12331} When operating in [sqlite3_enable_shared_cache | shared cache mode], -** only a single busy handler can be defined for each database file. -** So if two database connections share a single cache, then changing -** the busy handler on one connection will also change the busy -** handler in the other connection. {F12332} The busy handler is invoked -** in the thread that was running when the lock contention occurs. +** +** There can only be a single busy handler defined for each +** [database connection]. Setting a new busy handler clears any +** previously set handler. Note that calling [sqlite3_busy_timeout()] +** will also set or clear the busy handler. +** +** INVARIANTS: +** +** {H12311} The [sqlite3_busy_handler(D,C,A)] function shall replace +** busy callback in the [database connection] D with a new +** a new busy handler C and application data pointer A. +** +** {H12312} Newly created [database connections] shall have a busy +** handler of NULL. +** +** {H12314} When two or more [database connections] share a +** [sqlite3_enable_shared_cache | common cache], +** the busy handler for the database connection currently using +** the cache shall be invoked when the cache encounters a lock. +** +** {H12316} If a busy handler callback returns zero, then the SQLite interface +** that provoked the locking event shall return [SQLITE_BUSY]. +** +** {H12318} SQLite shall invokes the busy handler with two arguments which +** are a copy of the pointer supplied by the 3rd parameter to +** [sqlite3_busy_handler()] and a count of the number of prior +** invocations of the busy handler for the same locking event. +** +** ASSUMPTIONS: +** +** {A12319} A busy handler must not close the database connection +** or [prepared statement] that invoked the busy handler. */ int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); /* -** CAPI3REF: Set A Busy Timeout {F12340} +** CAPI3REF: Set A Busy Timeout {H12340} ** -** {F12341} This routine sets a [sqlite3_busy_handler | busy handler] -** that sleeps for a while when a -** table is locked. {F12342} The handler will sleep multiple times until -** at least "ms" milliseconds of sleeping have been done. {F12343} After -** "ms" milliseconds of sleeping, the handler returns 0 which -** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** This routine sets a [sqlite3_busy_handler | busy handler] that sleeps +** for a specified amount of time when a table is locked. The handler +** will sleep multiple times until at least "ms" milliseconds of sleeping +** have accumulated. {H12343} After "ms" milliseconds of sleeping, +** the handler returns 0 which causes [sqlite3_step()] to return +** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. ** -** {F12344} Calling this routine with an argument less than or equal to zero +** Calling this routine with an argument less than or equal to zero ** turns off all busy handlers. ** -** {F12345} There can only be a single busy handler for a particular database -** connection. If another busy handler was defined -** (using [sqlite3_busy_handler()]) prior to calling +** There can only be a single busy handler for a particular +** [database connection] any any given moment. If another busy handler +** was defined (using [sqlite3_busy_handler()]) prior to calling ** this routine, that other busy handler is cleared. +** +** INVARIANTS: +** +** {H12341} The [sqlite3_busy_timeout()] function shall override any prior +** [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting +** on the same [database connection]. +** +** {H12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than +** or equal to zero, then the busy handler shall be cleared so that +** all subsequent locking events immediately return [SQLITE_BUSY]. +** +** {H12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive +** number N, then a busy handler shall be set that repeatedly calls +** the xSleep() method in the [sqlite3_vfs | VFS interface] until +** either the lock clears or until the cumulative sleep time +** reported back by xSleep() exceeds N milliseconds. */ int sqlite3_busy_timeout(sqlite3*, int ms); /* -** CAPI3REF: Convenience Routines For Running Queries {F12370} +** CAPI3REF: Convenience Routines For Running Queries {H12370} +** +** Definition: A result table is memory data structure created by the +** [sqlite3_get_table()] interface. A result table records the +** complete query results from one or more queries. +** +** The table conceptually has a number of rows and columns. But +** these numbers are not part of the result table itself. These +** numbers are obtained separately. Let N be the number of rows +** and M be the number of columns. +** +** A result table is an array of pointers to zero-terminated UTF-8 strings. +** There are (N+1)*M elements in the array. The first M pointers point +** to zero-terminated strings that contain the names of the columns. +** The remaining entries all point to query results. NULL values result +** in NULL pointers. All other values are in their UTF-8 zero-terminated +** string representation as returned by [sqlite3_column_text()]. ** -** This next routine is a convenience wrapper around [sqlite3_exec()]. -** {F12371} Instead of invoking a user-supplied callback for each row of the -** result, this routine remembers each row of the result in memory -** obtained from [sqlite3_malloc()], then returns all of the result after the -** query has finished. {F12372} +** A result table might consist of one or more memory allocations. +** It is not safe to pass a result table directly to [sqlite3_free()]. +** A result table should be deallocated using [sqlite3_free_table()]. ** -** As an example, suppose the query result where this table: +** As an example of the result table format, suppose a query result +** is as follows: ** **
 **        Name        | Age
@@ -1034,8 +1647,9 @@ int sqlite3_busy_timeout(sqlite3*, int ms);
 **        Cindy       | 21
 ** 
** -** If the 3rd argument were &azResult then after the function returns -** azResult will contain the following data: +** There are two column (M==2) and three rows (N==3). Thus the +** result table has 8 entries. Suppose the result table is stored +** in an array names azResult. Then azResult holds this content: ** **
 **        azResult[0] = "Name";
@@ -1048,75 +1662,112 @@ int sqlite3_busy_timeout(sqlite3*, int ms);
 **        azResult[7] = "21";
 ** 
** -** Notice that there is an extra row of data containing the column -** headers. But the *nrow return value is still 3. *ncolumn is -** set to 2. In general, the number of values inserted into azResult -** will be ((*nrow) + 1)*(*ncolumn). -** -** {U12374} After the calling function has finished using the result, it should -** pass the result data pointer to sqlite3_free_table() in order to -** release the memory that was malloc-ed. Because of the way the -** [sqlite3_malloc()] happens, the calling function must not try to call -** [sqlite3_free()] directly. Only [sqlite3_free_table()] is able to release -** the memory properly and safely. {END} -** -** {F12373} The return value of this routine is the same as -** from [sqlite3_exec()]. +** The sqlite3_get_table() function evaluates one or more +** semicolon-separated SQL statements in the zero-terminated UTF-8 +** string of its 2nd parameter. It returns a result table to the +** pointer given in its 3rd parameter. +** +** After the calling function has finished using the result, it should +** pass the pointer to the result table to sqlite3_free_table() in order to +** release the memory that was malloced. Because of the way the +** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling +** function must not try to call [sqlite3_free()] directly. Only +** [sqlite3_free_table()] is able to release the memory properly and safely. +** +** The sqlite3_get_table() interface is implemented as a wrapper around +** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access +** to any internal data structures of SQLite. It uses only the public +** interface defined here. As a consequence, errors that occur in the +** wrapper layer outside of the internal [sqlite3_exec()] call are not +** reflected in subsequent calls to [sqlite3_errcode()] or [sqlite3_errmsg()]. +** +** INVARIANTS: +** +** {H12371} If a [sqlite3_get_table()] fails a memory allocation, then +** it shall free the result table under construction, abort the +** query in process, skip any subsequent queries, set the +** *pazResult output pointer to NULL and return [SQLITE_NOMEM]. +** +** {H12373} If the pnColumn parameter to [sqlite3_get_table()] is not NULL +** then a successful invocation of [sqlite3_get_table()] shall +** write the number of columns in the +** result set of the query into *pnColumn. +** +** {H12374} If the pnRow parameter to [sqlite3_get_table()] is not NULL +** then a successful invocation of [sqlite3_get_table()] shall +** writes the number of rows in the +** result set of the query into *pnRow. +** +** {H12376} A successful invocation of [sqlite3_get_table()] that computes +** N rows of result with C columns per row shall make *pazResult +** point to an array of pointers to (N+1)*C strings where the first +** C strings are column names as obtained from +** [sqlite3_column_name()] and the rest are column result values +** obtained from [sqlite3_column_text()]. +** +** {H12379} The values in the pazResult array returned by [sqlite3_get_table()] +** shall remain valid until cleared by [sqlite3_free_table()]. +** +** {H12382} When an error occurs during evaluation of [sqlite3_get_table()] +** the function shall set *pazResult to NULL, write an error message +** into memory obtained from [sqlite3_malloc()], make +** **pzErrmsg point to that error message, and return a +** appropriate [error code]. */ int sqlite3_get_table( - sqlite3*, /* An open database */ - const char *sql, /* SQL to be executed */ - char ***resultp, /* Result written to a char *[] that this points to */ - int *nrow, /* Number of result rows written here */ - int *ncolumn, /* Number of result columns written here */ - char **errmsg /* Error msg written here */ + sqlite3 *db, /* An open database */ + const char *zSql, /* SQL to be evaluated */ + char ***pazResult, /* Results of the query */ + int *pnRow, /* Number of result rows written here */ + int *pnColumn, /* Number of result columns written here */ + char **pzErrmsg /* Error msg written here */ ); void sqlite3_free_table(char **result); /* -** CAPI3REF: Formatted String Printing Functions {F17400} +** CAPI3REF: Formatted String Printing Functions {H17400} ** ** These routines are workalikes of the "printf()" family of functions ** from the standard C library. ** -** {F17401} The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their ** results into memory obtained from [sqlite3_malloc()]. -** {U17402} The strings returned by these two routines should be -** released by [sqlite3_free()]. {F17403} Both routines return a +** The strings returned by these two routines should be +** released by [sqlite3_free()]. Both routines return a ** NULL pointer if [sqlite3_malloc()] is unable to allocate enough ** memory to hold the resulting string. ** -** {F17404} In sqlite3_snprintf() routine is similar to "snprintf()" from +** In sqlite3_snprintf() routine is similar to "snprintf()" from ** the standard C library. The result is written into the ** buffer supplied as the second parameter whose size is given by -** the first parameter. {END} Note that the order of the +** the first parameter. Note that the order of the ** first two parameters is reversed from snprintf(). This is an ** historical accident that cannot be fixed without breaking -** backwards compatibility. {F17405} Note also that sqlite3_snprintf() +** backwards compatibility. Note also that sqlite3_snprintf() ** returns a pointer to its buffer instead of the number of -** characters actually written into the buffer. {END} We admit that +** characters actually written into the buffer. We admit that ** the number of characters written would be a more useful return ** value but we cannot change the implementation of sqlite3_snprintf() ** now without breaking compatibility. ** -** {F17406} As long as the buffer size is greater than zero, sqlite3_snprintf() -** guarantees that the buffer is always zero-terminated. {F17407} The first +** As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. The first ** parameter "n" is the total size of the buffer, including space for -** the zero terminator. {END} So the longest string that can be completely +** the zero terminator. So the longest string that can be completely ** written will be n-1 characters. ** ** These routines all implement some additional formatting ** options that are useful for constructing SQL statements. -** All of the usual printf formatting options apply. In addition, there +** All of the usual printf() formatting options apply. In addition, there ** is are "%q", "%Q", and "%z" options. ** -** {F17410} The %q option works like %s in that it substitutes a null-terminated +** The %q option works like %s in that it substitutes a null-terminated ** string from the argument list. But %q also doubles every '\'' character. -** %q is designed for use inside a string literal. {END} By doubling each '\'' +** %q is designed for use inside a string literal. By doubling each '\'' ** character it escapes that character and allows it to be inserted into ** the string. ** -** For example, so some string variable contains text as follows: +** For example, assume the string variable zText contains text as follows: ** **
 **  char *zText = "It's a happy day!";
@@ -1144,14 +1795,13 @@ void sqlite3_free_table(char **result);
 **  INSERT INTO table1 VALUES('It's a happy day!');
 ** 
** -** This second example is an SQL syntax error. As a general rule you -** should always use %q instead of %s when inserting text into a string -** literal. +** This second example is an SQL syntax error. As a general rule you should +** always use %q instead of %s when inserting text into a string literal. ** -** {F17411} The %Q option works like %q except it also adds single quotes around -** the outside of the total string. Or if the parameter in the argument -** list is a NULL pointer, %Q substitutes the text "NULL" (without single -** quotes) in place of the %Q option. {END} So, for example, one could say: +** The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Additionally, if the parameter in the +** argument list is a NULL pointer, %Q substitutes the text "NULL" (without +** single quotes) in place of the %Q option. So, for example, one could say: ** **
 **  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
@@ -1162,181 +1812,325 @@ void sqlite3_free_table(char **result);
 ** The code above will render a correct SQL statement in the zSQL
 ** variable even if the zText variable is a NULL pointer.
 **
-** {F17412} The "%z" formatting option works exactly like "%s" with the
+** The "%z" formatting option works exactly like "%s" with the
 ** addition that after the string has been read and copied into
 ** the result, [sqlite3_free()] is called on the input string. {END}
+**
+** INVARIANTS:
+**
+** {H17403}  The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
+**           return either pointers to zero-terminated UTF-8 strings held in
+**           memory obtained from [sqlite3_malloc()] or NULL pointers if
+**           a call to [sqlite3_malloc()] fails.
+**
+** {H17406}  The [sqlite3_snprintf()] interface writes a zero-terminated
+**           UTF-8 string into the buffer pointed to by the second parameter
+**           provided that the first parameter is greater than zero.
+**
+** {H17407}  The [sqlite3_snprintf()] interface does not write slots of
+**           its output buffer (the second parameter) outside the range
+**           of 0 through N-1 (where N is the first parameter)
+**           regardless of the length of the string
+**           requested by the format specification.
 */
 char *sqlite3_mprintf(const char*,...);
 char *sqlite3_vmprintf(const char*, va_list);
 char *sqlite3_snprintf(int,char*,const char*, ...);
 
 /*
-** CAPI3REF: Memory Allocation Subsystem {F17300}
+** CAPI3REF: Memory Allocation Subsystem {H17300} 
 **
-** {F17301} The SQLite core  uses these three routines for all of its own
-** internal memory allocation needs. {END}  "Core" in the previous sentence
+** The SQLite core  uses these three routines for all of its own
+** internal memory allocation needs. "Core" in the previous sentence
 ** does not include operating-system specific VFS implementation.  The
-** windows VFS uses native malloc and free for some operations.
+** Windows VFS uses native malloc() and free() for some operations.
 **
-** {F17302} The sqlite3_malloc() routine returns a pointer to a block
+** The sqlite3_malloc() routine returns a pointer to a block
 ** of memory at least N bytes in length, where N is the parameter.
-** {F17303} If sqlite3_malloc() is unable to obtain sufficient free
-** memory, it returns a NULL pointer.  {F17304} If the parameter N to
+** If sqlite3_malloc() is unable to obtain sufficient free
+** memory, it returns a NULL pointer.  If the parameter N to
 ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
 ** a NULL pointer.
 **
-** {F17305} Calling sqlite3_free() with a pointer previously returned
+** Calling sqlite3_free() with a pointer previously returned
 ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
-** that it might be reused.  {F17306} The sqlite3_free() routine is
+** that it might be reused.  The sqlite3_free() routine is
 ** a no-op if is called with a NULL pointer.  Passing a NULL pointer
-** to sqlite3_free() is harmless.  {U17307} After being freed, memory
+** to sqlite3_free() is harmless.  After being freed, memory
 ** should neither be read nor written.  Even reading previously freed
 ** memory might result in a segmentation fault or other severe error.
-** {U17309} Memory corruption, a segmentation fault, or other severe error
+** Memory corruption, a segmentation fault, or other severe error
 ** might result if sqlite3_free() is called with a non-NULL pointer that
 ** was not obtained from sqlite3_malloc() or sqlite3_free().
 **
-** {F17310} The sqlite3_realloc() interface attempts to resize a
+** The sqlite3_realloc() interface attempts to resize a
 ** prior memory allocation to be at least N bytes, where N is the
 ** second parameter.  The memory allocation to be resized is the first
-** parameter.  {F17311} If the first parameter to sqlite3_realloc()
+** parameter.  If the first parameter to sqlite3_realloc()
 ** is a NULL pointer then its behavior is identical to calling
 ** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
-** {F17312} If the second parameter to sqlite3_realloc() is zero or
+** If the second parameter to sqlite3_realloc() is zero or
 ** negative then the behavior is exactly the same as calling
 ** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
-** {F17313} Sqlite3_realloc() returns a pointer to a memory allocation
+** sqlite3_realloc() returns a pointer to a memory allocation
 ** of at least N bytes in size or NULL if sufficient memory is unavailable.
-** {F17314} If M is the size of the prior allocation, then min(N,M) bytes
+** If M is the size of the prior allocation, then min(N,M) bytes
 ** of the prior allocation are copied into the beginning of buffer returned
 ** by sqlite3_realloc() and the prior allocation is freed.
-** {F17315} If sqlite3_realloc() returns NULL, then the prior allocation
+** If sqlite3_realloc() returns NULL, then the prior allocation
 ** is not freed.
 **
-** {F17316} The memory returned by sqlite3_malloc() and sqlite3_realloc()
+** The memory returned by sqlite3_malloc() and sqlite3_realloc()
 ** is always aligned to at least an 8 byte boundary. {END}
 **
-** {F17381} The default implementation
-** of the memory allocation subsystem uses the malloc(), realloc()
-** and free() provided by the standard C library. {F17382} However, if 
-** SQLite is compiled with the following C preprocessor macro
-**
-** 
SQLITE_MEMORY_SIZE=NNN
-** -** where NNN is an integer, then SQLite create a static -** array of at least NNN bytes in size and use that array -** for all of its dynamic memory allocation needs. {END} Additional -** memory allocator options may be added in future releases. +** The default implementation of the memory allocation subsystem uses +** the malloc(), realloc() and free() provided by the standard C library. +** {H17382} However, if SQLite is compiled with the +** SQLITE_MEMORY_SIZE=NNN C preprocessor macro (where NNN +** is an integer), then SQLite create a static array of at least +** NNN bytes in size and uses that array for all of its dynamic +** memory allocation needs. {END} Additional memory allocator options +** may be added in future releases. ** ** In SQLite version 3.5.0 and 3.5.1, it was possible to define ** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in ** implementation of these routines to be omitted. That capability -** is no longer provided. Only built-in memory allocators can be -** used. +** is no longer provided. Only built-in memory allocators can be used. ** -** The windows OS interface layer calls +** The Windows OS interface layer calls ** the system malloc() and free() directly when converting ** filenames between the UTF-8 encoding used by SQLite -** and whatever filename encoding is used by the particular windows +** and whatever filename encoding is used by the particular Windows ** installation. Memory allocation errors are detected, but ** they are reported back as [SQLITE_CANTOPEN] or ** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +** +** INVARIANTS: +** +** {H17303} The [sqlite3_malloc(N)] interface returns either a pointer to +** a newly checked-out block of at least N bytes of memory +** that is 8-byte aligned, or it returns NULL if it is unable +** to fulfill the request. +** +** {H17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if +** N is less than or equal to zero. +** +** {H17305} The [sqlite3_free(P)] interface releases memory previously +** returned from [sqlite3_malloc()] or [sqlite3_realloc()], +** making it available for reuse. +** +** {H17306} A call to [sqlite3_free(NULL)] is a harmless no-op. +** +** {H17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call +** to [sqlite3_malloc(N)]. +** +** {H17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call +** to [sqlite3_free(P)]. +** +** {H17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()], +** and [sqlite3_free()] for all of its memory allocation and +** deallocation needs. +** +** {H17318} The [sqlite3_realloc(P,N)] interface returns either a pointer +** to a block of checked-out memory of at least N bytes in size +** that is 8-byte aligned, or a NULL pointer. +** +** {H17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first +** copies the first K bytes of content from P into the newly +** allocated block, where K is the lesser of N and the size of +** the buffer P. +** +** {H17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first +** releases the buffer P. +** +** {H17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is +** not modified or released. +** +** ASSUMPTIONS: +** +** {A17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()] +** must be either NULL or else pointers obtained from a prior +** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have +** not yet been released. +** +** {A17351} The application must not read or write any part of +** a block of memory after it has been released using +** [sqlite3_free()] or [sqlite3_realloc()]. */ void *sqlite3_malloc(int); void *sqlite3_realloc(void*, int); void sqlite3_free(void*); /* -** CAPI3REF: Memory Allocator Statistics {F17370} -** -** In addition to the basic three allocation routines -** [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()], -** the memory allocation subsystem included with the SQLite -** sources provides the interfaces shown here. -** -** {F17371} The sqlite3_memory_used() routine returns the -** number of bytes of memory currently outstanding (malloced but not freed). -** {F17372} The value returned by sqlite3_memory_used() includes -** any overhead added by SQLite, but not overhead added by the -** library malloc() that backs the sqlite3_malloc() implementation. -** {F17373} The sqlite3_memory_highwater() routines returns the -** maximum number of bytes that have been outstanding at any time -** since the highwater mark was last reset. -** {F17374} The byte count returned by sqlite3_memory_highwater() -** uses the same byte counting rules as sqlite3_memory_used(). {END} -** In other words, overhead added internally by SQLite is counted, -** but overhead from the underlying system malloc is not. -** {F17375} If the parameter to sqlite3_memory_highwater() is true, -** then the highwater mark is reset to the current value of -** sqlite3_memory_used() and the prior highwater mark (before the -** reset) is returned. {F17376} If the parameter to -** sqlite3_memory_highwater() is zero, then the highwater mark is -** unchanged. +** CAPI3REF: Memory Allocator Statistics {H17370} +** +** SQLite provides these two interfaces for reporting on the status +** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()] +** routines, which form the built-in memory allocation subsystem. +** +** INVARIANTS: +** +** {H17371} The [sqlite3_memory_used()] routine returns the number of bytes +** of memory currently outstanding (malloced but not freed). +** +** {H17373} The [sqlite3_memory_highwater()] routine returns the maximum +** value of [sqlite3_memory_used()] since the high-water mark +** was last reset. +** +** {H17374} The values returned by [sqlite3_memory_used()] and +** [sqlite3_memory_highwater()] include any overhead +** added by SQLite in its implementation of [sqlite3_malloc()], +** but not overhead added by the any underlying system library +** routines that [sqlite3_malloc()] may call. +** +** {H17375} The memory high-water mark is reset to the current value of +** [sqlite3_memory_used()] if and only if the parameter to +** [sqlite3_memory_highwater()] is true. The value returned +** by [sqlite3_memory_highwater(1)] is the high-water mark +** prior to the reset. */ sqlite3_int64 sqlite3_memory_used(void); sqlite3_int64 sqlite3_memory_highwater(int resetFlag); /* -** CAPI3REF: Compile-Time Authorization Callbacks {F12500} +** CAPI3REF: Pseudo-Random Number Generator {H17390} +** +** SQLite contains a high-quality pseudo-random number generator (PRNG) used to +** select random ROWIDs when inserting new records into a table that +** already uses the largest possible ROWID. The PRNG is also used for +** the build-in random() and randomblob() SQL functions. This interface allows +** applications to access the same PRNG for other purposes. ** -** {F12501} This routine registers a authorizer callback with a particular -** database connection, supplied in the first argument. {F12502} +** A call to this routine stores N bytes of randomness into buffer P. +** +** The first time this routine is invoked (either internally or by +** the application) the PRNG is seeded using randomness obtained +** from the xRandomness method of the default [sqlite3_vfs] object. +** On all subsequent invocations, the pseudo-randomness is generated +** internally and without recourse to the [sqlite3_vfs] xRandomness +** method. +** +** INVARIANTS: +** +** {H17392} The [sqlite3_randomness(N,P)] interface writes N bytes of +** high-quality pseudo-randomness into buffer P. +*/ +void sqlite3_randomness(int N, void *P); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks {H12500} +** +** This routine registers a authorizer callback with a particular +** [database connection], supplied in the first argument. ** The authorizer callback is invoked as SQL statements are being compiled ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], -** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. {F12503} At various +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. At various ** points during the compilation process, as logic is being created ** to perform various actions, the authorizer callback is invoked to ** see if those actions are allowed. The authorizer callback should -** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the +** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the ** specific action but allow the SQL statement to continue to be ** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be -** rejected with an error. {F12504} If the authorizer callback returns +** rejected with an error. If the authorizer callback returns ** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] -** then [sqlite3_prepare_v2()] or equivalent call that triggered -** the authorizer shall -** fail with an SQLITE_ERROR error code and an appropriate error message. {END} +** then the [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer will fail with an error message. ** ** When the callback returns [SQLITE_OK], that means the operation -** requested is ok. {F12505} When the callback returns [SQLITE_DENY], the +** requested is ok. When the callback returns [SQLITE_DENY], the ** [sqlite3_prepare_v2()] or equivalent call that triggered the -** authorizer shall fail -** with an SQLITE_ERROR error code and an error message explaining that -** access is denied. {F12506} If the authorizer code (the 2nd parameter -** to the authorizer callback is anything other than [SQLITE_READ], then -** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. -** If the authorizer code is [SQLITE_READ] and the callback returns -** [SQLITE_IGNORE] then the prepared statement is constructed to -** insert a NULL value in place of the table column that would have -** been read if [SQLITE_OK] had been returned. {END} -** -** {F12510} The first parameter to the authorizer callback is a copy of -** the third parameter to the sqlite3_set_authorizer() interface. -** {F12511} The second parameter to the callback is an integer -** [SQLITE_COPY | action code] that specifies the particular action -** to be authorized. {END} The available action codes are -** [SQLITE_COPY | documented separately]. {F12512} The third through sixth -** parameters to the callback are zero-terminated strings that contain -** additional details about the action to be authorized. {END} -** -** An authorizer is used when preparing SQL statements from an untrusted -** source, to ensure that the SQL statements do not try to access data -** that they are not allowed to see, or that they do not try to -** execute malicious statements that damage the database. For +** authorizer will fail with an error message explaining that +** access is denied. If the authorizer code is [SQLITE_READ] +** and the callback returns [SQLITE_IGNORE] then the +** [prepared statement] statement is constructed to substitute +** a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE] +** return can be used to deny an untrusted user access to individual +** columns of a table. +** +** The first parameter to the authorizer callback is a copy of the third +** parameter to the sqlite3_set_authorizer() interface. The second parameter +** to the callback is an integer [SQLITE_COPY | action code] that specifies +** the particular action to be authorized. The third through sixth parameters +** to the callback are zero-terminated strings that contain additional +** details about the action to be authorized. +** +** An authorizer is used when [sqlite3_prepare | preparing] +** SQL statements from an untrusted source, to ensure that the SQL statements +** do not try to access data they are not allowed to see, or that they do not +** try to execute malicious statements that damage the database. For ** example, an application may allow a user to enter arbitrary ** SQL queries for evaluation by a database. But the application does ** not want the user to be able to make arbitrary changes to the ** database. An authorizer could then be put in place while the -** user-entered SQL is being prepared that disallows everything -** except SELECT statements. +** user-entered SQL is being [sqlite3_prepare | prepared] that +** disallows everything except [SELECT] statements. +** +** Applications that need to process SQL from untrusted sources +** might also consider lowering resource limits using [sqlite3_limit()] +** and limiting database size using the [max_page_count] [PRAGMA] +** in addition to using an authorizer. ** -** {F12520} Only a single authorizer can be in place on a database connection +** Only a single authorizer can be in place on a database connection ** at a time. Each call to sqlite3_set_authorizer overrides the -** previous call. {F12521} A NULL authorizer means that no authorization -** callback is invoked. {F12522} The default authorizer is NULL. {END} +** previous call. Disable the authorizer by installing a NULL callback. +** The authorizer is disabled by default. +** +** Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. Authorization is not +** performed during statement evaluation in [sqlite3_step()]. +** +** INVARIANTS: +** +** {H12501} The [sqlite3_set_authorizer(D,...)] interface registers a +** authorizer callback with database connection D. +** +** {H12502} The authorizer callback is invoked as SQL statements are +** being compiled. ** -** Note that the authorizer callback is invoked only during -** [sqlite3_prepare()] or its variants. {F12523} Authorization is not -** performed during statement evaluation in [sqlite3_step()]. {END} +** {H12503} If the authorizer callback returns any value other than +** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY], then +** the [sqlite3_prepare_v2()] or equivalent call that caused +** the authorizer callback to run shall fail with an +** [SQLITE_ERROR] error code and an appropriate error message. +** +** {H12504} When the authorizer callback returns [SQLITE_OK], the operation +** described is processed normally. +** +** {H12505} When the authorizer callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that caused the +** authorizer callback to run shall fail +** with an [SQLITE_ERROR] error code and an error message +** explaining that access is denied. +** +** {H12506} If the authorizer code (the 2nd parameter to the authorizer +** callback) is [SQLITE_READ] and the authorizer callback returns +** [SQLITE_IGNORE], then the prepared statement is constructed to +** insert a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. +** +** {H12507} If the authorizer code (the 2nd parameter to the authorizer +** callback) is anything other than [SQLITE_READ], then +** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. +** +** {H12510} The first parameter to the authorizer callback is a copy of +** the third parameter to the [sqlite3_set_authorizer()] interface. +** +** {H12511} The second parameter to the callback is an integer +** [SQLITE_COPY | action code] that specifies the particular action +** to be authorized. +** +** {H12512} The third through sixth parameters to the callback are +** zero-terminated strings that contain +** additional details about the action to be authorized. +** +** {H12520} Each call to [sqlite3_set_authorizer()] overrides +** any previously installed authorizer. +** +** {H12521} A NULL authorizer means that no authorization +** callback is invoked. +** +** {H12522} The default authorizer is NULL. */ int sqlite3_set_authorizer( sqlite3*, @@ -1345,7 +2139,7 @@ int sqlite3_set_authorizer( ); /* -** CAPI3REF: Authorizer Return Codes {F12590} +** CAPI3REF: Authorizer Return Codes {H12590} ** ** The [sqlite3_set_authorizer | authorizer callback function] must ** return either [SQLITE_OK] or one of these two constants in order @@ -1357,23 +2151,45 @@ int sqlite3_set_authorizer( #define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ /* -** CAPI3REF: Authorizer Action Codes {F12550} +** CAPI3REF: Authorizer Action Codes {H12550} ** ** The [sqlite3_set_authorizer()] interface registers a callback function -** that is invoked to authorizer certain SQL statement actions. {F12551} The +** that is invoked to authorize certain SQL statement actions. The ** second parameter to the callback is an integer code that specifies ** what action is being authorized. These are the integer action codes that -** the authorizer callback may be passed. {END} +** the authorizer callback may be passed. ** -** These action code values signify what kind of operation is to be -** authorized. {F12552} The 3rd and 4th parameters to the authorization +** These action code values signify what kind of operation is to be +** authorized. The 3rd and 4th parameters to the authorization ** callback function will be parameters or NULL depending on which of these -** codes is used as the second parameter. {F12553} The 5th parameter to the -** authorizer callback is the name of the database ("main", "temp", -** etc.) if applicable. {F12554} The 6th parameter to the authorizer callback +** codes is used as the second parameter. The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable. The 6th parameter to the authorizer callback ** is the name of the inner-most trigger or view that is responsible for -** the access attempt or NULL if this access attempt is directly from +** the access attempt or NULL if this access attempt is directly from ** top-level SQL code. +** +** INVARIANTS: +** +** {H12551} The second parameter to an +** [sqlite3_set_authorizer | authorizer callback] is always an integer +** [SQLITE_COPY | authorizer code] that specifies what action +** is being authorized. +** +** {H12552} The 3rd and 4th parameters to the +** [sqlite3_set_authorizer | authorization callback] +** will be parameters or NULL depending on which +** [SQLITE_COPY | authorizer code] is used as the second parameter. +** +** {H12553} The 5th parameter to the +** [sqlite3_set_authorizer | authorizer callback] is the name +** of the database (example: "main", "temp", etc.) if applicable. +** +** {H12554} The 6th parameter to the +** [sqlite3_set_authorizer | authorizer callback] is the name +** of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. */ /******************************************* 3rd ************ 4th ***********/ #define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ @@ -1410,149 +2226,257 @@ int sqlite3_set_authorizer( #define SQLITE_COPY 0 /* No longer used */ /* -** CAPI3REF: Tracing And Profiling Functions {F12280} +** CAPI3REF: Tracing And Profiling Functions {H12280} +** EXPERIMENTAL ** ** These routines register callback functions that can be used for ** tracing and profiling the execution of SQL statements. ** -** {F12281} The callback function registered by sqlite3_trace() is invoked -** at the first [sqlite3_step()] for the evaluation of an SQL statement. -** {F12282} Only a single trace callback can be registered at a time. -** Each call to sqlite3_trace() overrides the previous. {F12283} A -** NULL callback for sqlite3_trace() disables tracing. {F12284} The -** first argument to the trace callback is a copy of the pointer which -** was the 3rd argument to sqlite3_trace. {F12285} The second argument -** to the trace callback is a zero-terminated UTF8 string containing -** the original text of the SQL statement as it was passed into -** [sqlite3_prepare_v2()] or the equivalent. {END} Note that the -** host parameter are not expanded in the SQL statement text. -** -** {F12287} The callback function registered by sqlite3_profile() is invoked -** as each SQL statement finishes. {F12288} The first parameter to the -** profile callback is a copy of the 3rd parameter to sqlite3_profile(). -** {F12289} The second parameter to the profile callback is a -** zero-terminated UTF-8 string that contains the complete text of -** the SQL statement as it was processed by [sqlite3_prepare_v2()] or -** the equivalent. {F12290} The third parameter to the profile -** callback is an estimate of the number of nanoseconds of -** wall-clock time required to run the SQL statement from start -** to finish. {END} -** -** The sqlite3_profile() API is currently considered experimental and -** is subject to change. +** The callback function registered by sqlite3_trace() is invoked at +** various times when an SQL statement is being run by [sqlite3_step()]. +** The callback returns a UTF-8 rendering of the SQL statement text +** as the statement first begins executing. Additional callbacks occur +** as each triggered subprogram is entered. The callbacks for triggers +** contain a UTF-8 SQL comment that identifies the trigger. +** +** The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. The profile callback contains +** the original statement text and an estimate of wall-clock time +** of how long that statement took to run. +** +** INVARIANTS: +** +** {H12281} The callback function registered by [sqlite3_trace()] is +** whenever an SQL statement first begins to execute and +** whenever a trigger subprogram first begins to run. +** +** {H12282} Each call to [sqlite3_trace()] overrides the previously +** registered trace callback. +** +** {H12283} A NULL trace callback disables tracing. +** +** {H12284} The first argument to the trace callback is a copy of +** the pointer which was the 3rd argument to [sqlite3_trace()]. +** +** {H12285} The second argument to the trace callback is a +** zero-terminated UTF-8 string containing the original text +** of the SQL statement as it was passed into [sqlite3_prepare_v2()] +** or the equivalent, or an SQL comment indicating the beginning +** of a trigger subprogram. +** +** {H12287} The callback function registered by [sqlite3_profile()] is invoked +** as each SQL statement finishes. +** +** {H12288} The first parameter to the profile callback is a copy of +** the 3rd parameter to [sqlite3_profile()]. +** +** {H12289} The second parameter to the profile callback is a +** zero-terminated UTF-8 string that contains the complete text of +** the SQL statement as it was processed by [sqlite3_prepare_v2()] +** or the equivalent. +** +** {H12290} The third parameter to the profile callback is an estimate +** of the number of nanoseconds of wall-clock time required to +** run the SQL statement from start to finish. */ void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); void *sqlite3_profile(sqlite3*, void(*xProfile)(void*,const char*,sqlite3_uint64), void*); /* -** CAPI3REF: Query Progress Callbacks {F12910} +** CAPI3REF: Query Progress Callbacks {H12910} ** -** {F12911} This routine configures a callback function - the +** This routine configures a callback function - the ** progress callback - that is invoked periodically during long ** running calls to [sqlite3_exec()], [sqlite3_step()] and -** [sqlite3_get_table()]. {END} An example use for this +** [sqlite3_get_table()]. An example use for this ** interface is to keep a GUI updated during a large query. ** -** {F12912} The progress callback is invoked once for every N virtual -** machine opcodes, where N is the second argument to this function. -** {F12913} The progress callback itself is identified by the third -** argument to this function. {F12914} The fourth argument to this -** function is a void pointer passed to the progress callback -** function each time it is invoked. {END} -** -** {F12915} If a call to [sqlite3_exec()], [sqlite3_step()], or -** [sqlite3_get_table()] results in fewer than N opcodes being executed, -** then the progress callback is never invoked. {END} -** -** {F12916} Only a single progress callback function may be registered for each -** open database connection. Every call to sqlite3_progress_handler() -** overwrites the results of the previous call. {F12917} -** To remove the progress callback altogether, pass NULL as the third -** argument to this function. {END} -** -** {F12918} If the progress callback returns a result other than 0, then -** the current query is immediately terminated and any database changes -** rolled back. {F12919} -** The containing [sqlite3_exec()], [sqlite3_step()], or -** [sqlite3_get_table()] call returns SQLITE_INTERRUPT. {END} This feature -** can be used, for example, to implement the "Cancel" button on a -** progress dialog box in a GUI. +** If the progress callback returns non-zero, the operation is +** interrupted. This feature can be used to implement a +** "Cancel" button on a GUI dialog box. +** +** INVARIANTS: +** +** {H12911} The callback function registered by sqlite3_progress_handler() +** is invoked periodically during long running calls to +** [sqlite3_step()]. +** +** {H12912} The progress callback is invoked once for every N virtual +** machine opcodes, where N is the second argument to +** the [sqlite3_progress_handler()] call that registered +** the callback. If N is less than 1, sqlite3_progress_handler() +** acts as if a NULL progress handler had been specified. +** +** {H12913} The progress callback itself is identified by the third +** argument to sqlite3_progress_handler(). +** +** {H12914} The fourth argument to sqlite3_progress_handler() is a +** void pointer passed to the progress callback +** function each time it is invoked. +** +** {H12915} If a call to [sqlite3_step()] results in fewer than N opcodes +** being executed, then the progress callback is never invoked. +** +** {H12916} Every call to [sqlite3_progress_handler()] +** overwrites any previously registered progress handler. +** +** {H12917} If the progress handler callback is NULL then no progress +** handler is invoked. +** +** {H12918} If the progress callback returns a result other than 0, then +** the behavior is a if [sqlite3_interrupt()] had been called. +** */ void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); /* -** CAPI3REF: Opening A New Database Connection {F12700} -** -** {F12701} These routines open an SQLite database file whose name -** is given by the filename argument. -** {F12702} The filename argument is interpreted as UTF-8 -** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 -** in the native byte order for [sqlite3_open16()]. -** {F12703} An [sqlite3*] handle is returned in *ppDb, even -** if an error occurs. {F12723} (Exception: if SQLite is unable -** to allocate memory to hold the [sqlite3] object, a NULL will -** be written into *ppDb instead of a pointer to the [sqlite3] object.) -** {F12704} If the database is opened (and/or created) -** successfully, then [SQLITE_OK] is returned. {F12705} Otherwise an -** error code is returned. {F12706} The -** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** CAPI3REF: Opening A New Database Connection {H12700} +** +** These routines open an SQLite database file whose name is given by the +** filename argument. The filename argument is interpreted as UTF-8 for +** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte +** order for sqlite3_open16(). A [database connection] handle is usually +** returned in *ppDb, even if an error occurs. The only exception is that +** if SQLite is unable to allocate memory to hold the [sqlite3] object, +** a NULL will be written into *ppDb instead of a pointer to the [sqlite3] +** object. If the database is opened (and/or created) successfully, then +** [SQLITE_OK] is returned. Otherwise an [error code] is returned. The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain ** an English language description of the error. ** -** {F12707} The default encoding for the database will be UTF-8 if -** [sqlite3_open()] or [sqlite3_open_v2()] is called and -** UTF-16 in the native byte order if [sqlite3_open16()] is used. -** -** {F12708} Whether or not an error occurs when it is opened, resources -** associated with the [sqlite3*] handle should be released by passing it -** to [sqlite3_close()] when it is no longer required. -** -** {F12709} The [sqlite3_open_v2()] interface works like [sqlite3_open()] -** except that it acccepts two additional parameters for additional control -** over the new database connection. {F12710} The flags parameter can be -** one of: -** -**
    -**
  1. [SQLITE_OPEN_READONLY] -**
  2. [SQLITE_OPEN_READWRITE] -**
  3. [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE] -**
-** -** {F12711} The first value opens the database read-only. -** {F12712} If the database does not previously exist, an error is returned. -** {F12713} The second option opens -** the database for reading and writing if possible, or reading only if -** if the file is write protected. {F12714} In either case the database -** must already exist or an error is returned. {F12715} The third option -** opens the database for reading and writing and creates it if it does -** not already exist. {F12716} -** The third options is behavior that is always used for [sqlite3_open()] -** and [sqlite3_open16()]. -** -** {F12717} If the filename is ":memory:", then an private -** in-memory database is created for the connection. {F12718} This in-memory -** database will vanish when the database connection is closed. {END} Future -** version of SQLite might make use of additional special filenames -** that begin with the ":" character. It is recommended that -** when a database filename really does begin with -** ":" that you prefix the filename with a pathname like "./" to -** avoid ambiguity. -** -** {F12719} If the filename is an empty string, then a private temporary -** on-disk database will be created. {F12720} This private database will be +** The default encoding for the database will be UTF-8 if +** sqlite3_open() or sqlite3_open_v2() is called and +** UTF-16 in the native byte order if sqlite3_open16() is used. +** +** Whether or not an error occurs when it is opened, resources +** associated with the [database connection] handle should be released by +** passing it to [sqlite3_close()] when it is no longer required. +** +** The sqlite3_open_v2() interface works like sqlite3_open() +** except that it accepts two additional parameters for additional control +** over the new database connection. The flags parameter can take one of +** the following three values, optionally combined with the +** [SQLITE_OPEN_NOMUTEX] flag: +** +**
+**
[SQLITE_OPEN_READONLY]
+**
The database is opened in read-only mode. If the database does not +** already exist, an error is returned.
+** +**
[SQLITE_OPEN_READWRITE]
+**
The database is opened for reading and writing if possible, or reading +** only if the file is write protected by the operating system. In either +** case the database must already exist, otherwise an error is returned.
+** +**
[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
+**
The database is opened for reading and writing, and is creates it if +** it does not already exist. This is the behavior that is always used for +** sqlite3_open() and sqlite3_open16().
+**
+** +** If the 3rd parameter to sqlite3_open_v2() is not one of the +** combinations shown above or one of the combinations shown above combined +** with the [SQLITE_OPEN_NOMUTEX] flag, then the behavior is undefined. +** +** If the [SQLITE_OPEN_NOMUTEX] flag is set, then mutexes on the +** opened [database connection] are disabled and the appliation must +** insure that access to the [database connection] and its associated +** [prepared statements] is serialized. The [SQLITE_OPEN_NOMUTEX] flag +** is the default behavior is SQLite is configured using the +** [SQLITE_CONFIG_MULTITHREAD] or [SQLITE_CONFIG_SINGLETHREAD] options +** to [sqlite3_config()]. The [SQLITE_OPEN_NOMUTEX] flag only makes a +** difference when SQLite is in its default [SQLITE_CONFIG_SERIALIZED] mode. +** +** If the filename is ":memory:", then a private, temporary in-memory database +** is created for the connection. This in-memory database will vanish when +** the database connection is closed. Future versions of SQLite might +** make use of additional special filenames that begin with the ":" character. +** It is recommended that when a database filename actually does begin with +** a ":" character you should prefix the filename with a pathname such as +** "./" to avoid ambiguity. +** +** If the filename is an empty string, then a private, temporary +** on-disk database will be created. This private database will be ** automatically deleted as soon as the database connection is closed. ** -** {F12721} The fourth parameter to sqlite3_open_v2() is the name of the -** [sqlite3_vfs] object that defines the operating system -** interface that the new database connection should use. {F12722} If the -** fourth parameter is a NULL pointer then the default [sqlite3_vfs] -** object is used. {END} +** The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system interface that +** the new database connection should use. If the fourth parameter is +** a NULL pointer then the default [sqlite3_vfs] object is used. ** -** Note to windows users: The encoding used for the filename argument -** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever +** Note to Windows users: The encoding used for the filename argument +** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever ** codepage is currently defined. Filenames containing international ** characters must be converted to UTF-8 prior to passing them into -** [sqlite3_open()] or [sqlite3_open_v2()]. +** sqlite3_open() or sqlite3_open_v2(). +** +** INVARIANTS: +** +** {H12701} The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces create a new +** [database connection] associated with +** the database file given in their first parameter. +** +** {H12702} The filename argument is interpreted as UTF-8 +** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 +** in the native byte order for [sqlite3_open16()]. +** +** {H12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()], +** or [sqlite3_open_v2()] writes a pointer to a new +** [database connection] into *ppDb. +** +** {H12704} The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success, +** or an appropriate [error code] on failure. +** +** {H12706} The default text encoding for a new database created using +** [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8. +** +** {H12707} The default text encoding for a new database created using +** [sqlite3_open16()] will be UTF-16. +** +** {H12709} The [sqlite3_open(F,D)] interface is equivalent to +** [sqlite3_open_v2(F,D,G,0)] where the G parameter is +** [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE]. +** +** {H12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the +** bit value [SQLITE_OPEN_READONLY] then the database is opened +** for reading only. +** +** {H12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the +** bit value [SQLITE_OPEN_READWRITE] then the database is opened +** reading and writing if possible, or for reading only if the +** file is write protected by the operating system. +** +** {H12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the +** bit value [SQLITE_OPEN_CREATE] and the database does not +** previously exist, an error is returned. +** +** {H12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the +** bit value [SQLITE_OPEN_CREATE] and the database does not +** previously exist, then an attempt is made to create and +** initialize the database. +** +** {H12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()], +** or [sqlite3_open_v2()] is ":memory:", then an private, +** ephemeral, in-memory database is created for the connection. +** Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required +** in sqlite3_open_v2()? +** +** {H12719} If the filename is NULL or an empty string, then a private, +** ephemeral on-disk database will be created. +** Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required +** in sqlite3_open_v2()? +** +** {H12721} The [database connection] created by [sqlite3_open_v2(F,D,G,V)] +** will use the [sqlite3_vfs] object identified by the V parameter, +** or the default [sqlite3_vfs] object if V is a NULL pointer. +** +** {H12723} Two [database connections] will share a common cache if both were +** opened with the same VFS while [shared cache mode] was enabled and +** if both filenames compare equal using memcmp() after having been +** processed by the [sqlite3_vfs | xFullPathname] method of the VFS. */ int sqlite3_open( const char *filename, /* Database filename (UTF-8) */ @@ -1570,56 +2494,69 @@ int sqlite3_open_v2( ); /* -** CAPI3REF: Error Codes And Messages {F12800} -** -** {F12801} The sqlite3_errcode() interface returns the numeric -** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code] -** for the most recent failed sqlite3_* API call associated -** with [sqlite3] handle 'db'. {U12802} If a prior API call failed but the -** most recent API call succeeded, the return value from sqlite3_errcode() -** is undefined. {END} -** -** {F12803} The sqlite3_errmsg() and sqlite3_errmsg16() return English-language -** text that describes the error, as either UTF8 or UTF16 respectively. -** {F12804} Memory to hold the error message string is managed internally. -** {U12805} The -** string may be overwritten or deallocated by subsequent calls to SQLite -** interface functions. {END} -** -** {F12806} Calls to many sqlite3_* functions set the error code and -** string returned by [sqlite3_errcode()], [sqlite3_errmsg()], and -** [sqlite3_errmsg16()] overwriting the previous values. {F12807} -** Except, calls to [sqlite3_errcode()], -** [sqlite3_errmsg()], and [sqlite3_errmsg16()] themselves do not affect the -** results of future invocations. {F12808} Calls to API routines that -** do not return an error code (example: [sqlite3_data_count()]) do not -** change the error code returned by this routine. {F12809} Interfaces that -** are not associated with a specific database connection (examples: -** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] do not change -** the return code. {END} -** -** {F12810} Assuming no other intervening sqlite3_* API calls are made, -** the error code returned by this function is associated with the same -** error as the strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]. +** CAPI3REF: Error Codes And Messages {H12800} +** +** The sqlite3_errcode() interface returns the numeric [result code] or +** [extended result code] for the most recent failed sqlite3_* API call +** associated with a [database connection]. If a prior API call failed +** but the most recent API call succeeded, the return value from +** sqlite3_errcode() is undefined. +** +** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF-8 or UTF-16 respectively. +** Memory to hold the error message string is managed internally. +** The application does not need to worry about freeing the result. +** However, the error string might be overwritten or deallocated by +** subsequent calls to other SQLite interface functions. +** +** If an interface fails with SQLITE_MISUSE, that means the interface +** was invoked incorrectly by the application. In that case, the +** error code and message may or may not be set. +** +** INVARIANTS: +** +** {H12801} The [sqlite3_errcode(D)] interface returns the numeric +** [result code] or [extended result code] for the most recently +** failed interface call associated with the [database connection] D. +** +** {H12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)] +** interfaces return English-language text that describes +** the error in the mostly recently failed interface call, +** encoded as either UTF-8 or UTF-16 respectively. +** +** {H12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()] +** are valid until the next SQLite interface call. +** +** {H12808} Calls to API routines that do not return an error code +** (example: [sqlite3_data_count()]) do not +** change the error code or message returned by +** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()]. +** +** {H12809} Interfaces that are not associated with a specific +** [database connection] (examples: +** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] +** do not change the values returned by +** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()]. */ int sqlite3_errcode(sqlite3 *db); const char *sqlite3_errmsg(sqlite3*); const void *sqlite3_errmsg16(sqlite3*); /* -** CAPI3REF: SQL Statement Object {F13000} +** CAPI3REF: SQL Statement Object {H13000} +** KEYWORDS: {prepared statement} {prepared statements} ** -** An instance of this object represent single SQL statements. This -** object is variously known as a "prepared statement" or a +** An instance of this object represents a single SQL statement. +** This object is variously known as a "prepared statement" or a ** "compiled SQL statement" or simply as a "statement". -** +** ** The life of a statement object goes something like this: ** **
    **
  1. Create the object using [sqlite3_prepare_v2()] or a related ** function. -**
  2. Bind values to host parameters using -** [sqlite3_bind_blob | sqlite3_bind_* interfaces]. +**
  3. Bind values to [host parameters] using the sqlite3_bind_*() +** interfaces. **
  4. Run the SQL by calling [sqlite3_step()] one or more times. **
  5. Reset the statement using [sqlite3_reset()] then go back ** to step 2. Do this zero or more times. @@ -1632,77 +2569,213 @@ const void *sqlite3_errmsg16(sqlite3*); typedef struct sqlite3_stmt sqlite3_stmt; /* -** CAPI3REF: Compiling An SQL Statement {F13010} +** CAPI3REF: Run-time Limits {H12760} +** +** This interface allows the size of various constructs to be limited +** on a connection by connection basis. The first parameter is the +** [database connection] whose limit is to be set or queried. The +** second parameter is one of the [limit categories] that define a +** class of constructs to be size limited. The third parameter is the +** new limit for that construct. The function returns the old limit. +** +** If the new limit is a negative number, the limit is unchanged. +** For the limit category of SQLITE_LIMIT_XYZ there is a hard upper +** bound set by a compile-time C preprocessor macro named SQLITE_MAX_XYZ. +** (The "_LIMIT_" in the name is changed to "_MAX_".) +** Attempts to increase a limit above its hard upper bound are +** silently truncated to the hard upper limit. +** +** Run time limits are intended for use in applications that manage +** both their own internal database and also databases that are controlled +** by untrusted external sources. An example application might be a +** webbrowser that has its own databases for storing history and +** separate databases controlled by JavaScript applications downloaded +** off the Internet. The internal databases can be given the +** large, default limits. Databases managed by external sources can +** be given much smaller limits designed to prevent a denial of service +** attack. Developers might also want to use the [sqlite3_set_authorizer()] +** interface to further control untrusted SQL. The size of the database +** created by an untrusted script can be contained using the +** [max_page_count] [PRAGMA]. +** +** New run-time limit categories may be added in future releases. +** +** INVARIANTS: +** +** {H12762} A successful call to [sqlite3_limit(D,C,V)] where V is +** positive changes the limit on the size of construct C in the +** [database connection] D to the lesser of V and the hard upper +** bound on the size of C that is set at compile-time. +** +** {H12766} A successful call to [sqlite3_limit(D,C,V)] where V is negative +** leaves the state of the [database connection] D unchanged. +** +** {H12769} A successful call to [sqlite3_limit(D,C,V)] returns the +** value of the limit on the size of construct C in the +** [database connection] D as it was prior to the call. +*/ +int sqlite3_limit(sqlite3*, int id, int newVal); + +/* +** CAPI3REF: Run-Time Limit Categories {H12790} +** KEYWORDS: {limit category} {limit categories} +** +** These constants define various aspects of a [database connection] +** that can be limited in size by calls to [sqlite3_limit()]. +** The meanings of the various limits are as follows: +** +**
    +**
    SQLITE_LIMIT_LENGTH
    +**
    The maximum size of any string or BLOB or table row.
    +** +**
    SQLITE_LIMIT_SQL_LENGTH
    +**
    The maximum length of an SQL statement.
    +** +**
    SQLITE_LIMIT_COLUMN
    +**
    The maximum number of columns in a table definition or in the +** result set of a SELECT or the maximum number of columns in an index +** or in an ORDER BY or GROUP BY clause.
    +** +**
    SQLITE_LIMIT_EXPR_DEPTH
    +**
    The maximum depth of the parse tree on any expression.
    +** +**
    SQLITE_LIMIT_COMPOUND_SELECT
    +**
    The maximum number of terms in a compound SELECT statement.
    +** +**
    SQLITE_LIMIT_VDBE_OP
    +**
    The maximum number of instructions in a virtual machine program +** used to implement an SQL statement.
    +** +**
    SQLITE_LIMIT_FUNCTION_ARG
    +**
    The maximum number of arguments on a function.
    +** +**
    SQLITE_LIMIT_ATTACHED
    +**
    The maximum number of attached databases.
    +** +**
    SQLITE_LIMIT_LIKE_PATTERN_LENGTH
    +**
    The maximum length of the pattern argument to the LIKE or +** GLOB operators.
    +** +**
    SQLITE_LIMIT_VARIABLE_NUMBER
    +**
    The maximum number of variables in an SQL statement that can +** be bound.
    +**
    +*/ +#define SQLITE_LIMIT_LENGTH 0 +#define SQLITE_LIMIT_SQL_LENGTH 1 +#define SQLITE_LIMIT_COLUMN 2 +#define SQLITE_LIMIT_EXPR_DEPTH 3 +#define SQLITE_LIMIT_COMPOUND_SELECT 4 +#define SQLITE_LIMIT_VDBE_OP 5 +#define SQLITE_LIMIT_FUNCTION_ARG 6 +#define SQLITE_LIMIT_ATTACHED 7 +#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 +#define SQLITE_LIMIT_VARIABLE_NUMBER 9 + +/* +** CAPI3REF: Compiling An SQL Statement {H13010} +** KEYWORDS: {SQL statement compiler} ** ** To execute an SQL query, it must first be compiled into a byte-code -** program using one of these routines. +** program using one of these routines. +** +** The first argument, "db", is a [database connection] obtained from a +** prior call to [sqlite3_open()], [sqlite3_open_v2()] or [sqlite3_open16()]. ** -** {F13011} The first argument "db" is an [sqlite3 | SQLite database handle] -** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()] -** or [sqlite3_open16()]. {F13012} -** The second argument "zSql" is the statement to be compiled, encoded +** The second argument, "zSql", is the statement to be compiled, encoded ** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() -** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2() -** use UTF-16. {END} -** -** {F13013} If the nByte argument is less -** than zero, then zSql is read up to the first zero terminator. -** {F13014} If nByte is non-negative, then it is the maximum number of -** bytes read from zSql. When nByte is non-negative, the -** zSql string ends at either the first '\000' or '\u0000' character or -** until the nByte-th byte, whichever comes first. {END} -** -** {F13015} *pzTail is made to point to the first byte past the end of the -** first SQL statement in zSql. These routines only compiles the first +** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. +** +** If the nByte argument is less than zero, then zSql is read up to the +** first zero terminator. If nByte is non-negative, then it is the maximum +** number of bytes read from zSql. When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** the nByte-th byte, whichever comes first. If the caller knows +** that the supplied string is nul-terminated, then there is a small +** performance advantage to be gained by passing an nByte parameter that +** is equal to the number of bytes in the input string including +** the nul-terminator bytes. +** +** *pzTail is made to point to the first byte past the end of the +** first SQL statement in zSql. These routines only compile the first ** statement in zSql, so *pzTail is left pointing to what remains -** uncompiled. {END} +** uncompiled. ** -** {F13016} *ppStmt is left pointing to a compiled -** [sqlite3_stmt | SQL statement structure] that can be -** executed using [sqlite3_step()]. Or if there is an error, *ppStmt may be -** set to NULL. {F13017} If the input text contains no SQL (if the input -** is and empty string or a comment) then *ppStmt is set to NULL. -** {U13018} The calling procedure is responsible for deleting the -** compiled SQL statement -** using [sqlite3_finalize()] after it has finished with it. +** *ppStmt is left pointing to a compiled [prepared statement] that can be +** executed using [sqlite3_step()]. If there is an error, *ppStmt is set +** to NULL. If the input text contains no SQL (if the input is an empty +** string or a comment) then *ppStmt is set to NULL. +** {A13018} The calling procedure is responsible for deleting the compiled +** SQL statement using [sqlite3_finalize()] after it has finished with it. ** -** {F13019} On success, [SQLITE_OK] is returned. Otherwise an -** [SQLITE_ERROR | error code] is returned. {END} +** On success, [SQLITE_OK] is returned, otherwise an [error code] is returned. ** ** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are ** recommended for all new programs. The two older interfaces are retained ** for backwards compatibility, but their use is discouraged. -** {F13020} In the "v2" interfaces, the prepared statement -** that is returned (the [sqlite3_stmt] object) contains a copy of the -** original SQL text. {END} This causes the [sqlite3_step()] interface to +** In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. This causes the [sqlite3_step()] interface to ** behave a differently in two ways: ** **
      -**
    1. {F13022} +**
    2. ** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it ** always used to do, [sqlite3_step()] will automatically recompile the SQL -** statement and try to run it again. {F12023} If the schema has changed in +** statement and try to run it again. If the schema has changed in ** a way that makes the statement no longer valid, [sqlite3_step()] will still -** return [SQLITE_SCHEMA]. {END} But unlike the legacy behavior, -** [SQLITE_SCHEMA] is now a fatal error. {F12024} Calling -** [sqlite3_prepare_v2()] again will not make the -** error go away. {F12025} Note: use [sqlite3_errmsg()] to find the text -** of the parsing error that results in an [SQLITE_SCHEMA] return. {END} +** return [SQLITE_SCHEMA]. But unlike the legacy behavior, [SQLITE_SCHEMA] is +** now a fatal error. Calling [sqlite3_prepare_v2()] again will not make the +** error go away. Note: use [sqlite3_errmsg()] to find the text +** of the parsing error that results in an [SQLITE_SCHEMA] return. **
    3. ** **
    4. -** {F13030} When an error occurs, -** [sqlite3_step()] will return one of the detailed -** [SQLITE_ERROR | result codes] or -** [SQLITE_IOERR_READ | extended result codes]. {F13031} -** The legacy behavior was that [sqlite3_step()] would only return a generic -** [SQLITE_ERROR] result code and you would have to make a second call to -** [sqlite3_reset()] in order to find the underlying cause of the problem. -** {F13032} -** With the "v2" prepare interfaces, the underlying reason for the error is -** returned immediately. {END} +** When an error occurs, [sqlite3_step()] will return one of the detailed +** [error codes] or [extended error codes]. The legacy behavior was that +** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code +** and you would have to make a second call to [sqlite3_reset()] in order +** to find the underlying cause of the problem. With the "v2" prepare +** interfaces, the underlying reason for the error is returned immediately. **
    5. **
    +** +** INVARIANTS: +** +** {H13011} The [sqlite3_prepare(db,zSql,...)] and +** [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the +** text in their zSql parameter as UTF-8. +** +** {H13012} The [sqlite3_prepare16(db,zSql,...)] and +** [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the +** text in their zSql parameter as UTF-16 in the native byte order. +** +** {H13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)] +** and its variants is less than zero, the SQL text is +** read from zSql is read up to the first zero terminator. +** +** {H13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)] +** and its variants is non-negative, then at most nBytes bytes of +** SQL text is read from zSql. +** +** {H13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants +** if the zSql input text contains more than one SQL statement +** and pzTail is not NULL, then *pzTail is made to point to the +** first byte past the end of the first SQL statement in zSql. +** What does *pzTail point to if there is one statement? +** +** {H13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)] +** or one of its variants writes into *ppStmt a pointer to a new +** [prepared statement] or a pointer to NULL if zSql contains +** nothing other than whitespace or comments. +** +** {H13019} The [sqlite3_prepare_v2()] interface and its variants return +** [SQLITE_OK] or an appropriate [error code] upon failure. +** +** {H13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its +** variants returns an error (any value other than [SQLITE_OK]), +** they first set *ppStmt to NULL. */ int sqlite3_prepare( sqlite3 *db, /* Database handle */ @@ -1734,119 +2807,234 @@ int sqlite3_prepare16_v2( ); /* -** CAPIREF: Retrieving Statement SQL {F13100} +** CAPIREF: Retrieving Statement SQL {H13100} +** +** This interface can be used to retrieve a saved copy of the original +** SQL text used to create a [prepared statement] if that statement was +** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. +** +** INVARIANTS: +** +** {H13101} If the [prepared statement] passed as the argument to +** [sqlite3_sql()] was compiled using either [sqlite3_prepare_v2()] or +** [sqlite3_prepare16_v2()], then [sqlite3_sql()] returns +** a pointer to a zero-terminated string containing a UTF-8 rendering +** of the original SQL statement. ** -** {F13101} If the compiled SQL statement passed as an argument was -** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()], -** then this function returns a pointer to a zero-terminated string -** containing a copy of the original SQL statement. {F13102} The -** pointer is valid until the statement -** is deleted using sqlite3_finalize(). -** {F13103} The string returned by sqlite3_sql() is always UTF8 even -** if a UTF16 string was originally entered using [sqlite3_prepare16_v2()] -** or the equivalent. +** {H13102} If the [prepared statement] passed as the argument to +** [sqlite3_sql()] was compiled using either [sqlite3_prepare()] or +** [sqlite3_prepare16()], then [sqlite3_sql()] returns a NULL pointer. ** -** {F13104} If the statement was compiled using either of the legacy -** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this -** function returns NULL. +** {H13103} The string returned by [sqlite3_sql(S)] is valid until the +** [prepared statement] S is deleted using [sqlite3_finalize(S)]. */ const char *sqlite3_sql(sqlite3_stmt *pStmt); /* -** CAPI3REF: Dynamically Typed Value Object {F15000} -** -** {F15001} SQLite uses the sqlite3_value object to represent all values -** that are or can be stored in a database table. {END} -** SQLite uses dynamic typing for the values it stores. -** {F15002} Values stored in sqlite3_value objects can be -** be integers, floating point values, strings, BLOBs, or NULL. +** CAPI3REF: Dynamically Typed Value Object {H15000} +** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value} +** +** SQLite uses the sqlite3_value object to represent all values +** that can be stored in a database table. SQLite uses dynamic typing +** for the values it stores. Values stored in sqlite3_value objects +** can be integers, floating point values, strings, BLOBs, or NULL. +** +** An sqlite3_value object may be either "protected" or "unprotected". +** Some interfaces require a protected sqlite3_value. Other interfaces +** will accept either a protected or an unprotected sqlite3_value. +** Every interface that accepts sqlite3_value arguments specifies +** whether or not it requires a protected sqlite3_value. +** +** The terms "protected" and "unprotected" refer to whether or not +** a mutex is held. A internal mutex is held for a protected +** sqlite3_value object but no mutex is held for an unprotected +** sqlite3_value object. If SQLite is compiled to be single-threaded +** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0) +** or if SQLite is run in one of reduced mutex modes +** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD] +** then there is no distinction between protected and unprotected +** sqlite3_value objects and they can be used interchangeably. However, +** for maximum code portability it is recommended that applications +** still make the distinction between between protected and unprotected +** sqlite3_value objects even when not strictly required. +** +** The sqlite3_value objects that are passed as parameters into the +** implementation of [application-defined SQL functions] are protected. +** The sqlite3_value object returned by +** [sqlite3_column_value()] is unprotected. +** Unprotected sqlite3_value objects may only be used with +** [sqlite3_result_value()] and [sqlite3_bind_value()]. +** The [sqlite3_value_blob | sqlite3_value_type()] family of +** interfaces require protected sqlite3_value objects. */ typedef struct Mem sqlite3_value; /* -** CAPI3REF: SQL Function Context Object {F16001} +** CAPI3REF: SQL Function Context Object {H16001} ** ** The context in which an SQL function executes is stored in an -** sqlite3_context object. {F16002} A pointer to an sqlite3_context -** object is always first parameter to application-defined SQL functions. +** sqlite3_context object. A pointer to an sqlite3_context object +** is always first parameter to [application-defined SQL functions]. +** The application-defined SQL function implementation will pass this +** pointer through into calls to [sqlite3_result_int | sqlite3_result()], +** [sqlite3_aggregate_context()], [sqlite3_user_data()], +** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()], +** and/or [sqlite3_set_auxdata()]. */ typedef struct sqlite3_context sqlite3_context; /* -** CAPI3REF: Binding Values To Prepared Statements {F13500} +** CAPI3REF: Binding Values To Prepared Statements {H13500} +** KEYWORDS: {host parameter} {host parameters} {host parameter name} +** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} ** -** {F13501} In the SQL strings input to [sqlite3_prepare_v2()] and its -** variants, literals may be replace by a parameter in one -** of these forms: +** In the SQL strings input to [sqlite3_prepare_v2()] and its variants, +** literals may be replaced by a parameter in one of these forms: ** **
      **
    • ? **
    • ?NNN -**
    • :AAA -**
    • @AAA +**
    • :VVV +**
    • @VVV **
    • $VVV **
    ** ** In the parameter forms shown above NNN is an integer literal, -** AAA is an alphanumeric identifier and VVV is a variable name according -** to the syntax rules of the TCL programming language. {END} -** The values of these parameters (also called "host parameter names") +** and VVV is an alpha-numeric parameter name. The values of these +** parameters (also called "host parameter names" or "SQL parameters") ** can be set using the sqlite3_bind_*() routines defined here. ** -** {F13502} The first argument to the sqlite3_bind_*() routines always -** is a pointer to the [sqlite3_stmt] object returned from -** [sqlite3_prepare_v2()] or its variants. {F13503} The second -** argument is the index of the parameter to be set. {F13504} The -** first parameter has an index of 1. {F13505} When the same named -** parameter is used more than once, second and subsequent -** occurrences have the same index as the first occurrence. -** {F13506} The index for named parameters can be looked up using the -** [sqlite3_bind_parameter_name()] API if desired. {F13507} The index +** The first argument to the sqlite3_bind_*() routines is always +** a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. +** +** The second argument is the index of the SQL parameter to be set. +** The leftmost SQL parameter has an index of 1. When the same named +** SQL parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_index()] API if desired. The index ** for "?NNN" parameters is the value of NNN. -** {F13508} The NNN value must be between 1 and the compile-time -** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). {END} -** See limits.html for additional information. -** -** {F13509} The third argument is the value to bind to the parameter. {END} -** -** {F13510} In those -** routines that have a fourth argument, its value is the number of bytes -** in the parameter. To be clear: the value is the number of bytes in the -** string, not the number of characters. {F13511} The number -** of bytes does not include the zero-terminator at the end of strings. -** {F13512} +** The NNN value must be between 1 and the [sqlite3_limit()] +** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999). +** +** The third argument is the value to bind to the parameter. +** +** In those routines that have a fourth argument, its value is the +** number of bytes in the parameter. To be clear: the value is the +** number of bytes in the value, not the number of characters. ** If the fourth parameter is negative, the length of the string is -** number of bytes up to the first zero terminator. {END} +** the number of bytes up to the first zero terminator. ** -** {F13513} ** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and ** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or -** text after SQLite has finished with it. {F13514} If the fifth argument is -** the special value [SQLITE_STATIC], then the library assumes that the +** string after SQLite has finished with it. If the fifth argument is +** the special value [SQLITE_STATIC], then SQLite assumes that the ** information is in static, unmanaged space and does not need to be freed. -** {F13515} If the fifth argument has the value [SQLITE_TRANSIENT], then +** If the fifth argument has the value [SQLITE_TRANSIENT], then ** SQLite makes its own private copy of the data immediately, before -** the sqlite3_bind_*() routine returns. {END} +** the sqlite3_bind_*() routine returns. ** -** {F13520} The sqlite3_bind_zeroblob() routine binds a BLOB of length N that -** is filled with zeros. {F13521} A zeroblob uses a fixed amount of memory -** (just an integer to hold it size) while it is being processed. {END} -** Zeroblobs are intended to serve as place-holders for BLOBs whose -** content is later written using -** [sqlite3_blob_open | increment BLOB I/O] routines. {F13522} A negative -** value for the zeroblob results in a zero-length BLOB. {END} +** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeroes. A zeroblob uses a fixed amount of memory +** (just an integer to hold its size) while it is being processed. +** Zeroblobs are intended to serve as placeholders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | incremental BLOB I/O] routines. +** A negative value for the zeroblob results in a zero-length BLOB. ** -** {F13530} The sqlite3_bind_*() routines must be called after +** The sqlite3_bind_*() routines must be called after ** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and -** before [sqlite3_step()]. {F13531} +** before [sqlite3_step()]. ** Bindings are not cleared by the [sqlite3_reset()] routine. -** {F13532} Unbound parameters are interpreted as NULL. {END} +** Unbound parameters are interpreted as NULL. ** -** {F13540} These routines return [SQLITE_OK] on success or an error code if -** anything goes wrong. {F13541} [SQLITE_RANGE] is returned if the parameter -** index is out of range. {F13542} [SQLITE_NOMEM] is returned if malloc fails. -** {F13543} [SQLITE_MISUSE] is returned if these routines are called on a +** These routines return [SQLITE_OK] on success or an error code if +** anything goes wrong. [SQLITE_RANGE] is returned if the parameter +** index is out of range. [SQLITE_NOMEM] is returned if malloc() fails. +** [SQLITE_MISUSE] might be returned if these routines are called on a ** virtual machine that is the wrong state or which has already been finalized. +** Detection of misuse is unreliable. Applications should not depend +** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a +** a logic error in the application. Future versions of SQLite might +** panic rather than return SQLITE_MISUSE. +** +** See also: [sqlite3_bind_parameter_count()], +** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()]. +** +** INVARIANTS: +** +** {H13506} The [SQL statement compiler] recognizes tokens of the forms +** "?", "?NNN", "$VVV", ":VVV", and "@VVV" as SQL parameters, +** where NNN is any sequence of one or more digits +** and where VVV is any sequence of one or more alphanumeric +** characters or "::" optionally followed by a string containing +** no spaces and contained within parentheses. +** +** {H13509} The initial value of an SQL parameter is NULL. +** +** {H13512} The index of an "?" SQL parameter is one larger than the +** largest index of SQL parameter to the left, or 1 if +** the "?" is the leftmost SQL parameter. +** +** {H13515} The index of an "?NNN" SQL parameter is the integer NNN. +** +** {H13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is +** the same as the index of leftmost occurrences of the same +** parameter, or one more than the largest index over all +** parameters to the left if this is the first occurrence +** of this parameter, or 1 if this is the leftmost parameter. +** +** {H13521} The [SQL statement compiler] fails with an [SQLITE_RANGE] +** error if the index of an SQL parameter is less than 1 +** or greater than the compile-time SQLITE_MAX_VARIABLE_NUMBER +** parameter. +** +** {H13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)] +** associate the value V with all SQL parameters having an +** index of N in the [prepared statement] S. +** +** {H13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)] +** override prior calls with the same values of S and N. +** +** {H13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)] +** persist across calls to [sqlite3_reset(S)]. +** +** {H13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)], +** [sqlite3_bind_text(S,N,V,L,D)], or +** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L +** bytes of the BLOB or string pointed to by V, when L +** is non-negative. +** +** {H13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or +** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters +** from V through the first zero character when L is negative. +** +** {H13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)], +** [sqlite3_bind_text(S,N,V,L,D)], or +** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special +** constant [SQLITE_STATIC], SQLite assumes that the value V +** is held in static unmanaged space that will not change +** during the lifetime of the binding. +** +** {H13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)], +** [sqlite3_bind_text(S,N,V,L,D)], or +** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special +** constant [SQLITE_TRANSIENT], the routine makes a +** private copy of the value V before it returns. +** +** {H13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)], +** [sqlite3_bind_text(S,N,V,L,D)], or +** [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to +** a function, SQLite invokes that function to destroy the +** value V after it has finished using the value V. +** +** {H13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound +** is a BLOB of L bytes, or a zero-length BLOB if L is negative. +** +** {H13551} In calls to [sqlite3_bind_value(S,N,V)] the V argument may +** be either a [protected sqlite3_value] object or an +** [unprotected sqlite3_value] object. */ int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); int sqlite3_bind_double(sqlite3_stmt*, int, double); @@ -1859,140 +3047,263 @@ int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); /* -** CAPI3REF: Number Of Host Parameters {F13600} +** CAPI3REF: Number Of SQL Parameters {H13600} ** -** {F13601} Return the largest host parameter index in the precompiled -** statement given as the argument. {F13602} When the host parameters -** are of the forms like ":AAA", "$VVV", "@AAA", or "?", -** then they are assigned sequential increasing numbers beginning -** with one, so the value returned is the number of parameters. -** {F13603} However -** if the same host parameter name is used multiple times, each occurrance -** is given the same number, so the value returned in that case is the number -** of unique host parameter names. {F13604} If host parameters of the -** form "?NNN" are used (where NNN is an integer) then there might be -** gaps in the numbering and the value returned by this interface is -** the index of the host parameter with the largest index value. {END} +** This routine can be used to find the number of [SQL parameters] +** in a [prepared statement]. SQL parameters are tokens of the +** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as +** placeholders for values that are [sqlite3_bind_blob | bound] +** to the parameters at a later time. ** -** {U13605} The prepared statement must not be [sqlite3_finalize | finalized] -** prior to this routine returning. Otherwise the results are undefined -** and probably undesirable. +** This routine actually returns the index of the largest (rightmost) +** parameter. For all forms except ?NNN, this will correspond to the +** number of unique parameters. If parameters of the ?NNN are used, +** there may be gaps in the list. +** +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_name()], and +** [sqlite3_bind_parameter_index()]. +** +** INVARIANTS: +** +** {H13601} The [sqlite3_bind_parameter_count(S)] interface returns +** the largest index of all SQL parameters in the +** [prepared statement] S, or 0 if S contains no SQL parameters. */ int sqlite3_bind_parameter_count(sqlite3_stmt*); /* -** CAPI3REF: Name Of A Host Parameter {F13620} +** CAPI3REF: Name Of A Host Parameter {H13620} +** +** This routine returns a pointer to the name of the n-th +** [SQL parameter] in a [prepared statement]. +** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA" +** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA" +** respectively. +** In other words, the initial ":" or "$" or "@" or "?" +** is included as part of the name. +** Parameters of the form "?" without a following integer have no name +** and are also referred to as "anonymous parameters". +** +** The first host parameter has an index of 1, not 0. +** +** If the value n is out of range or if the n-th parameter is +** nameless, then NULL is returned. The returned string is +** always in UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. ** -** {F13621} This routine returns a pointer to the name of the n-th -** parameter in a [sqlite3_stmt | prepared statement]. {F13622} -** Host parameters of the form ":AAA" or "@AAA" or "$VVV" have a name -** which is the string ":AAA" or "@AAA" or "$VVV". -** In other words, the initial ":" or "$" or "@" -** is included as part of the name. {F13626} -** Parameters of the form "?" or "?NNN" have no name. +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_count()], and +** [sqlite3_bind_parameter_index()]. ** -** {F13623} The first host parameter has an index of 1, not 0. +** INVARIANTS: ** -** {F13624} If the value n is out of range or if the n-th parameter is -** nameless, then NULL is returned. {F13625} The returned string is -** always in the UTF-8 encoding even if the named parameter was -** originally specified as UTF-16 in [sqlite3_prepare16()] or -** [sqlite3_prepare16_v2()]. +** {H13621} The [sqlite3_bind_parameter_name(S,N)] interface returns +** a UTF-8 rendering of the name of the SQL parameter in +** the [prepared statement] S having index N, or +** NULL if there is no SQL parameter with index N or if the +** parameter with index N is an anonymous parameter "?". */ const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); /* -** CAPI3REF: Index Of A Parameter With A Given Name {F13640} +** CAPI3REF: Index Of A Parameter With A Given Name {H13640} +** +** Return the index of an SQL parameter given its name. The +** index value returned is suitable for use as the second +** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero +** is returned if no matching parameter is found. The parameter +** name must be given in UTF-8 even if the original statement +** was prepared from UTF-16 text using [sqlite3_prepare16_v2()]. ** -** {F13641} This routine returns the index of a host parameter with the -** given name. {F13642} The name must match exactly. {F13643} -** If no parameter with the given name is found, return 0. -** {F13644} Parameter names must be UTF8. +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_count()], and +** [sqlite3_bind_parameter_index()]. +** +** INVARIANTS: +** +** {H13641} The [sqlite3_bind_parameter_index(S,N)] interface returns +** the index of SQL parameter in the [prepared statement] +** S whose name matches the UTF-8 string N, or 0 if there is +** no match. */ int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); /* -** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660} +** CAPI3REF: Reset All Bindings On A Prepared Statement {H13660} +** +** Contrary to the intuition of many, [sqlite3_reset()] does not reset +** the [sqlite3_bind_blob | bindings] on a [prepared statement]. +** Use this routine to reset all host parameters to NULL. ** -** {F13661} Contrary to the intuition of many, [sqlite3_reset()] does not -** reset the [sqlite3_bind_blob | bindings] on a -** [sqlite3_stmt | prepared statement]. {F13662} Use this routine to -** reset all host parameters to NULL. +** INVARIANTS: +** +** {H13661} The [sqlite3_clear_bindings(S)] interface resets all SQL +** parameter bindings in the [prepared statement] S back to NULL. */ int sqlite3_clear_bindings(sqlite3_stmt*); /* -** CAPI3REF: Number Of Columns In A Result Set {F13710} +** CAPI3REF: Number Of Columns In A Result Set {H13710} +** +** Return the number of columns in the result set returned by the +** [prepared statement]. This routine returns 0 if pStmt is an SQL +** statement that does not return data (for example an [UPDATE]). ** -** {F13711} Return the number of columns in the result set returned by the -** [sqlite3_stmt | compiled SQL statement]. {F13712} This routine returns 0 -** if pStmt is an SQL statement that does not return data (for -** example an UPDATE). +** INVARIANTS: +** +** {H13711} The [sqlite3_column_count(S)] interface returns the number of +** columns in the result set generated by the [prepared statement] S, +** or 0 if S does not generate a result set. */ int sqlite3_column_count(sqlite3_stmt *pStmt); /* -** CAPI3REF: Column Names In A Result Set {F13720} +** CAPI3REF: Column Names In A Result Set {H13720} +** +** These routines return the name assigned to a particular column +** in the result set of a [SELECT] statement. The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF-8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF-16 string. The first parameter is the [prepared statement] +** that implements the [SELECT] statement. The second parameter is the +** column number. The leftmost column is number 0. +** +** The returned string pointer is valid until either the [prepared statement] +** is destroyed by [sqlite3_finalize()] or until the next call to +** sqlite3_column_name() or sqlite3_column_name16() on the same column. +** +** If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +** +** The name of a result column is the value of the "AS" clause for +** that column, if there is an AS clause. If there is no AS clause +** then the name of the column is unspecified and may change from +** one release of SQLite to the next. +** +** INVARIANTS: +** +** {H13721} A successful invocation of the [sqlite3_column_name(S,N)] +** interface returns the name of the Nth column (where 0 is +** the leftmost column) for the result set of the +** [prepared statement] S as a zero-terminated UTF-8 string. +** +** {H13723} A successful invocation of the [sqlite3_column_name16(S,N)] +** interface returns the name of the Nth column (where 0 is +** the leftmost column) for the result set of the +** [prepared statement] S as a zero-terminated UTF-16 string +** in the native byte order. +** +** {H13724} The [sqlite3_column_name()] and [sqlite3_column_name16()] +** interfaces return a NULL pointer if they are unable to +** allocate memory to hold their normal return strings. ** -** {F13721} These routines return the name assigned to a particular column -** in the result set of a SELECT statement. {F13722} The sqlite3_column_name() -** interface returns a pointer to a zero-terminated UTF8 string -** and sqlite3_column_name16() returns a pointer to a zero-terminated -** UTF16 string. {F13723} The first parameter is the -** [sqlite3_stmt | prepared statement] that implements the SELECT statement. -** The second parameter is the column number. The left-most column is -** number 0. +** {H13725} If the N parameter to [sqlite3_column_name(S,N)] or +** [sqlite3_column_name16(S,N)] is out of range, then the +** interfaces return a NULL pointer. ** -** {F13724} The returned string pointer is valid until either the -** [sqlite3_stmt | prepared statement] is destroyed by [sqlite3_finalize()] -** or until the next call sqlite3_column_name() or sqlite3_column_name16() -** on the same column. +** {H13726} The strings returned by [sqlite3_column_name(S,N)] and +** [sqlite3_column_name16(S,N)] are valid until the next +** call to either routine with the same S and N parameters +** or until [sqlite3_finalize(S)] is called. ** -** {F13725} If sqlite3_malloc() fails during the processing of either routine -** (for example during a conversion from UTF-8 to UTF-16) then a -** NULL pointer is returned. +** {H13727} When a result column of a [SELECT] statement contains +** an AS clause, the name of that column is the identifier +** to the right of the AS keyword. */ const char *sqlite3_column_name(sqlite3_stmt*, int N); const void *sqlite3_column_name16(sqlite3_stmt*, int N); /* -** CAPI3REF: Source Of Data In A Query Result {F13740} +** CAPI3REF: Source Of Data In A Query Result {H13740} ** -** {F13741} These routines provide a means to determine what column of what -** table in which database a result of a SELECT statement comes from. -** {F13742} The name of the database or table or column can be returned as -** either a UTF8 or UTF16 string. {F13743} The _database_ routines return +** These routines provide a means to determine what column of what +** table in which database a result of a [SELECT] statement comes from. +** The name of the database or table or column can be returned as +** either a UTF-8 or UTF-16 string. The _database_ routines return ** the database name, the _table_ routines return the table name, and -** the origin_ routines return the column name. {F13744} -** The returned string is valid until -** the [sqlite3_stmt | prepared statement] is destroyed using -** [sqlite3_finalize()] or until the same information is requested +** the origin_ routines return the column name. +** The returned string is valid until the [prepared statement] is destroyed +** using [sqlite3_finalize()] or until the same information is requested ** again in a different encoding. ** -** {F13745} The names returned are the original un-aliased names of the +** The names returned are the original un-aliased names of the ** database, table, and column. ** -** {F13746} The first argument to the following calls is a -** [sqlite3_stmt | compiled SQL statement]. -** {F13747} These functions return information about the Nth column returned by +** The first argument to the following calls is a [prepared statement]. +** These functions return information about the Nth column returned by ** the statement, where N is the second function argument. ** -** {F13748} If the Nth column returned by the statement is an expression -** or subquery and is not a column value, then all of these functions -** return NULL. {F13749} Otherwise, they return the -** name of the attached database, table and column that query result -** column was extracted from. +** If the Nth column returned by the statement is an expression or +** subquery and is not a column value, then all of these functions return +** NULL. These routine might also return NULL if a memory allocation error +** occurs. Otherwise, they return the name of the attached database, table +** and column that query result column was extracted from. ** -** {F13750} As with all other SQLite APIs, those postfixed with "16" return +** As with all other SQLite APIs, those postfixed with "16" return ** UTF-16 encoded strings, the other functions return UTF-8. {END} ** -** These APIs are only available if the library was compiled with the -** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +** These APIs are only available if the library was compiled with the +** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined. ** -** {U13751} +** {A13751} ** If two or more threads call one or more of these routines against the same ** prepared statement and column at the same time then the results are ** undefined. +** +** INVARIANTS: +** +** {H13741} The [sqlite3_column_database_name(S,N)] interface returns either +** the UTF-8 zero-terminated name of the database from which the +** Nth result column of the [prepared statement] S is extracted, +** or NULL if the Nth column of S is a general expression +** or if unable to allocate memory to store the name. +** +** {H13742} The [sqlite3_column_database_name16(S,N)] interface returns either +** the UTF-16 native byte order zero-terminated name of the database +** from which the Nth result column of the [prepared statement] S is +** extracted, or NULL if the Nth column of S is a general expression +** or if unable to allocate memory to store the name. +** +** {H13743} The [sqlite3_column_table_name(S,N)] interface returns either +** the UTF-8 zero-terminated name of the table from which the +** Nth result column of the [prepared statement] S is extracted, +** or NULL if the Nth column of S is a general expression +** or if unable to allocate memory to store the name. +** +** {H13744} The [sqlite3_column_table_name16(S,N)] interface returns either +** the UTF-16 native byte order zero-terminated name of the table +** from which the Nth result column of the [prepared statement] S is +** extracted, or NULL if the Nth column of S is a general expression +** or if unable to allocate memory to store the name. +** +** {H13745} The [sqlite3_column_origin_name(S,N)] interface returns either +** the UTF-8 zero-terminated name of the table column from which the +** Nth result column of the [prepared statement] S is extracted, +** or NULL if the Nth column of S is a general expression +** or if unable to allocate memory to store the name. +** +** {H13746} The [sqlite3_column_origin_name16(S,N)] interface returns either +** the UTF-16 native byte order zero-terminated name of the table +** column from which the Nth result column of the +** [prepared statement] S is extracted, or NULL if the Nth column +** of S is a general expression or if unable to allocate memory +** to store the name. +** +** {H13748} The return values from +** [sqlite3_column_database_name | column metadata interfaces] +** are valid for the lifetime of the [prepared statement] +** or until the encoding is changed by another metadata +** interface call for the same prepared statement and column. +** +** ASSUMPTIONS: +** +** {A13751} If two or more threads call one or more +** [sqlite3_column_database_name | column metadata interfaces] +** for the same [prepared statement] and result column +** at the same time then the results are undefined. */ const char *sqlite3_column_database_name(sqlite3_stmt*,int); const void *sqlite3_column_database_name16(sqlite3_stmt*,int); @@ -2002,26 +3313,26 @@ const char *sqlite3_column_origin_name(sqlite3_stmt*,int); const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); /* -** CAPI3REF: Declared Datatype Of A Query Result {F13760} +** CAPI3REF: Declared Datatype Of A Query Result {H13760} ** -** The first parameter is a [sqlite3_stmt | compiled SQL statement]. -** {F13761} If this statement is a SELECT statement and the Nth column of the -** returned result set of that SELECT is a table column (not an +** The first parameter is a [prepared statement]. +** If this statement is a [SELECT] statement and the Nth column of the +** returned result set of that [SELECT] is a table column (not an ** expression or subquery) then the declared type of the table -** column is returned. {F13762} If the Nth column of the result set is an +** column is returned. If the Nth column of the result set is an ** expression or subquery, then a NULL pointer is returned. -** {F13763} The returned string is always UTF-8 encoded. {END} -** For example, in the database schema: +** The returned string is always UTF-8 encoded. {END} +** +** For example, given the database schema: ** ** CREATE TABLE t1(c1 VARIANT); ** -** And the following statement compiled: +** and the following statement to be compiled: ** ** SELECT c1 + 1, c1 FROM t1; ** -** Then this routine would return the string "VARIANT" for the second -** result column (i==1), and a NULL pointer for the first result column -** (i==0). +** this routine would return the string "VARIANT" for the second result +** column (i==1), and a NULL pointer for the first result column (i==0). ** ** SQLite uses dynamic run-time typing. So just because a column ** is declared to contain a particular type does not mean that the @@ -2029,36 +3340,55 @@ const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); ** strongly typed, but the typing is dynamic not static. Type ** is associated with individual values, not with the containers ** used to hold those values. +** +** INVARIANTS: +** +** {H13761} A successful call to [sqlite3_column_decltype(S,N)] returns a +** zero-terminated UTF-8 string containing the declared datatype +** of the table column that appears as the Nth column (numbered +** from 0) of the result set to the [prepared statement] S. +** +** {H13762} A successful call to [sqlite3_column_decltype16(S,N)] +** returns a zero-terminated UTF-16 native byte order string +** containing the declared datatype of the table column that appears +** as the Nth column (numbered from 0) of the result set to the +** [prepared statement] S. +** +** {H13763} If N is less than 0 or N is greater than or equal to +** the number of columns in the [prepared statement] S, +** or if the Nth column of S is an expression or subquery rather +** than a table column, or if a memory allocation failure +** occurs during encoding conversions, then +** calls to [sqlite3_column_decltype(S,N)] or +** [sqlite3_column_decltype16(S,N)] return NULL. */ -const char *sqlite3_column_decltype(sqlite3_stmt *, int i); +const char *sqlite3_column_decltype(sqlite3_stmt*,int); const void *sqlite3_column_decltype16(sqlite3_stmt*,int); -/* -** CAPI3REF: Evaluate An SQL Statement {F13200} +/* +** CAPI3REF: Evaluate An SQL Statement {H13200} ** -** After an [sqlite3_stmt | SQL statement] has been prepared with a call -** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of -** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], -** then this function must be called one or more times to evaluate the -** statement. +** After a [prepared statement] has been prepared using either +** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy +** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function +** must be called one or more times to evaluate the statement. ** -** The details of the behavior of this sqlite3_step() interface depend +** The details of the behavior of the sqlite3_step() interface depend ** on whether the statement was prepared using the newer "v2" interface ** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy ** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the ** new "v2" interface is recommended for new applications but the legacy ** interface will continue to be supported. ** -** In the lagacy interface, the return value will be either [SQLITE_BUSY], +** In the legacy interface, the return value will be either [SQLITE_BUSY], ** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. -** With the "v2" interface, any of the other [SQLITE_OK | result code] -** or [SQLITE_IOERR_READ | extended result code] might be returned as -** well. +** With the "v2" interface, any of the other [result codes] or +** [extended result codes] might be returned as well. ** ** [SQLITE_BUSY] means that the database engine was unable to acquire the -** database locks it needs to do its job. If the statement is a COMMIT +** database locks it needs to do its job. If the statement is a [COMMIT] ** or occurs outside of an explicit transaction, then you can retry the -** statement. If the statement is not a COMMIT and occurs within a +** statement. If the statement is not a [COMMIT] and occurs within a ** explicit transaction then you should rollback the transaction before ** continuing. ** @@ -2067,64 +3397,91 @@ const void *sqlite3_column_decltype16(sqlite3_stmt*,int); ** machine without first calling [sqlite3_reset()] to reset the virtual ** machine back to its initial state. ** -** If the SQL statement being executed returns any data, then -** [SQLITE_ROW] is returned each time a new row of data is ready -** for processing by the caller. The values may be accessed using -** the [sqlite3_column_int | column access functions]. +** If the SQL statement being executed returns any data, then [SQLITE_ROW] +** is returned each time a new row of data is ready for processing by the +** caller. The values may be accessed using the [column access functions]. ** sqlite3_step() is called again to retrieve the next row of data. -** +** ** [SQLITE_ERROR] means that a run-time error (such as a constraint ** violation) has occurred. sqlite3_step() should not be called again on ** the VM. More information may be found by calling [sqlite3_errmsg()]. -** With the legacy interface, a more specific error code (example: +** With the legacy interface, a more specific error code (for example, ** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) ** can be obtained by calling [sqlite3_reset()] on the -** [sqlite3_stmt | prepared statement]. In the "v2" interface, +** [prepared statement]. In the "v2" interface, ** the more specific error code is returned directly by sqlite3_step(). ** ** [SQLITE_MISUSE] means that the this routine was called inappropriately. -** Perhaps it was called on a [sqlite3_stmt | prepared statement] that has -** already been [sqlite3_finalize | finalized] or on one that had +** Perhaps it was called on a [prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had ** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could ** be the case that the same database connection is being used by two or ** more threads at the same moment in time. ** -** Goofy Interface Alert: -** In the legacy interface, -** the sqlite3_step() API always returns a generic error code, -** [SQLITE_ERROR], following any error other than [SQLITE_BUSY] -** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or -** [sqlite3_finalize()] in order to find one of the specific -** [SQLITE_ERROR | result codes] that better describes the error. +** Goofy Interface Alert: In the legacy interface, the sqlite3_step() +** API always returns a generic error code, [SQLITE_ERROR], following any +** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call +** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the +** specific [error codes] that better describes the error. ** We admit that this is a goofy design. The problem has been fixed ** with the "v2" interface. If you prepare all of your SQL statements ** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead -** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the -** more specific [SQLITE_ERROR | result codes] are returned directly +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces, +** then the more specific [error codes] are returned directly ** by sqlite3_step(). The use of the "v2" interface is recommended. +** +** INVARIANTS: +** +** {H13202} If the [prepared statement] S is ready to be run, then +** [sqlite3_step(S)] advances that prepared statement until +** completion or until it is ready to return another row of the +** result set, or until an [sqlite3_interrupt | interrupt] +** or a run-time error occurs. +** +** {H15304} When a call to [sqlite3_step(S)] causes the [prepared statement] +** S to run to completion, the function returns [SQLITE_DONE]. +** +** {H15306} When a call to [sqlite3_step(S)] stops because it is ready to +** return another row of the result set, it returns [SQLITE_ROW]. +** +** {H15308} If a call to [sqlite3_step(S)] encounters an +** [sqlite3_interrupt | interrupt] or a run-time error, +** it returns an appropriate error code that is not one of +** [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE]. +** +** {H15310} If an [sqlite3_interrupt | interrupt] or a run-time error +** occurs during a call to [sqlite3_step(S)] +** for a [prepared statement] S created using +** legacy interfaces [sqlite3_prepare()] or +** [sqlite3_prepare16()], then the function returns either +** [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE]. */ int sqlite3_step(sqlite3_stmt*); /* -** CAPI3REF: Number of columns in a result set {F13770} +** CAPI3REF: Number of columns in a result set {H13770} +** +** Returns the number of values in the current row of the result set. +** +** INVARIANTS: ** -** Return the number of values in the current row of the result set. +** {H13771} After a call to [sqlite3_step(S)] that returns [SQLITE_ROW], +** the [sqlite3_data_count(S)] routine will return the same value +** as the [sqlite3_column_count(S)] function. ** -** {F13771} After a call to [sqlite3_step()] that returns [SQLITE_ROW], -** this routine -** will return the same value as the [sqlite3_column_count()] function. -** {F13772} -** After [sqlite3_step()] has returned an [SQLITE_DONE], [SQLITE_BUSY], or -** a [SQLITE_ERROR | error code], or before [sqlite3_step()] has been -** called on the [sqlite3_stmt | prepared statement] for the first time, -** this routine returns zero. +** {H13772} After [sqlite3_step(S)] has returned any value other than +** [SQLITE_ROW] or before [sqlite3_step(S)] has been called on the +** [prepared statement] for the first time since it was +** [sqlite3_prepare | prepared] or [sqlite3_reset | reset], +** the [sqlite3_data_count(S)] routine returns zero. */ int sqlite3_data_count(sqlite3_stmt *pStmt); /* -** CAPI3REF: Fundamental Datatypes {F10265} +** CAPI3REF: Fundamental Datatypes {H10265} +** KEYWORDS: SQLITE_TEXT ** -** {F10266}Every value in SQLite has one of five fundamental datatypes: +** {H10266} Every value in SQLite has one of five fundamental datatypes: ** **
      **
    • 64-bit signed integer @@ -2138,7 +3495,7 @@ int sqlite3_data_count(sqlite3_stmt *pStmt); ** ** Note that the SQLITE_TEXT constant was also used in SQLite version 2 ** for a completely different meaning. Software that links against both -** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not ** SQLITE_TEXT. */ #define SQLITE_INTEGER 1 @@ -2153,31 +3510,31 @@ int sqlite3_data_count(sqlite3_stmt *pStmt); #define SQLITE3_TEXT 3 /* -** CAPI3REF: Results Values From A Query {F13800} +** CAPI3REF: Result Values From A Query {H13800} +** KEYWORDS: {column access functions} ** -** These routines return information about -** a single column of the current result row of a query. In every -** case the first argument is a pointer to the -** [sqlite3_stmt | SQL statement] that is being -** evaluated (the [sqlite3_stmt*] that was returned from -** [sqlite3_prepare_v2()] or one of its variants) and -** the second argument is the index of the column for which information -** should be returned. The left-most column of the result set -** has an index of 0. +** These routines form the "result set query" interface. ** -** If the SQL statement is not currently point to a valid row, or if the -** the column index is out of range, the result is undefined. +** These routines return information about a single column of the current +** result row of a query. In every case the first argument is a pointer +** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*] +** that was returned from [sqlite3_prepare_v2()] or one of its variants) +** and the second argument is the index of the column for which information +** should be returned. The leftmost column of the result set has the index 0. +** +** If the SQL statement does not currently point to a valid row, or if the +** column index is out of range, the result is undefined. ** These routines may only be called when the most recent call to ** [sqlite3_step()] has returned [SQLITE_ROW] and neither -** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently. +** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently. ** If any of these routines are called after [sqlite3_reset()] or ** [sqlite3_finalize()] or after [sqlite3_step()] has returned ** something other than [SQLITE_ROW], the results are undefined. ** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] ** are called from a different thread while any of these routines -** are pending, then the results are undefined. +** are pending, then the results are undefined. ** -** The sqlite3_column_type() routine returns +** The sqlite3_column_type() routine returns the ** [SQLITE_INTEGER | datatype code] for the initial data type ** of the result column. The returned value is one of [SQLITE_INTEGER], ** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value @@ -2187,7 +3544,7 @@ int sqlite3_data_count(sqlite3_stmt *pStmt); ** versions of SQLite may change the behavior of sqlite3_column_type() ** following a type conversion. ** -** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() ** routine returns the number of bytes in that BLOB or string. ** If the result is a UTF-16 string, then sqlite3_column_bytes() converts ** the string to UTF-8 and then returns the number of bytes. @@ -2199,19 +3556,27 @@ int sqlite3_data_count(sqlite3_stmt *pStmt); ** bytes in the string, not the number of characters. ** ** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), -** even zero-length strings, are always zero terminated. The return -** value from sqlite3_column_blob() for a zero-length blob is an arbitrary +** even empty strings, are always zero terminated. The return +** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary ** pointer, possibly even a NULL pointer. ** ** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() -** but leaves the result in UTF-16 instead of UTF-8. +** but leaves the result in UTF-16 in native byte order instead of UTF-8. ** The zero terminator is not included in this count. ** +** The object returned by [sqlite3_column_value()] is an +** [unprotected sqlite3_value] object. An unprotected sqlite3_value object +** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()]. +** If the [unprotected sqlite3_value] object returned by +** [sqlite3_column_value()] is used in any other way, including calls +** to routines like [sqlite3_value_int()], [sqlite3_value_text()], +** or [sqlite3_value_bytes()], then the behavior is undefined. +** ** These routines attempt to convert the value where appropriate. For ** example, if the internal representation is FLOAT and a text result -** is requested, [sqlite3_snprintf()] is used internally to do the conversion -** automatically. The following table details the conversions that -** are applied: +** is requested, [sqlite3_snprintf()] is used internally to perform the +** conversion automatically. The following table details the conversions +** that are applied: ** **
      ** @@ -2223,7 +3588,7 @@ int sqlite3_data_count(sqlite3_stmt *pStmt); **
      NULL BLOB Result is NULL pointer **
      INTEGER FLOAT Convert from integer to float **
      INTEGER TEXT ASCII rendering of the integer -**
      INTEGER BLOB Same as for INTEGER->TEXT +**
      INTEGER BLOB Same as INTEGER->TEXT **
      FLOAT INTEGER Convert from float to integer **
      FLOAT TEXT ASCII rendering of the float **
      FLOAT BLOB Same as FLOAT->TEXT @@ -2238,57 +3603,56 @@ int sqlite3_data_count(sqlite3_stmt *pStmt); ** ** The table above makes reference to standard C library functions atoi() ** and atof(). SQLite does not really use these functions. It has its -** on equavalent internal routines. The atoi() and atof() names are +** own equivalent internal routines. The atoi() and atof() names are ** used in the table for brevity and because they are familiar to most ** C programmers. ** ** Note that when type conversions occur, pointers returned by prior ** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or -** sqlite3_column_text16() may be invalidated. +** sqlite3_column_text16() may be invalidated. ** Type conversions and pointer invalidations might occur ** in the following cases: ** **
        -**
      • The initial content is a BLOB and sqlite3_column_text() -** or sqlite3_column_text16() is called. A zero-terminator might -** need to be added to the string.

      • -** -**
      • The initial content is UTF-8 text and sqlite3_column_bytes16() or -** sqlite3_column_text16() is called. The content must be converted -** to UTF-16.

      • -** -**
      • The initial content is UTF-16 text and sqlite3_column_bytes() or -** sqlite3_column_text() is called. The content must be converted -** to UTF-8.

      • +**
      • The initial content is a BLOB and sqlite3_column_text() or +** sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.
      • +**
      • The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.
      • +**
      • The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.
      • **
      ** ** Conversions between UTF-16be and UTF-16le are always done in place and do ** not invalidate a prior pointer, though of course the content of the buffer ** that the prior pointer points to will have been modified. Other kinds -** of conversion are done in place when it is possible, but sometime it is -** not possible and in those cases prior pointers are invalidated. +** of conversion are done in place when it is possible, but sometimes they +** are not possible and in those cases prior pointers are invalidated. ** ** The safest and easiest to remember policy is to invoke these routines ** in one of the following ways: ** -**
        +**
          **
        • sqlite3_column_text() followed by sqlite3_column_bytes()
        • **
        • sqlite3_column_blob() followed by sqlite3_column_bytes()
        • **
        • sqlite3_column_text16() followed by sqlite3_column_bytes16()
        • -**
        +**
      ** -** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(), -** or sqlite3_column_text16() first to force the result into the desired -** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to -** find the size of the result. Do not mix call to sqlite3_column_text() or -** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not -** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes(). +** In other words, you should call sqlite3_column_text(), +** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result +** into the desired format, then invoke sqlite3_column_bytes() or +** sqlite3_column_bytes16() to find the size of the result. Do not mix calls +** to sqlite3_column_text() or sqlite3_column_blob() with calls to +** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16() +** with calls to sqlite3_column_bytes(). ** ** The pointers returned are valid until a type conversion occurs as ** described above, or until [sqlite3_step()] or [sqlite3_reset()] or ** [sqlite3_finalize()] is called. The memory space used to hold strings -** and blobs is freed automatically. Do not pass the pointers returned -** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** and BLOBs is freed automatically. Do not pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into ** [sqlite3_free()]. ** ** If a memory allocation error occurs during the evaluation of any @@ -2296,6 +3660,61 @@ int sqlite3_data_count(sqlite3_stmt *pStmt); ** is either the integer 0, the floating point number 0.0, or a NULL ** pointer. Subsequent calls to [sqlite3_errcode()] will return ** [SQLITE_NOMEM]. +** +** INVARIANTS: +** +** {H13803} The [sqlite3_column_blob(S,N)] interface converts the +** Nth column in the current row of the result set for +** the [prepared statement] S into a BLOB and then returns a +** pointer to the converted value. +** +** {H13806} The [sqlite3_column_bytes(S,N)] interface returns the +** number of bytes in the BLOB or string (exclusive of the +** zero terminator on the string) that was returned by the +** most recent call to [sqlite3_column_blob(S,N)] or +** [sqlite3_column_text(S,N)]. +** +** {H13809} The [sqlite3_column_bytes16(S,N)] interface returns the +** number of bytes in the string (exclusive of the +** zero terminator on the string) that was returned by the +** most recent call to [sqlite3_column_text16(S,N)]. +** +** {H13812} The [sqlite3_column_double(S,N)] interface converts the +** Nth column in the current row of the result set for the +** [prepared statement] S into a floating point value and +** returns a copy of that value. +** +** {H13815} The [sqlite3_column_int(S,N)] interface converts the +** Nth column in the current row of the result set for the +** [prepared statement] S into a 64-bit signed integer and +** returns the lower 32 bits of that integer. +** +** {H13818} The [sqlite3_column_int64(S,N)] interface converts the +** Nth column in the current row of the result set for the +** [prepared statement] S into a 64-bit signed integer and +** returns a copy of that integer. +** +** {H13821} The [sqlite3_column_text(S,N)] interface converts the +** Nth column in the current row of the result set for +** the [prepared statement] S into a zero-terminated UTF-8 +** string and returns a pointer to that string. +** +** {H13824} The [sqlite3_column_text16(S,N)] interface converts the +** Nth column in the current row of the result set for the +** [prepared statement] S into a zero-terminated 2-byte +** aligned UTF-16 native byte order string and returns +** a pointer to that string. +** +** {H13827} The [sqlite3_column_type(S,N)] interface returns +** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT], +** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for +** the Nth column in the current row of the result set for +** the [prepared statement] S. +** +** {H13830} The [sqlite3_column_value(S,N)] interface returns a +** pointer to an [unprotected sqlite3_value] object for the +** Nth column in the current row of the result set for +** the [prepared statement] S. */ const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); int sqlite3_column_bytes(sqlite3_stmt*, int iCol); @@ -2309,64 +3728,88 @@ int sqlite3_column_type(sqlite3_stmt*, int iCol); sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); /* -** CAPI3REF: Destroy A Prepared Statement Object {F13300} +** CAPI3REF: Destroy A Prepared Statement Object {H13300} ** -** The sqlite3_finalize() function is called to delete a -** [sqlite3_stmt | compiled SQL statement]. If the statement was -** executed successfully, or not executed at all, then SQLITE_OK is returned. -** If execution of the statement failed then an -** [SQLITE_ERROR | error code] or [SQLITE_IOERR_READ | extended error code] -** is returned. +** The sqlite3_finalize() function is called to delete a [prepared statement]. +** If the statement was executed successfully or not executed at all, then +** SQLITE_OK is returned. If execution of the statement failed then an +** [error code] or [extended error code] is returned. ** ** This routine can be called at any point during the execution of the -** [sqlite3_stmt | virtual machine]. If the virtual machine has not +** [prepared statement]. If the virtual machine has not ** completed execution when this routine is called, that is like -** encountering an error or an interrupt. (See [sqlite3_interrupt()].) -** Incomplete updates may be rolled back and transactions cancelled, -** depending on the circumstances, and the -** [SQLITE_ERROR | result code] returned will be [SQLITE_ABORT]. +** encountering an error or an [sqlite3_interrupt | interrupt]. +** Incomplete updates may be rolled back and transactions canceled, +** depending on the circumstances, and the +** [error code] returned will be [SQLITE_ABORT]. +** +** INVARIANTS: +** +** {H11302} The [sqlite3_finalize(S)] interface destroys the +** [prepared statement] S and releases all +** memory and file resources held by that object. +** +** {H11304} If the most recent call to [sqlite3_step(S)] for the +** [prepared statement] S returned an error, +** then [sqlite3_finalize(S)] returns that same error. */ int sqlite3_finalize(sqlite3_stmt *pStmt); /* -** CAPI3REF: Reset A Prepared Statement Object {F13330} +** CAPI3REF: Reset A Prepared Statement Object {H13330} ** -** The sqlite3_reset() function is called to reset a -** [sqlite3_stmt | compiled SQL statement] object. -** back to its initial state, ready to be re-executed. +** The sqlite3_reset() function is called to reset a [prepared statement] +** object back to its initial state, ready to be re-executed. ** Any SQL statement variables that had values bound to them using ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. ** Use [sqlite3_clear_bindings()] to reset the bindings. +** +** {H11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S +** back to the beginning of its program. +** +** {H11334} If the most recent call to [sqlite3_step(S)] for the +** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE], +** or if [sqlite3_step(S)] has never before been called on S, +** then [sqlite3_reset(S)] returns [SQLITE_OK]. +** +** {H11336} If the most recent call to [sqlite3_step(S)] for the +** [prepared statement] S indicated an error, then +** [sqlite3_reset(S)] returns an appropriate [error code]. +** +** {H11338} The [sqlite3_reset(S)] interface does not change the values +** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S. */ int sqlite3_reset(sqlite3_stmt *pStmt); /* -** CAPI3REF: Create Or Redefine SQL Functions {F16100} -** -** The following two functions are used to add SQL functions or aggregates -** or to redefine the behavior of existing SQL functions or aggregates. The -** difference only between the two is that the second parameter, the -** name of the (scalar) function or aggregate, is encoded in UTF-8 for -** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). -** -** The first argument is the [sqlite3 | database handle] that holds the -** SQL function or aggregate is to be added or redefined. If a single -** program uses more than one database handle internally, then SQL -** functions or aggregates must be added individually to each database -** handle with which they will be used. -** -** The second parameter is the name of the SQL function to be created -** or redefined. -** The length of the name is limited to 255 bytes, exclusive of the -** zero-terminator. Note that the name length limit is in bytes, not +** CAPI3REF: Create Or Redefine SQL Functions {H16100} +** KEYWORDS: {function creation routines} +** KEYWORDS: {application-defined SQL function} +** KEYWORDS: {application-defined SQL functions} +** +** These two functions (collectively known as "function creation routines") +** are used to add SQL functions or aggregates or to redefine the behavior +** of existing SQL functions or aggregates. The only difference between the +** two is that the second parameter, the name of the (scalar) function or +** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16 +** for sqlite3_create_function16(). +** +** The first parameter is the [database connection] to which the SQL +** function is to be added. If a single program uses more than one database +** connection internally, then SQL functions must be added individually to +** each database connection. +** +** The second parameter is the name of the SQL function to be created or +** redefined. The length of the name is limited to 255 bytes, exclusive of +** the zero-terminator. Note that the name length limit is in bytes, not ** characters. Any attempt to create a function with a longer name -** will result in an SQLITE_ERROR error. +** will result in [SQLITE_ERROR] being returned. ** ** The third parameter is the number of arguments that the SQL function or ** aggregate takes. If this parameter is negative, then the SQL function or ** aggregate may take any number of arguments. ** -** The fourth parameter, eTextRep, specifies what +** The fourth parameter, eTextRep, specifies what ** [SQLITE_UTF8 | text encoding] this SQL function prefers for ** its parameters. Any SQL function implementation should be able to work ** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be @@ -2375,52 +3818,114 @@ int sqlite3_reset(sqlite3_stmt *pStmt); ** times with the same function but with different values of eTextRep. ** When multiple implementations of the same function are available, SQLite ** will pick the one that involves the least amount of data conversion. -** If there is only a single implementation which does not care what -** text encoding is used, then the fourth argument should be -** [SQLITE_ANY]. +** If there is only a single implementation which does not care what text +** encoding is used, then the fourth argument should be [SQLITE_ANY]. ** -** The fifth parameter is an arbitrary pointer. The implementation -** of the function can gain access to this pointer using -** [sqlite3_user_data()]. +** The fifth parameter is an arbitrary pointer. The implementation of the +** function can gain access to this pointer using [sqlite3_user_data()]. ** ** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are -** pointers to C-language functions that implement the SQL -** function or aggregate. A scalar SQL function requires an implementation of -** the xFunc callback only, NULL pointers should be passed as the xStep -** and xFinal parameters. An aggregate SQL function requires an implementation -** of xStep and xFinal and NULL should be passed for xFunc. To delete an -** existing SQL function or aggregate, pass NULL for all three function -** callback. +** pointers to C-language functions that implement the SQL function or +** aggregate. A scalar SQL function requires an implementation of the xFunc +** callback only, NULL pointers should be passed as the xStep and xFinal +** parameters. An aggregate SQL function requires an implementation of xStep +** and xFinal and NULL should be passed for xFunc. To delete an existing +** SQL function or aggregate, pass NULL for all three function callbacks. ** ** It is permitted to register multiple implementations of the same ** functions with the same name but with either differing numbers of -** arguments or differing perferred text encodings. SQLite will use +** arguments or differing preferred text encodings. SQLite will use ** the implementation most closely matches the way in which the ** SQL function is used. +** +** INVARIANTS: +** +** {H16103} The [sqlite3_create_function16()] interface behaves exactly +** like [sqlite3_create_function()] in every way except that it +** interprets the zFunctionName argument as zero-terminated UTF-16 +** native byte order instead of as zero-terminated UTF-8. +** +** {H16106} A successful invocation of +** the [sqlite3_create_function(D,X,N,E,...)] interface registers +** or replaces callback functions in the [database connection] D +** used to implement the SQL function named X with N parameters +** and having a preferred text encoding of E. +** +** {H16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)] +** replaces the P, F, S, and L values from any prior calls with +** the same D, X, N, and E values. +** +** {H16112} The [sqlite3_create_function(D,X,...)] interface fails with +** a return code of [SQLITE_ERROR] if the SQL function name X is +** longer than 255 bytes exclusive of the zero terminator. +** +** {H16118} Either F must be NULL and S and L are non-NULL or else F +** is non-NULL and S and L are NULL, otherwise +** [sqlite3_create_function(D,X,N,E,P,F,S,L)] returns [SQLITE_ERROR]. +** +** {H16121} The [sqlite3_create_function(D,...)] interface fails with an +** error code of [SQLITE_BUSY] if there exist [prepared statements] +** associated with the [database connection] D. +** +** {H16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an +** error code of [SQLITE_ERROR] if parameter N (specifying the number +** of arguments to the SQL function being registered) is less +** than -1 or greater than 127. +** +** {H16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)] +** interface causes callbacks to be invoked for the SQL function +** named X when the number of arguments to the SQL function is +** exactly N. +** +** {H16130} When N is -1, the [sqlite3_create_function(D,X,N,...)] +** interface causes callbacks to be invoked for the SQL function +** named X with any number of arguments. +** +** {H16133} When calls to [sqlite3_create_function(D,X,N,...)] +** specify multiple implementations of the same function X +** and when one implementation has N>=0 and the other has N=(-1) +** the implementation with a non-zero N is preferred. +** +** {H16136} When calls to [sqlite3_create_function(D,X,N,E,...)] +** specify multiple implementations of the same function X with +** the same number of arguments N but with different +** encodings E, then the implementation where E matches the +** database encoding is preferred. +** +** {H16139} For an aggregate SQL function created using +** [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finalizer +** function L will always be invoked exactly once if the +** step function S is called one or more times. +** +** {H16142} When SQLite invokes either the xFunc or xStep function of +** an application-defined SQL function or aggregate created +** by [sqlite3_create_function()] or [sqlite3_create_function16()], +** then the array of [sqlite3_value] objects passed as the +** third parameter are always [protected sqlite3_value] objects. */ int sqlite3_create_function( - sqlite3 *, + sqlite3 *db, const char *zFunctionName, int nArg, int eTextRep, - void*, + void *pApp, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ); int sqlite3_create_function16( - sqlite3*, + sqlite3 *db, const void *zFunctionName, int nArg, int eTextRep, - void*, + void *pApp, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ); /* -** CAPI3REF: Text Encodings {F10267} +** CAPI3REF: Text Encodings {H10267} ** ** These constant define integer codes that represent the various ** text encodings supported by SQLite. @@ -2433,11 +3938,12 @@ int sqlite3_create_function16( #define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ /* -** CAPI3REF: Obsolete Functions +** CAPI3REF: Deprecated Functions +** DEPRECATED ** -** These functions are all now obsolete. In order to maintain -** backwards compatibility with older code, we continue to support -** these functions. However, new development projects should avoid +** These functions are [deprecated]. In order to maintain +** backwards compatibility with older code, these functions continue +** to be supported. However, new applications should avoid ** the use of these functions. To help encourage people to avoid ** using these functions, we are not going to tell you want they do. */ @@ -2449,7 +3955,7 @@ void sqlite3_thread_cleanup(void); int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); /* -** CAPI3REF: Obtaining SQL Function Parameter Values {F15100} +** CAPI3REF: Obtaining SQL Function Parameter Values {H15100} ** ** The C-language implementation of SQL functions and aggregates uses ** this set of interface routines to access the parameter values on @@ -2459,40 +3965,101 @@ int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); ** to [sqlite3_create_function()] and [sqlite3_create_function16()] ** define callbacks that implement the SQL functions and aggregates. ** The 4th parameter to these callbacks is an array of pointers to -** [sqlite3_value] objects. There is one [sqlite3_value] object for +** [protected sqlite3_value] objects. There is one [sqlite3_value] object for ** each parameter to the SQL function. These routines are used to ** extract values from the [sqlite3_value] objects. ** -** These routines work just like the corresponding -** [sqlite3_column_blob | sqlite3_column_* routines] except that -** these routines take a single [sqlite3_value*] pointer instead -** of an [sqlite3_stmt*] pointer and an integer column number. +** These routines work only with [protected sqlite3_value] objects. +** Any attempt to use these routines on an [unprotected sqlite3_value] +** object results in undefined behavior. +** +** These routines work just like the corresponding [column access functions] +** except that these routines take a single [protected sqlite3_value] object +** pointer instead of a [sqlite3_stmt*] pointer and an integer column number. ** -** The sqlite3_value_text16() interface extracts a UTF16 string +** The sqlite3_value_text16() interface extracts a UTF-16 string ** in the native byte-order of the host machine. The ** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces -** extract UTF16 strings as big-endian and little-endian respectively. +** extract UTF-16 strings as big-endian and little-endian respectively. ** ** The sqlite3_value_numeric_type() interface attempts to apply ** numeric affinity to the value. This means that an attempt is ** made to convert the value to an integer or floating point. If ** such a conversion is possible without loss of information (in other -** words if the value is a string that looks like a number) -** then the conversion is done. Otherwise no conversion occurs. The -** [SQLITE_INTEGER | datatype] after conversion is returned. +** words, if the value is a string that looks like a number) +** then the conversion is performed. Otherwise no conversion occurs. +** The [SQLITE_INTEGER | datatype] after conversion is returned. ** -** Please pay particular attention to the fact that the pointer that -** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or +** Please pay particular attention to the fact that the pointer returned +** from [sqlite3_value_blob()], [sqlite3_value_text()], or ** [sqlite3_value_text16()] can be invalidated by a subsequent call to ** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], -** or [sqlite3_value_text16()]. +** or [sqlite3_value_text16()]. ** ** These routines must be called from the same thread as -** the SQL function that supplied the sqlite3_value* parameters. -** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()] -** interface, then these routines should be called from the same thread -** that ran [sqlite3_column_value()]. -** +** the SQL function that supplied the [sqlite3_value*] parameters. +** +** INVARIANTS: +** +** {H15103} The [sqlite3_value_blob(V)] interface converts the +** [protected sqlite3_value] object V into a BLOB and then +** returns a pointer to the converted value. +** +** {H15106} The [sqlite3_value_bytes(V)] interface returns the +** number of bytes in the BLOB or string (exclusive of the +** zero terminator on the string) that was returned by the +** most recent call to [sqlite3_value_blob(V)] or +** [sqlite3_value_text(V)]. +** +** {H15109} The [sqlite3_value_bytes16(V)] interface returns the +** number of bytes in the string (exclusive of the +** zero terminator on the string) that was returned by the +** most recent call to [sqlite3_value_text16(V)], +** [sqlite3_value_text16be(V)], or [sqlite3_value_text16le(V)]. +** +** {H15112} The [sqlite3_value_double(V)] interface converts the +** [protected sqlite3_value] object V into a floating point value and +** returns a copy of that value. +** +** {H15115} The [sqlite3_value_int(V)] interface converts the +** [protected sqlite3_value] object V into a 64-bit signed integer and +** returns the lower 32 bits of that integer. +** +** {H15118} The [sqlite3_value_int64(V)] interface converts the +** [protected sqlite3_value] object V into a 64-bit signed integer and +** returns a copy of that integer. +** +** {H15121} The [sqlite3_value_text(V)] interface converts the +** [protected sqlite3_value] object V into a zero-terminated UTF-8 +** string and returns a pointer to that string. +** +** {H15124} The [sqlite3_value_text16(V)] interface converts the +** [protected sqlite3_value] object V into a zero-terminated 2-byte +** aligned UTF-16 native byte order +** string and returns a pointer to that string. +** +** {H15127} The [sqlite3_value_text16be(V)] interface converts the +** [protected sqlite3_value] object V into a zero-terminated 2-byte +** aligned UTF-16 big-endian +** string and returns a pointer to that string. +** +** {H15130} The [sqlite3_value_text16le(V)] interface converts the +** [protected sqlite3_value] object V into a zero-terminated 2-byte +** aligned UTF-16 little-endian +** string and returns a pointer to that string. +** +** {H15133} The [sqlite3_value_type(V)] interface returns +** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT], +** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for +** the [sqlite3_value] object V. +** +** {H15136} The [sqlite3_value_numeric_type(V)] interface converts +** the [protected sqlite3_value] object V into either an integer or +** a floating point value if it can do so without loss of +** information, and returns one of [SQLITE_NULL], +** [SQLITE_INTEGER], [SQLITE_FLOAT], [SQLITE_TEXT], or +** [SQLITE_BLOB] as appropriate for the +** [protected sqlite3_value] object V after the conversion attempt. */ const void *sqlite3_value_blob(sqlite3_value*); int sqlite3_value_bytes(sqlite3_value*); @@ -2508,96 +4075,168 @@ int sqlite3_value_type(sqlite3_value*); int sqlite3_value_numeric_type(sqlite3_value*); /* -** CAPI3REF: Obtain Aggregate Function Context {F16210} +** CAPI3REF: Obtain Aggregate Function Context {H16210} ** ** The implementation of aggregate SQL functions use this routine to allocate -** a structure for storing their state. -** {F16211} The first time the sqlite3_aggregate_context() routine is -** is called for a particular aggregate, SQLite allocates nBytes of memory -** zeros that memory, and returns a pointer to it. -** {F16212} On second and subsequent calls to sqlite3_aggregate_context() -** for the same aggregate function index, the same buffer is returned. {END} -** The implementation -** of the aggregate can use the returned buffer to accumulate data. -** -** {F16213} SQLite automatically frees the allocated buffer when the aggregate -** query concludes. {END} -** -** The first parameter should be a copy of the -** [sqlite3_context | SQL function context] that is the first -** parameter to the callback routine that implements the aggregate -** function. +** a structure for storing their state. +** +** The first time the sqlite3_aggregate_context() routine is called for a +** particular aggregate, SQLite allocates nBytes of memory, zeroes out that +** memory, and returns a pointer to it. On second and subsequent calls to +** sqlite3_aggregate_context() for the same aggregate function index, +** the same buffer is returned. The implementation of the aggregate can use +** the returned buffer to accumulate data. +** +** SQLite automatically frees the allocated buffer when the aggregate +** query concludes. +** +** The first parameter should be a copy of the +** [sqlite3_context | SQL function context] that is the first parameter +** to the callback routine that implements the aggregate function. ** ** This routine must be called from the same thread in which ** the aggregate SQL function is running. +** +** INVARIANTS: +** +** {H16211} The first invocation of [sqlite3_aggregate_context(C,N)] for +** a particular instance of an aggregate function (for a particular +** context C) causes SQLite to allocate N bytes of memory, +** zero that memory, and return a pointer to the allocated memory. +** +** {H16213} If a memory allocation error occurs during +** [sqlite3_aggregate_context(C,N)] then the function returns 0. +** +** {H16215} Second and subsequent invocations of +** [sqlite3_aggregate_context(C,N)] for the same context pointer C +** ignore the N parameter and return a pointer to the same +** block of memory returned by the first invocation. +** +** {H16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is +** automatically freed on the next call to [sqlite3_reset()] +** or [sqlite3_finalize()] for the [prepared statement] containing +** the aggregate function associated with context C. */ void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); /* -** CAPI3REF: User Data For Functions {F16240} +** CAPI3REF: User Data For Functions {H16240} ** -** {F16241} The sqlite3_user_data() interface returns a copy of +** The sqlite3_user_data() interface returns a copy of ** the pointer that was the pUserData parameter (the 5th parameter) -** of the the [sqlite3_create_function()] +** of the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines that originally ** registered the application defined function. {END} ** -** {U16243} This routine must be called from the same thread in which +** This routine must be called from the same thread in which ** the application-defined function is running. +** +** INVARIANTS: +** +** {H16243} The [sqlite3_user_data(C)] interface returns a copy of the +** P pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)] +** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that +** registered the SQL function associated with [sqlite3_context] C. */ void *sqlite3_user_data(sqlite3_context*); /* -** CAPI3REF: Function Auxiliary Data {F16270} +** CAPI3REF: Database Connection For Functions {H16250} +** +** The sqlite3_context_db_handle() interface returns a copy of +** the pointer to the [database connection] (the 1st parameter) +** of the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. +** +** INVARIANTS: +** +** {H16253} The [sqlite3_context_db_handle(C)] interface returns a copy of the +** D pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)] +** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that +** registered the SQL function associated with [sqlite3_context] C. +*/ +sqlite3 *sqlite3_context_db_handle(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data {H16270} ** ** The following two functions may be used by scalar SQL functions to -** associate meta-data with argument values. If the same value is passed to +** associate metadata with argument values. If the same value is passed to ** multiple invocations of the same SQL function during query execution, under -** some circumstances the associated meta-data may be preserved. This may +** some circumstances the associated metadata may be preserved. This may ** be used, for example, to add a regular-expression matching scalar ** function. The compiled version of the regular expression is stored as -** meta-data associated with the SQL value passed as the regular expression +** metadata associated with the SQL value passed as the regular expression ** pattern. The compiled regular expression can be reused on multiple ** invocations of the same function so that the original pattern string ** does not need to be recompiled on each invocation. ** -** {F16271} -** The sqlite3_get_auxdata() interface returns a pointer to the meta-data +** The sqlite3_get_auxdata() interface returns a pointer to the metadata ** associated by the sqlite3_set_auxdata() function with the Nth argument -** value to the application-defined function. -** {F16272} If no meta-data has been ever been set for the Nth -** argument of the function, or if the cooresponding function parameter -** has changed since the meta-data was set, then sqlite3_get_auxdata() -** returns a NULL pointer. -** -** {F16275} The sqlite3_set_auxdata() interface saves the meta-data -** pointed to by its 3rd parameter as the meta-data for the N-th -** argument of the application-defined function. {END} Subsequent +** value to the application-defined function. If no metadata has been ever +** been set for the Nth argument of the function, or if the corresponding +** function parameter has changed since the meta-data was set, +** then sqlite3_get_auxdata() returns a NULL pointer. +** +** The sqlite3_set_auxdata() interface saves the metadata +** pointed to by its 3rd parameter as the metadata for the N-th +** argument of the application-defined function. Subsequent ** calls to sqlite3_get_auxdata() might return this data, if it has -** not been destroyed. -** {F16277} If it is not NULL, SQLite will invoke the destructor +** not been destroyed. +** If it is not NULL, SQLite will invoke the destructor ** function given by the 4th parameter to sqlite3_set_auxdata() on -** the meta-data when the corresponding function parameter changes -** or when the SQL statement completes, whichever comes first. {END} +** the metadata when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. +** +** SQLite is free to call the destructor and drop metadata on any +** parameter of any function at any time. The only guarantee is that +** the destructor will be called before the metadata is dropped. ** -** In practice, meta-data is preserved between function calls for +** In practice, metadata is preserved between function calls for ** expressions that are constant at compile time. This includes literal ** values and SQL variables. ** ** These routines must be called from the same thread in which ** the SQL function is running. +** +** INVARIANTS: +** +** {H16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer +** to metadata associated with the Nth parameter of the SQL function +** whose context is C, or NULL if there is no metadata associated +** with that parameter. +** +** {H16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata +** pointer P to the Nth parameter of the SQL function with context C. +** +** {H16276} SQLite will invoke the destructor D with a single argument +** which is the metadata pointer P following a call to +** [sqlite3_set_auxdata(C,N,P,D)] when SQLite ceases to hold +** the metadata. +** +** {H16277} SQLite ceases to hold metadata for an SQL function parameter +** when the value of that parameter changes. +** +** {H16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor +** is called for any prior metadata associated with the same function +** context C and parameter N. +** +** {H16279} SQLite will call destructors for any metadata it is holding +** in a particular [prepared statement] S when either +** [sqlite3_reset(S)] or [sqlite3_finalize(S)] is called. */ void *sqlite3_get_auxdata(sqlite3_context*, int N); void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); /* -** CAPI3REF: Constants Defining Special Destructor Behavior {F10280} +** CAPI3REF: Constants Defining Special Destructor Behavior {H10280} ** -** These are special value for the destructor that is passed in as the +** These are special values for the destructor that is passed in as the ** final argument to routines like [sqlite3_result_blob()]. If the destructor ** argument is SQLITE_STATIC, it means that the content pointer is constant -** and will never change. It does not need to be destroyed. The +** and will never change. It does not need to be destroyed. The ** SQLITE_TRANSIENT value means that the content will likely change in ** the near future and that SQLite should make its own private copy of ** the content before returning. @@ -2610,104 +4249,204 @@ typedef void (*sqlite3_destructor_type)(void*); #define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) /* -** CAPI3REF: Setting The Result Of An SQL Function {F16400} +** CAPI3REF: Setting The Result Of An SQL Function {H16400} ** ** These routines are used by the xFunc or xFinal callbacks that ** implement SQL functions and aggregates. See ** [sqlite3_create_function()] and [sqlite3_create_function16()] ** for additional information. ** -** These functions work very much like the -** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used -** to bind values to host parameters in prepared statements. -** Refer to the -** [sqlite3_bind_blob | sqlite3_bind_* documentation] for -** additional information. +** These functions work very much like the [parameter binding] family of +** functions used to bind values to host parameters in prepared statements. +** Refer to the [SQL parameter] documentation for additional information. ** -** {F16402} The sqlite3_result_blob() interface sets the result from -** an application defined function to be the BLOB whose content is pointed +** The sqlite3_result_blob() interface sets the result from +** an application-defined function to be the BLOB whose content is pointed ** to by the second parameter and which is N bytes long where N is the -** third parameter. -** {F16403} The sqlite3_result_zeroblob() inerfaces set the result of -** the application defined function to be a BLOB containing all zero +** third parameter. +** +** The sqlite3_result_zeroblob() interfaces set the result of +** the application-defined function to be a BLOB containing all zero ** bytes and N bytes in size, where N is the value of the 2nd parameter. ** -** {F16407} The sqlite3_result_double() interface sets the result from -** an application defined function to be a floating point value specified +** The sqlite3_result_double() interface sets the result from +** an application-defined function to be a floating point value specified ** by its 2nd argument. ** -** {F16409} The sqlite3_result_error() and sqlite3_result_error16() functions +** The sqlite3_result_error() and sqlite3_result_error16() functions ** cause the implemented SQL function to throw an exception. -** {F16411} SQLite uses the string pointed to by the +** SQLite uses the string pointed to by the ** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() -** as the text of an error message. {F16412} SQLite interprets the error -** message string from sqlite3_result_error() as UTF8. {F16413} SQLite -** interprets the string from sqlite3_result_error16() as UTF16 in native -** byte order. {F16414} If the third parameter to sqlite3_result_error() +** as the text of an error message. SQLite interprets the error +** message string from sqlite3_result_error() as UTF-8. SQLite +** interprets the string from sqlite3_result_error16() as UTF-16 in native +** byte order. If the third parameter to sqlite3_result_error() ** or sqlite3_result_error16() is negative then SQLite takes as the error ** message all text up through the first zero character. -** {F16415} If the third parameter to sqlite3_result_error() or +** If the third parameter to sqlite3_result_error() or ** sqlite3_result_error16() is non-negative then SQLite takes that many ** bytes (not characters) from the 2nd parameter as the error message. -** {F16417} The sqlite3_result_error() and sqlite3_result_error16() -** routines make a copy private copy of the error message text before -** they return. {END} Hence, the calling function can deallocate or +** The sqlite3_result_error() and sqlite3_result_error16() +** routines make a private copy of the error message text before +** they return. Hence, the calling function can deallocate or ** modify the text after they return without harm. +** The sqlite3_result_error_code() function changes the error code +** returned by SQLite as a result of an error in a function. By default, +** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error() +** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. ** -** {F16421} The sqlite3_result_toobig() interface causes SQLite -** to throw an error indicating that a string or BLOB is to long -** to represent. {F16422} The sqlite3_result_nomem() interface -** causes SQLite to throw an exception indicating that the a -** memory allocation failed. +** The sqlite3_result_toobig() interface causes SQLite to throw an error +** indicating that a string or BLOB is to long to represent. ** -** {F16431} The sqlite3_result_int() interface sets the return value +** The sqlite3_result_nomem() interface causes SQLite to throw an error +** indicating that a memory allocation failed. +** +** The sqlite3_result_int() interface sets the return value ** of the application-defined function to be the 32-bit signed integer ** value given in the 2nd argument. -** {F16432} The sqlite3_result_int64() interface sets the return value +** The sqlite3_result_int64() interface sets the return value ** of the application-defined function to be the 64-bit signed integer ** value given in the 2nd argument. ** -** {F16437} The sqlite3_result_null() interface sets the return value +** The sqlite3_result_null() interface sets the return value ** of the application-defined function to be NULL. ** -** {F16441} The sqlite3_result_text(), sqlite3_result_text16(), +** The sqlite3_result_text(), sqlite3_result_text16(), ** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces ** set the return value of the application-defined function to be ** a text string which is represented as UTF-8, UTF-16 native byte order, ** UTF-16 little endian, or UTF-16 big endian, respectively. -** {F16442} SQLite takes the text result from the application from +** SQLite takes the text result from the application from ** the 2nd parameter of the sqlite3_result_text* interfaces. -** {F16444} If the 3rd parameter to the sqlite3_result_text* interfaces -** is negative, then SQLite takes result text from the 2nd parameter +** If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter ** through the first zero character. -** {F16447} If the 3rd parameter to the sqlite3_result_text* interfaces +** If the 3rd parameter to the sqlite3_result_text* interfaces ** is non-negative, then as many bytes (not characters) of the text ** pointed to by the 2nd parameter are taken as the application-defined ** function result. -** {F16451} If the 4th parameter to the sqlite3_result_text* interfaces +** If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that -** function as the destructor on the text or blob result when it has -** finished using that result. -** {F16453} If the 4th parameter to the sqlite3_result_text* interfaces -** or sqlite3_result_blob is the special constant SQLITE_STATIC, then -** SQLite assumes that the text or blob result is constant space and -** does not copy the space or call a destructor when it has +** function as the destructor on the text or BLOB result when it has ** finished using that result. -** {F16454} If the 4th parameter to the sqlite3_result_text* interfaces +** If the 4th parameter to the sqlite3_result_text* interfaces or +** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite +** assumes that the text or BLOB result is in constant space and does not +** copy the it or call a destructor when it has finished using that result. +** If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT ** then SQLite makes a copy of the result into space obtained from ** from [sqlite3_malloc()] before it returns. ** -** {F16461} The sqlite3_result_value() interface sets the result of -** the application-defined function to be a copy the [sqlite3_value] -** object specified by the 2nd parameter. {F16463} The +** The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the +** [unprotected sqlite3_value] object specified by the 2nd parameter. The ** sqlite3_result_value() interface makes a copy of the [sqlite3_value] -** so that [sqlite3_value] specified in the parameter may change or +** so that the [sqlite3_value] specified in the parameter may change or ** be deallocated after sqlite3_result_value() returns without harm. +** A [protected sqlite3_value] object may always be used where an +** [unprotected sqlite3_value] object is required, so either +** kind of [sqlite3_value] object can be used with this interface. ** -** {U16491} These routines are called from within the different thread -** than the one containing the application-defined function that recieved +** If these routines are called from within the different thread +** than the one containing the application-defined function that received ** the [sqlite3_context] pointer, the results are undefined. +** +** INVARIANTS: +** +** {H16403} The default return value from any SQL function is NULL. +** +** {H16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the +** return value of function C to be a BLOB that is N bytes +** in length and with content pointed to by V. +** +** {H16409} The [sqlite3_result_double(C,V)] interface changes the +** return value of function C to be the floating point value V. +** +** {H16412} The [sqlite3_result_error(C,V,N)] interface changes the return +** value of function C to be an exception with error code +** [SQLITE_ERROR] and a UTF-8 error message copied from V up to the +** first zero byte or until N bytes are read if N is positive. +** +** {H16415} The [sqlite3_result_error16(C,V,N)] interface changes the return +** value of function C to be an exception with error code +** [SQLITE_ERROR] and a UTF-16 native byte order error message +** copied from V up to the first zero terminator or until N bytes +** are read if N is positive. +** +** {H16418} The [sqlite3_result_error_toobig(C)] interface changes the return +** value of the function C to be an exception with error code +** [SQLITE_TOOBIG] and an appropriate error message. +** +** {H16421} The [sqlite3_result_error_nomem(C)] interface changes the return +** value of the function C to be an exception with error code +** [SQLITE_NOMEM] and an appropriate error message. +** +** {H16424} The [sqlite3_result_error_code(C,E)] interface changes the return +** value of the function C to be an exception with error code E. +** The error message text is unchanged. +** +** {H16427} The [sqlite3_result_int(C,V)] interface changes the +** return value of function C to be the 32-bit integer value V. +** +** {H16430} The [sqlite3_result_int64(C,V)] interface changes the +** return value of function C to be the 64-bit integer value V. +** +** {H16433} The [sqlite3_result_null(C)] interface changes the +** return value of function C to be NULL. +** +** {H16436} The [sqlite3_result_text(C,V,N,D)] interface changes the +** return value of function C to be the UTF-8 string +** V up to the first zero if N is negative +** or the first N bytes of V if N is non-negative. +** +** {H16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the +** return value of function C to be the UTF-16 native byte order +** string V up to the first zero if N is negative +** or the first N bytes of V if N is non-negative. +** +** {H16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the +** return value of function C to be the UTF-16 big-endian +** string V up to the first zero if N is negative +** or the first N bytes or V if N is non-negative. +** +** {H16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the +** return value of function C to be the UTF-16 little-endian +** string V up to the first zero if N is negative +** or the first N bytes of V if N is non-negative. +** +** {H16448} The [sqlite3_result_value(C,V)] interface changes the +** return value of function C to be the [unprotected sqlite3_value] +** object V. +** +** {H16451} The [sqlite3_result_zeroblob(C,N)] interface changes the +** return value of function C to be an N-byte BLOB of all zeros. +** +** {H16454} The [sqlite3_result_error()] and [sqlite3_result_error16()] +** interfaces make a copy of their error message strings before +** returning. +** +** {H16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)], +** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)], +** [sqlite3_result_text16be(C,V,N,D)], or +** [sqlite3_result_text16le(C,V,N,D)] is the constant [SQLITE_STATIC] +** then no destructor is ever called on the pointer V and SQLite +** assumes that V is immutable. +** +** {H16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)], +** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)], +** [sqlite3_result_text16be(C,V,N,D)], or +** [sqlite3_result_text16le(C,V,N,D)] is the constant +** [SQLITE_TRANSIENT] then the interfaces makes a copy of the +** content of V and retains the copy. +** +** {H16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)], +** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)], +** [sqlite3_result_text16be(C,V,N,D)], or +** [sqlite3_result_text16le(C,V,N,D)] is some value other than +** the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then +** SQLite will invoke the destructor D with V as its only argument +** when it has finished with the V value. */ void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); void sqlite3_result_double(sqlite3_context*, double); @@ -2715,6 +4454,7 @@ void sqlite3_result_error(sqlite3_context*, const char*, int); void sqlite3_result_error16(sqlite3_context*, const void*, int); void sqlite3_result_error_toobig(sqlite3_context*); void sqlite3_result_error_nomem(sqlite3_context*); +void sqlite3_result_error_code(sqlite3_context*, int); void sqlite3_result_int(sqlite3_context*, int); void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); void sqlite3_result_null(sqlite3_context*); @@ -2726,54 +4466,95 @@ void sqlite3_result_value(sqlite3_context*, sqlite3_value*); void sqlite3_result_zeroblob(sqlite3_context*, int n); /* -** CAPI3REF: Define New Collating Sequences {F16600} +** CAPI3REF: Define New Collating Sequences {H16600} ** -** {F16601} ** These functions are used to add new collation sequences to the -** [sqlite3*] handle specified as the first argument. +** [database connection] specified as the first argument. ** -** {F16602} ** The name of the new collation sequence is specified as a UTF-8 string ** for sqlite3_create_collation() and sqlite3_create_collation_v2() -** and a UTF-16 string for sqlite3_create_collation16(). {F16603} In all cases +** and a UTF-16 string for sqlite3_create_collation16(). In all cases ** the name is passed as the second function argument. ** -** {F16604} ** The third argument may be one of the constants [SQLITE_UTF8], ** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied ** routine expects to be passed pointers to strings encoded using UTF-8, -** UTF-16 little-endian or UTF-16 big-endian respectively. {F16605} The +** UTF-16 little-endian, or UTF-16 big-endian, respectively. The ** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that ** the routine expects pointers to 16-bit word aligned strings -** of UTF16 in the native byte order of the host computer. +** of UTF-16 in the native byte order of the host computer. ** -** {F16607} ** A pointer to the user supplied routine must be passed as the fifth -** argument. {F16609} If it is NULL, this is the same as deleting the collation +** argument. If it is NULL, this is the same as deleting the collation ** sequence (so that SQLite cannot call it anymore). -** {F16611} Each time the application -** supplied function is invoked, it is passed a copy of the void* passed as -** the fourth argument to sqlite3_create_collation() or -** sqlite3_create_collation16() as its first parameter. +** Each time the application supplied function is invoked, it is passed +** as its first parameter a copy of the void* passed as the fourth argument +** to sqlite3_create_collation() or sqlite3_create_collation16(). ** -** {F16612} ** The remaining arguments to the application-supplied routine are two strings, -** each represented by a [length, data] pair and encoded in the encoding +** each represented by a (length, data) pair and encoded in the encoding ** that was passed as the third argument when the collation sequence was -** registered. {END} The application defined collation routine should -** return negative, zero or positive if -** the first string is less than, equal to, or greater than the second -** string. i.e. (STRING1 - STRING2). +** registered. {END} The application defined collation routine should +** return negative, zero or positive if the first string is less than, +** equal to, or greater than the second string. i.e. (STRING1 - STRING2). ** -** {F16615} ** The sqlite3_create_collation_v2() works like sqlite3_create_collation() -** excapt that it takes an extra argument which is a destructor for -** the collation. {F16617} The destructor is called when the collation is +** except that it takes an extra argument which is a destructor for +** the collation. The destructor is called when the collation is ** destroyed and is passed a copy of the fourth parameter void* pointer ** of the sqlite3_create_collation_v2(). -** {F16618} Collations are destroyed when -** they are overridden by later calls to the collation creation functions -** or when the [sqlite3*] database handle is closed using [sqlite3_close()]. +** Collations are destroyed when they are overridden by later calls to the +** collation creation functions or when the [database connection] is closed +** using [sqlite3_close()]. +** +** INVARIANTS: +** +** {H16603} A successful call to the +** [sqlite3_create_collation_v2(B,X,E,P,F,D)] interface +** registers function F as the comparison function used to +** implement collation X on the [database connection] B for +** databases having encoding E. +** +** {H16604} SQLite understands the X parameter to +** [sqlite3_create_collation_v2(B,X,E,P,F,D)] as a zero-terminated +** UTF-8 string in which case is ignored for ASCII characters and +** is significant for non-ASCII characters. +** +** {H16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)] +** with the same values for B, X, and E, override prior values +** of P, F, and D. +** +** {H16609} If the destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)] +** is not NULL then it is called with argument P when the +** collating function is dropped by SQLite. +** +** {H16612} A collating function is dropped when it is overloaded. +** +** {H16615} A collating function is dropped when the database connection +** is closed using [sqlite3_close()]. +** +** {H16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)] +** is passed through as the first parameter to the comparison +** function F for all subsequent invocations of F. +** +** {H16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly +** the same as a call to [sqlite3_create_collation_v2()] with +** the same parameters and a NULL destructor. +** +** {H16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)], +** SQLite uses the comparison function F for all text comparison +** operations on the [database connection] B on text values that +** use the collating sequence named X. +** +** {H16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same +** as [sqlite3_create_collation(B,X,E,P,F)] except that the +** collation name X is understood as UTF-16 in native byte order +** instead of UTF-8. +** +** {H16630} When multiple comparison functions are available for the same +** collating sequence, SQLite chooses the one whose text encoding +** requires the least amount of conversion from the default +** text encoding of the database. */ int sqlite3_create_collation( sqlite3*, @@ -2792,40 +4573,56 @@ int sqlite3_create_collation_v2( ); int sqlite3_create_collation16( sqlite3*, - const char *zName, + const void *zName, int eTextRep, void*, int(*xCompare)(void*,int,const void*,int,const void*) ); /* -** CAPI3REF: Collation Needed Callbacks {F16700} +** CAPI3REF: Collation Needed Callbacks {H16700} ** -** {F16701} ** To avoid having to register all collation sequences before a database ** can be used, a single callback function may be registered with the -** database handle to be called whenever an undefined collation sequence is -** required. +** [database connection] to be called whenever an undefined collation +** sequence is required. ** -** {F16702} ** If the function is registered using the sqlite3_collation_needed() API, ** then it is passed the names of undefined collation sequences as strings -** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names -** are passed as UTF-16 in machine native byte order. {F16704} A call to either -** function replaces any existing callback. +** encoded in UTF-8. {H16703} If sqlite3_collation_needed16() is used, +** the names are passed as UTF-16 in machine native byte order. +** A call to either function replaces any existing callback. ** -** {F16705} When the callback is invoked, the first argument passed is a copy +** When the callback is invoked, the first argument passed is a copy ** of the second argument to sqlite3_collation_needed() or -** sqlite3_collation_needed16(). {F16706} The second argument is the database -** handle. {F16707} The third argument is one of [SQLITE_UTF8], -** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most -** desirable form of the collation sequence function required. -** {F16708} The fourth parameter is the name of the -** required collation sequence. {END} +** sqlite3_collation_needed16(). The second argument is the database +** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE], +** or [SQLITE_UTF16LE], indicating the most desirable form of the collation +** sequence function required. The fourth parameter is the name of the +** required collation sequence. ** ** The callback function should register the desired collation using ** [sqlite3_create_collation()], [sqlite3_create_collation16()], or ** [sqlite3_create_collation_v2()]. +** +** INVARIANTS: +** +** {H16702} A successful call to [sqlite3_collation_needed(D,P,F)] +** or [sqlite3_collation_needed16(D,P,F)] causes +** the [database connection] D to invoke callback F with first +** parameter P whenever it needs a comparison function for a +** collating sequence that it does not know about. +** +** {H16704} Each successful call to [sqlite3_collation_needed()] or +** [sqlite3_collation_needed16()] overrides the callback registered +** on the same [database connection] by prior calls to either +** interface. +** +** {H16706} The name of the requested collating function passed in the +** 4th parameter to the callback is in UTF-8 if the callback +** was registered using [sqlite3_collation_needed()] and +** is in UTF-16 native byte order if the callback was +** registered using [sqlite3_collation_needed16()]. */ int sqlite3_collation_needed( sqlite3*, @@ -2864,32 +4661,42 @@ int sqlite3_rekey( ); /* -** CAPI3REF: Suspend Execution For A Short Time {F10530} +** CAPI3REF: Suspend Execution For A Short Time {H10530} ** -** {F10531} The sqlite3_sleep() function -** causes the current thread to suspend execution +** The sqlite3_sleep() function causes the current thread to suspend execution ** for at least a number of milliseconds specified in its parameter. ** -** {F10532} If the operating system does not support sleep requests with -** millisecond time resolution, then the time will be rounded up to -** the nearest second. {F10533} The number of milliseconds of sleep actually +** If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. The number of milliseconds of sleep actually ** requested from the operating system is returned. ** -** {F10534} SQLite implements this interface by calling the xSleep() -** method of the default [sqlite3_vfs] object. {END} +** SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. +** +** INVARIANTS: +** +** {H10533} The [sqlite3_sleep(M)] interface invokes the xSleep +** method of the default [sqlite3_vfs|VFS] in order to +** suspend execution of the current thread for at least +** M milliseconds. +** +** {H10536} The [sqlite3_sleep(M)] interface returns the number of +** milliseconds of sleep actually requested of the operating +** system, which might be larger than the parameter M. */ int sqlite3_sleep(int); /* -** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310} +** CAPI3REF: Name Of The Folder Holding Temporary Files {H10310} ** ** If this global variable is made to point to a string which is -** the name of a folder (a.ka. directory), then all temporary files +** the name of a folder (a.k.a. directory), then all temporary files ** created by SQLite will be placed in that directory. If this variable -** is NULL pointer, then SQLite does a search for an appropriate temporary -** file directory. +** is a NULL pointer, then SQLite performs a search for an appropriate +** temporary file directory. ** -** It is not safe to modify this variable once a database connection +** It is not safe to modify this variable once a [database connection] ** has been opened. It is intended that this variable be set once ** as part of process initialization and before any SQLite interface ** routines have been call and remain unchanged thereafter. @@ -2897,104 +4704,222 @@ int sqlite3_sleep(int); SQLITE_EXTERN char *sqlite3_temp_directory; /* -** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} +** CAPI3REF: Test For Auto-Commit Mode {H12930} +** KEYWORDS: {autocommit mode} ** -** {F12931} The sqlite3_get_autocommit() interfaces returns non-zero or +** The sqlite3_get_autocommit() interface returns non-zero or ** zero if the given database connection is or is not in autocommit mode, -** respectively. {F12932} Autocommit mode is on -** by default. {F12933} Autocommit mode is disabled by a BEGIN statement. -** {F12934} Autocommit mode is reenabled by a COMMIT or ROLLBACK. {END} +** respectively. Autocommit mode is on by default. +** Autocommit mode is disabled by a [BEGIN] statement. +** Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK]. ** ** If certain kinds of errors occur on a statement within a multi-statement -** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], +** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR], ** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the -** transaction might be rolled back automatically. {F12935} The only way to -** find out if SQLite automatically rolled back the transaction after -** an error is to use this function. {END} +** transaction might be rolled back automatically. The only way to +** find out whether SQLite automatically rolled back the transaction after +** an error is to use this function. +** +** INVARIANTS: +** +** {H12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or +** zero if the [database connection] D is or is not in autocommit +** mode, respectively. +** +** {H12932} Autocommit mode is on by default. ** -** {U12936} If another thread changes the autocommit status of the database -** connection while this routine is running, then the return value -** is undefined. {END} +** {H12933} Autocommit mode is disabled by a successful [BEGIN] statement. +** +** {H12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK] +** statement. +** +** ASSUMPTIONS: +** +** {A12936} If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. */ int sqlite3_get_autocommit(sqlite3*); /* -** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120} +** CAPI3REF: Find The Database Handle Of A Prepared Statement {H13120} +** +** The sqlite3_db_handle interface returns the [database connection] handle +** to which a [prepared statement] belongs. The database handle returned by +** sqlite3_db_handle is the same database handle that was the first argument +** to the [sqlite3_prepare_v2()] call (or its variants) that was used to +** create the statement in the first place. ** -** {F13121} The sqlite3_db_handle interface -** returns the [sqlite3*] database handle to which a -** [sqlite3_stmt | prepared statement] belongs. -** {F13122} the database handle returned by sqlite3_db_handle -** is the same database handle that was -** the first argument to the [sqlite3_prepare_v2()] or its variants -** that was used to create the statement in the first place. +** INVARIANTS: +** +** {H13123} The [sqlite3_db_handle(S)] interface returns a pointer +** to the [database connection] associated with the +** [prepared statement] S. */ sqlite3 *sqlite3_db_handle(sqlite3_stmt*); +/* +** CAPI3REF: Find the next prepared statement {H13140} +** +** This interface returns a pointer to the next [prepared statement] after +** pStmt associated with the [database connection] pDb. If pStmt is NULL +** then this interface returns a pointer to the first prepared statement +** associated with the database connection pDb. If no prepared statement +** satisfies the conditions of this routine, it returns NULL. +** +** INVARIANTS: +** +** {H13143} If D is a [database connection] that holds one or more +** unfinalized [prepared statements] and S is a NULL pointer, +** then [sqlite3_next_stmt(D, S)] routine shall return a pointer +** to one of the prepared statements associated with D. +** +** {H13146} If D is a [database connection] that holds no unfinalized +** [prepared statements] and S is a NULL pointer, then +** [sqlite3_next_stmt(D, S)] routine shall return a NULL pointer. +** +** {H13149} If S is a [prepared statement] in the [database connection] D +** and S is not the last prepared statement in D, then +** [sqlite3_next_stmt(D, S)] routine shall return a pointer +** to the next prepared statement in D after S. +** +** {H13152} If S is the last [prepared statement] in the +** [database connection] D then the [sqlite3_next_stmt(D, S)] +** routine shall return a NULL pointer. +** +** ASSUMPTIONS: +** +** {A13154} The [database connection] pointer D in a call to +** [sqlite3_next_stmt(D,S)] must refer to an open database +** connection and in particular must not be a NULL pointer. +*/ +sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt); /* -** CAPI3REF: Commit And Rollback Notification Callbacks {F12950} +** CAPI3REF: Commit And Rollback Notification Callbacks {H12950} ** -** {F12951} The sqlite3_commit_hook() interface registers a callback +** The sqlite3_commit_hook() interface registers a callback ** function to be invoked whenever a transaction is committed. -** {F12952} Any callback set by a previous call to sqlite3_commit_hook() +** Any callback set by a previous call to sqlite3_commit_hook() ** for the same database connection is overridden. -** {F12953} The sqlite3_rollback_hook() interface registers a callback +** The sqlite3_rollback_hook() interface registers a callback ** function to be invoked whenever a transaction is committed. -** {F12954} Any callback set by a previous call to sqlite3_commit_hook() +** Any callback set by a previous call to sqlite3_commit_hook() ** for the same database connection is overridden. -** {F12956} The pArg argument is passed through -** to the callback. {F12957} If the callback on a commit hook function -** returns non-zero, then the commit is converted into a rollback. +** The pArg argument is passed through to the callback. +** If the callback on a commit hook function returns non-zero, +** then the commit is converted into a rollback. ** -** {F12958} If another function was previously registered, its +** If another function was previously registered, its ** pArg value is returned. Otherwise NULL is returned. ** -** {F12959} Registering a NULL function disables the callback. +** Registering a NULL function disables the callback. ** -** {F12961} For the purposes of this API, a transaction is said to have been +** For the purposes of this API, a transaction is said to have been ** rolled back if an explicit "ROLLBACK" statement is executed, or ** an error or constraint causes an implicit rollback to occur. -** {F12962} The rollback callback is not invoked if a transaction is +** The rollback callback is not invoked if a transaction is ** automatically rolled back because the database connection is closed. -** {F12964} The rollback callback is not invoked if a transaction is +** The rollback callback is not invoked if a transaction is ** rolled back because a commit callback returned non-zero. -** Check on this {END} +** Check on this +** +** INVARIANTS: ** -** These are experimental interfaces and are subject to change. +** {H12951} The [sqlite3_commit_hook(D,F,P)] interface registers the +** callback function F to be invoked with argument P whenever +** a transaction commits on the [database connection] D. +** +** {H12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P argument +** from the previous call with the same [database connection] D, +** or NULL on the first call for a particular database connection D. +** +** {H12953} Each call to [sqlite3_commit_hook()] overwrites the callback +** registered by prior calls. +** +** {H12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL +** then the commit hook callback is canceled and no callback +** is invoked when a transaction commits. +** +** {H12955} If the commit callback returns non-zero then the commit is +** converted into a rollback. +** +** {H12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the +** callback function F to be invoked with argument P whenever +** a transaction rolls back on the [database connection] D. +** +** {H12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P +** argument from the previous call with the same +** [database connection] D, or NULL on the first call +** for a particular database connection D. +** +** {H12963} Each call to [sqlite3_rollback_hook()] overwrites the callback +** registered by prior calls. +** +** {H12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL +** then the rollback hook callback is canceled and no callback +** is invoked when a transaction rolls back. */ void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); /* -** CAPI3REF: Data Change Notification Callbacks {F12970} -** -** {F12971} The sqlite3_update_hook() interface -** registers a callback function with the database connection identified by the -** first argument to be invoked whenever a row is updated, inserted or deleted. -** {F12972} Any callback set by a previous call to this function for the same -** database connection is overridden. -** -** {F12974} The second argument is a pointer to the function to invoke when a -** row is updated, inserted or deleted. -** {F12976} The first argument to the callback is -** a copy of the third argument to sqlite3_update_hook(). -** {F12977} The second callback -** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], -** depending on the operation that caused the callback to be invoked. -** {F12978} The third and -** fourth arguments to the callback contain pointers to the database and -** table name containing the affected row. -** {F12979} The final callback parameter is -** the rowid of the row. -** {F12981} In the case of an update, this is the rowid after -** the update takes place. -** -** {F12983} The update hook is not invoked when internal system tables are +** CAPI3REF: Data Change Notification Callbacks {H12970} +** +** The sqlite3_update_hook() interface registers a callback function +** with the [database connection] identified by the first argument +** to be invoked whenever a row is updated, inserted or deleted. +** Any callback set by a previous call to this function +** for the same database connection is overridden. +** +** The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** The first argument to the callback is a copy of the third argument +** to sqlite3_update_hook(). +** The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE], +** or [SQLITE_UPDATE], depending on the operation that caused the callback +** to be invoked. +** The third and fourth arguments to the callback contain pointers to the +** database and table name containing the affected row. +** The final callback parameter is the rowid of the row. In the case of +** an update, this is the rowid after the update takes place. +** +** The update hook is not invoked when internal system tables are ** modified (i.e. sqlite_master and sqlite_sequence). ** -** {F12984} If another function was previously registered, its pArg value -** is returned. {F12985} Otherwise NULL is returned. +** If another function was previously registered, its pArg value +** is returned. Otherwise NULL is returned. +** +** INVARIANTS: +** +** {H12971} The [sqlite3_update_hook(D,F,P)] interface causes the callback +** function F to be invoked with first parameter P whenever +** a table row is modified, inserted, or deleted on +** the [database connection] D. +** +** {H12973} The [sqlite3_update_hook(D,F,P)] interface returns the value +** of P for the previous call on the same [database connection] D, +** or NULL for the first call. +** +** {H12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)] +** is NULL then the no update callbacks are made. +** +** {H12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls +** to the same interface on the same [database connection] D. +** +** {H12979} The update hook callback is not invoked when internal system +** tables such as sqlite_master and sqlite_sequence are modified. +** +** {H12981} The second parameter to the update callback +** is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], +** depending on the operation that caused the callback to be invoked. +** +** {H12983} The third and fourth arguments to the callback contain pointers +** to zero-terminated UTF-8 strings which are the names of the +** database and table that is being updated. + +** {H12985} The final callback parameter is the rowid of the row after +** the change occurs. */ void *sqlite3_update_hook( sqlite3*, @@ -3003,135 +4928,177 @@ void *sqlite3_update_hook( ); /* -** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330} +** CAPI3REF: Enable Or Disable Shared Pager Cache {H10330} +** KEYWORDS: {shared cache} {shared cache mode} ** -** {F10331} ** This routine enables or disables the sharing of the database cache -** and schema data structures between connections to the same database. -** {F10332} -** Sharing is enabled if the argument is true and disabled if the argument -** is false. +** and schema data structures between [database connection | connections] +** to the same database. Sharing is enabled if the argument is true +** and disabled if the argument is false. ** -** {F10333} Cache sharing is enabled and disabled -** for an entire process. {END} This is a change as of SQLite version 3.5.0. -** In prior versions of SQLite, sharing was -** enabled or disabled for each thread separately. +** Cache sharing is enabled and disabled for an entire process. {END} +** This is a change as of SQLite version 3.5.0. In prior versions of SQLite, +** sharing was enabled or disabled for each thread separately. ** -** {F10334} ** The cache sharing mode set by this interface effects all subsequent ** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. -** {F10335} Existing database connections continue use the sharing mode -** that was in effect at the time they were opened. {END} +** Existing database connections continue use the sharing mode +** that was in effect at the time they were opened. ** -** Virtual tables cannot be used with a shared cache. {F10336} When shared +** Virtual tables cannot be used with a shared cache. When shared ** cache is enabled, the [sqlite3_create_module()] API used to register -** virtual tables will always return an error. {END} +** virtual tables will always return an error. ** -** {F10337} This routine returns [SQLITE_OK] if shared cache was -** enabled or disabled successfully. {F10338} An [SQLITE_ERROR | error code] -** is returned otherwise. {END} +** This routine returns [SQLITE_OK] if shared cache was enabled or disabled +** successfully. An [error code] is returned otherwise. ** -** {F10339} Shared cache is disabled by default. {END} But this might change in +** Shared cache is disabled by default. But this might change in ** future releases of SQLite. Applications that care about shared ** cache setting should set it explicitly. +** +** INVARIANTS: +** +** {H10331} A successful invocation of [sqlite3_enable_shared_cache(B)] +** will enable or disable shared cache mode for any subsequently +** created [database connection] in the same process. +** +** {H10336} When shared cache is enabled, the [sqlite3_create_module()] +** interface will always return an error. +** +** {H10337} The [sqlite3_enable_shared_cache(B)] interface returns +** [SQLITE_OK] if shared cache was enabled or disabled successfully. +** +** {H10339} Shared cache is disabled by default. */ int sqlite3_enable_shared_cache(int); /* -** CAPI3REF: Attempt To Free Heap Memory {F17340} +** CAPI3REF: Attempt To Free Heap Memory {H17340} +** +** The sqlite3_release_memory() interface attempts to free N bytes +** of heap memory by deallocating non-essential memory allocations +** held by the database library. {END} Memory used to cache database +** pages to improve performance is an example of non-essential memory. +** sqlite3_release_memory() returns the number of bytes actually freed, +** which might be more or less than the amount requested. +** +** INVARIANTS: +** +** {H17341} The [sqlite3_release_memory(N)] interface attempts to +** free N bytes of heap memory by deallocating non-essential +** memory allocations held by the database library. ** -** {F17341} The sqlite3_release_memory() interface attempts to -** free N bytes of heap memory by deallocating non-essential memory -** allocations held by the database labrary. {END} Memory used -** to cache database pages to improve performance is an example of -** non-essential memory. {F16342} sqlite3_release_memory() returns -** the number of bytes actually freed, which might be more or less -** than the amount requested. +** {H16342} The [sqlite3_release_memory(N)] returns the number +** of bytes actually freed, which might be more or less +** than the amount requested. */ int sqlite3_release_memory(int); /* -** CAPI3REF: Impose A Limit On Heap Size {F17350} +** CAPI3REF: Impose A Limit On Heap Size {H17350} ** -** {F16351} The sqlite3_soft_heap_limit() interface -** places a "soft" limit on the amount of heap memory that may be allocated -** by SQLite. {F16352} If an internal allocation is requested -** that would exceed the soft heap limit, [sqlite3_release_memory()] is -** invoked one or more times to free up some space before the allocation -** is made. {END} +** The sqlite3_soft_heap_limit() interface places a "soft" limit +** on the amount of heap memory that may be allocated by SQLite. +** If an internal allocation is requested that would exceed the +** soft heap limit, [sqlite3_release_memory()] is invoked one or +** more times to free up some space before the allocation is performed. ** -** {F16353} The limit is called "soft", because if -** [sqlite3_release_memory()] cannot -** free sufficient memory to prevent the limit from being exceeded, +** The limit is called "soft", because if [sqlite3_release_memory()] +** cannot free sufficient memory to prevent the limit from being exceeded, ** the memory is allocated anyway and the current operation proceeds. ** -** {F16354} ** A negative or zero value for N means that there is no soft heap limit and ** [sqlite3_release_memory()] will only be called when memory is exhausted. -** {F16355} The default value for the soft heap limit is zero. +** The default value for the soft heap limit is zero. ** -** SQLite makes a best effort to honor the soft heap limit. -** {F16356} But if the soft heap limit cannot honored, execution will -** continue without error or notification. {END} This is why the limit is +** SQLite makes a best effort to honor the soft heap limit. +** But if the soft heap limit cannot be honored, execution will +** continue without error or notification. This is why the limit is ** called a "soft" limit. It is advisory only. ** ** Prior to SQLite version 3.5.0, this routine only constrained the memory ** allocated by a single thread - the same thread in which this routine ** runs. Beginning with SQLite version 3.5.0, the soft heap limit is -** applied to all threads. {F16357} The value specified for the soft heap limit -** is an upper bound on the total memory allocation for all threads. {END} In +** applied to all threads. The value specified for the soft heap limit +** is an upper bound on the total memory allocation for all threads. In ** version 3.5.0 there is no mechanism for limiting the heap usage for ** individual threads. +** +** INVARIANTS: +** +** {H16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit +** of N bytes on the amount of heap memory that may be allocated +** using [sqlite3_malloc()] or [sqlite3_realloc()] at any point +** in time. +** +** {H16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would +** cause the total amount of allocated memory to exceed the +** soft heap limit, then [sqlite3_release_memory()] is invoked +** in an attempt to reduce the memory usage prior to proceeding +** with the memory allocation attempt. +** +** {H16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger +** attempts to reduce memory usage through the soft heap limit +** mechanism continue even if the attempt to reduce memory +** usage is unsuccessful. +** +** {H16354} A negative or zero value for N in a call to +** [sqlite3_soft_heap_limit(N)] means that there is no soft +** heap limit and [sqlite3_release_memory()] will only be +** called when memory is completely exhausted. +** +** {H16355} The default value for the soft heap limit is zero. +** +** {H16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the +** values set by all prior calls. */ void sqlite3_soft_heap_limit(int); /* -** CAPI3REF: Extract Metadata About A Column Of A Table {F12850} +** CAPI3REF: Extract Metadata About A Column Of A Table {H12850} ** -** This routine -** returns meta-data about a specific column of a specific database -** table accessible using the connection handle passed as the first function -** argument. +** This routine returns metadata about a specific column of a specific +** database table accessible using the [database connection] handle +** passed as the first function argument. ** -** The column is identified by the second, third and fourth parameters to +** The column is identified by the second, third and fourth parameters to ** this function. The second parameter is either the name of the database ** (i.e. "main", "temp" or an attached database) containing the specified ** table or NULL. If it is NULL, then all attached databases are searched -** for the table using the same algorithm as the database engine uses to +** for the table using the same algorithm used by the database engine to ** resolve unqualified table references. ** -** The third and fourth parameters to this function are the table and column -** name of the desired column, respectively. Neither of these parameters +** The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters ** may be NULL. ** -** Meta information is returned by writing to the memory locations passed as -** the 5th and subsequent parameters to this function. Any of these -** arguments may be NULL, in which case the corresponding element of meta -** information is ommitted. +** Metadata is returned by writing to the memory locations passed as the 5th +** and subsequent parameters to this function. Any of these arguments may be +** NULL, in which case the corresponding element of metadata is omitted. ** -**
      -** Parameter     Output Type      Description
      -** -----------------------------------
      -**
      -**   5th         const char*      Data type
      -**   6th         const char*      Name of the default collation sequence 
      -**   7th         int              True if the column has a NOT NULL constraint
      -**   8th         int              True if the column is part of the PRIMARY KEY
      -**   9th         int              True if the column is AUTOINCREMENT
      -** 
      +**
      +** +**
      Parameter Output
      Type
      Description ** +**
      5th const char* Data type +**
      6th const char* Name of default collation sequence +**
      7th int True if column has a NOT NULL constraint +**
      8th int True if column is part of the PRIMARY KEY +**
      9th int True if column is AUTOINCREMENT +**
      +**
      ** -** The memory pointed to by the character pointers returned for the -** declaration type and collation sequence is valid only until the next -** call to any sqlite API function. +** The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any SQLite API function. ** -** If the specified table is actually a view, then an error is returned. +** If the specified table is actually a view, an [error code] is returned. ** -** If the specified column is "rowid", "oid" or "_rowid_" and an -** INTEGER PRIMARY KEY column has been explicitly declared, then the output +** If the specified column is "rowid", "oid" or "_rowid_" and an +** INTEGER PRIMARY KEY column has been explicitly declared, then the output ** parameters are set for the explicitly declared column. If there is no -** explicitly declared IPK column, then the output parameters are set as -** follows: +** explicitly declared INTEGER PRIMARY KEY column, then the output +** parameters are set as follows: ** **
       **     data type: "INTEGER"
      @@ -3143,11 +5110,11 @@ void sqlite3_soft_heap_limit(int);
       **
       ** This function may load one or more schemas from database files. If an
       ** error occurs during this process, or if the requested table or column
      -** cannot be found, an SQLITE error code is returned and an error message
      -** left in the database handle (to be retrieved using sqlite3_errmsg()).
      +** cannot be found, an [error code] is returned and an error message left
      +** in the [database connection] (to be retrieved using sqlite3_errmsg()).
       **
       ** This API is only available if the library was compiled with the
      -** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
      +** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
       */
       int sqlite3_table_column_metadata(
         sqlite3 *db,                /* Connection handle */
      @@ -3162,27 +5129,30 @@ int sqlite3_table_column_metadata(
       );
       
       /*
      -** CAPI3REF: Load An Extension {F12600}
      +** CAPI3REF: Load An Extension {H12600} 
      +**
      +** This interface loads an SQLite extension library from the named file.
      +**
      +** {H12601} The sqlite3_load_extension() interface attempts to load an
      +**          SQLite extension library contained in the file zFile.
      +**
      +** {H12602} The entry point is zProc.
       **
      -** {F12601} The sqlite3_load_extension() interface
      -** attempts to load an SQLite extension library contained in the file
      -** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0
      -** in which case the name of the entry point defaults
      -** to "sqlite3_extension_init".
      +** {H12603} zProc may be 0, in which case the name of the entry point
      +**          defaults to "sqlite3_extension_init".
       **
      -** {F12604} The sqlite3_load_extension() interface shall
      -** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
      +** {H12604} The sqlite3_load_extension() interface shall return
      +**          [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
       **
      -** {F12605}
      -** If an error occurs and pzErrMsg is not 0, then the
      -** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with 
      -** error message text stored in memory obtained from [sqlite3_malloc()].
      -** {END}  The calling function should free this memory
      -** by calling [sqlite3_free()].
      +** {H12605} If an error occurs and pzErrMsg is not 0, then the
      +**          [sqlite3_load_extension()] interface shall attempt to
      +**          fill *pzErrMsg with error message text stored in memory
      +**          obtained from [sqlite3_malloc()]. {END}  The calling function
      +**          should free this memory by calling [sqlite3_free()].
       **
      -** {F12606}
      -** Extension loading must be enabled using [sqlite3_enable_load_extension()]
      -** prior to calling this API or an error will be returned.
      +** {H12606} Extension loading must be enabled using
      +**          [sqlite3_enable_load_extension()] prior to calling this API,
      +**          otherwise an error will be returned.
       */
       int sqlite3_load_extension(
         sqlite3 *db,          /* Load the extension into this database connection */
      @@ -3192,65 +5162,64 @@ int sqlite3_load_extension(
       );
       
       /*
      -** CAPI3REF:  Enable Or Disable Extension Loading {F12620}
      +** CAPI3REF: Enable Or Disable Extension Loading {H12620} 
       **
       ** So as not to open security holes in older applications that are
       ** unprepared to deal with extension loading, and as a means of disabling
      -** extension loading while evaluating user-entered SQL, the following
      -** API is provided to turn the [sqlite3_load_extension()] mechanism on and
      -** off.  {F12622} It is off by default. {END} See ticket #1863.
      +** extension loading while evaluating user-entered SQL, the following API
      +** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
       **
      -** {F12621} Call the sqlite3_enable_load_extension() routine
      -** with onoff==1 to turn extension loading on
      -** and call it with onoff==0 to turn it back off again. {END}
      +** Extension loading is off by default. See ticket #1863.
      +**
      +** {H12621} Call the sqlite3_enable_load_extension() routine with onoff==1
      +**          to turn extension loading on and call it with onoff==0 to turn
      +**          it back off again.
      +**
      +** {H12622} Extension loading is off by default.
       */
       int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
       
       /*
      -** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640}
      -**
      -** {F12641} This function
      -** registers an extension entry point that is automatically invoked
      -** whenever a new database connection is opened using
      -** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END}
      +** CAPI3REF: Automatically Load An Extensions {H12640} 
       **
       ** This API can be invoked at program startup in order to register
       ** one or more statically linked extensions that will be available
      -** to all new database connections.
      +** to all new [database connections]. {END}
       **
      -** {F12642} Duplicate extensions are detected so calling this routine multiple
      -** times with the same extension is harmless.
      +** This routine stores a pointer to the extension in an array that is
      +** obtained from [sqlite3_malloc()].  If you run a memory leak checker
      +** on your program and it reports a leak because of this array, invoke
      +** [sqlite3_reset_auto_extension()] prior to shutdown to free the memory.
       **
      -** {F12643} This routine stores a pointer to the extension in an array
      -** that is obtained from sqlite_malloc(). {END} If you run a memory leak
      -** checker on your program and it reports a leak because of this
      -** array, then invoke [sqlite3_reset_auto_extension()] prior
      -** to shutdown to free the memory.
      +** {H12641} This function registers an extension entry point that is
      +**          automatically invoked whenever a new [database connection]
      +**          is opened using [sqlite3_open()], [sqlite3_open16()],
      +**          or [sqlite3_open_v2()].
       **
      -** {F12644} Automatic extensions apply across all threads. {END}
      +** {H12642} Duplicate extensions are detected so calling this routine
      +**          multiple times with the same extension is harmless.
       **
      -** This interface is experimental and is subject to change or
      -** removal in future releases of SQLite.
      +** {H12643} This routine stores a pointer to the extension in an array
      +**          that is obtained from [sqlite3_malloc()].
      +**
      +** {H12644} Automatic extensions apply across all threads.
       */
       int sqlite3_auto_extension(void *xEntryPoint);
       
      -
       /*
      -** CAPI3REF: Reset Automatic Extension Loading {F12660}
      +** CAPI3REF: Reset Automatic Extension Loading {H12660} 
       **
      -** {F12661} This function disables all previously registered
      -** automatic extensions. {END}  This
      -** routine undoes the effect of all prior [sqlite3_automatic_extension()]
      -** calls.
      +** This function disables all previously registered automatic
      +** extensions. {END}  It undoes the effect of all prior
      +** [sqlite3_auto_extension()] calls.
       **
      -** {F12662} This call disabled automatic extensions in all threads. {END}
      +** {H12661} This function disables all previously registered
      +**          automatic extensions.
       **
      -** This interface is experimental and is subject to change or
      -** removal in future releases of SQLite.
      +** {H12662} This function disables automatic extensions in all threads.
       */
       void sqlite3_reset_auto_extension(void);
       
      -
       /*
       ****** EXPERIMENTAL - subject to change without notice **************
       **
      @@ -3258,7 +5227,7 @@ void sqlite3_reset_auto_extension(void);
       ** to be experimental.  The interface might change in incompatible ways.
       ** If this is a problem for you, do not use the interface at this time.
       **
      -** When the virtual-table mechanism stablizes, we will declare the
      +** When the virtual-table mechanism stabilizes, we will declare the
       ** interface fixed, support it indefinitely, and remove this comment.
       */
       
      @@ -3271,9 +5240,16 @@ typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
       typedef struct sqlite3_module sqlite3_module;
       
       /*
      +** CAPI3REF: Virtual Table Object {H18000} 
      +** KEYWORDS: sqlite3_module
      +** EXPERIMENTAL
      +**
       ** A module is a class of virtual tables.  Each module is defined
       ** by an instance of the following structure.  This structure consists
       ** mostly of methods for the module.
      +**
      +** This interface is experimental and is subject to change or
      +** removal in future releases of SQLite.
       */
       struct sqlite3_module {
         int iVersion;
      @@ -3302,25 +5278,26 @@ struct sqlite3_module {
         int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
                              void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
                              void **ppArg);
      -
         int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
       };
       
       /*
      +** CAPI3REF: Virtual Table Indexing Information {H18100} 
      +** KEYWORDS: sqlite3_index_info
      +** EXPERIMENTAL
      +**
       ** The sqlite3_index_info structure and its substructures is used to
       ** pass information into and receive the reply from the xBestIndex
       ** method of an sqlite3_module.  The fields under **Inputs** are the
       ** inputs to xBestIndex and are read-only.  xBestIndex inserts its
       ** results into the **Outputs** fields.
       **
      -** The aConstraint[] array records WHERE clause constraints of the
      -** form:
      +** The aConstraint[] array records WHERE clause constraints of the form:
       **
      -**         column OP expr
      +** 
      column OP expr
      ** -** Where OP is =, <, <=, >, or >=. -** The particular operator is stored -** in aConstraint[].op. The index of the column is stored in +** where OP is =, <, <=, >, or >=. The particular operator is +** stored in aConstraint[].op. The index of the column is stored in ** aConstraint[].iColumn. aConstraint[].usable is TRUE if the ** expr on the right-hand side can be evaluated (and thus the constraint ** is usable) and false if it cannot. @@ -3352,6 +5329,9 @@ struct sqlite3_module { ** particular lookup. A full scan of a table with N entries should have ** a cost of N. A binary search of a table of N entries should have a ** cost of approximately log(N). +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. */ struct sqlite3_index_info { /* Inputs */ @@ -3367,7 +5347,6 @@ struct sqlite3_index_info { int iColumn; /* Column number */ unsigned char desc; /* True for DESC. False for ASC. */ } *aOrderBy; /* The ORDER BY clause */ - /* Outputs */ struct sqlite3_index_constraint_usage { int argvIndex; /* if >0, constraint is part of argv to xFilter */ @@ -3387,10 +5366,16 @@ struct sqlite3_index_info { #define SQLITE_INDEX_CONSTRAINT_MATCH 64 /* -** This routine is used to register a new module name with an SQLite -** connection. Module names must be registered before creating new -** virtual tables on the module, or before using preexisting virtual -** tables of the module. +** CAPI3REF: Register A Virtual Table Implementation {H18200} +** EXPERIMENTAL +** +** This routine is used to register a new module name with a +** [database connection]. Module names must be registered before +** creating new virtual tables on the module, or before using +** preexisting virtual tables of the module. +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. */ int sqlite3_create_module( sqlite3 *db, /* SQLite connection to register module with */ @@ -3400,7 +5385,10 @@ int sqlite3_create_module( ); /* -** This routine is identical to the sqlite3_create_module() method above, +** CAPI3REF: Register A Virtual Table Implementation {H18210} +** EXPERIMENTAL +** +** This routine is identical to the [sqlite3_create_module()] method above, ** except that it allows a destructor function to be specified. It is ** even more experimental than the rest of the virtual tables API. */ @@ -3413,21 +5401,28 @@ int sqlite3_create_module_v2( ); /* +** CAPI3REF: Virtual Table Instance Object {H18010} +** KEYWORDS: sqlite3_vtab +** EXPERIMENTAL +** ** Every module implementation uses a subclass of the following structure ** to describe a particular instance of the module. Each subclass will -** be tailored to the specific needs of the module implementation. The -** purpose of this superclass is to define certain fields that are common -** to all module implementations. +** be tailored to the specific needs of the module implementation. +** The purpose of this superclass is to define certain fields that are +** common to all module implementations. ** ** Virtual tables methods can set an error message by assigning a -** string obtained from sqlite3_mprintf() to zErrMsg. The method should -** take care that any prior string is freed by a call to sqlite3_free() +** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should +** take care that any prior string is freed by a call to [sqlite3_free()] ** prior to assigning a new string to zErrMsg. After the error message ** is delivered up to the client application, the string will be automatically ** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note ** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field ** since virtual tables are commonly implemented in loadable extensions which ** do not have access to sqlite3MPrintf() or sqlite3Free(). +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. */ struct sqlite3_vtab { const sqlite3_module *pModule; /* The module for this virtual table */ @@ -3436,7 +5431,12 @@ struct sqlite3_vtab { /* Virtual table implementations will typically add additional fields */ }; -/* Every module implementation uses a subclass of the following structure +/* +** CAPI3REF: Virtual Table Cursor Object {H18020} +** KEYWORDS: sqlite3_vtab_cursor +** EXPERIMENTAL +** +** Every module implementation uses a subclass of the following structure ** to describe cursors that point into the virtual table and are used ** to loop through the virtual table. Cursors are created using the ** xOpen method of the module. Each module implementation will define @@ -3444,6 +5444,9 @@ struct sqlite3_vtab { ** ** This superclass exists in order to define fields of the cursor that ** are common to all implementations. +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. */ struct sqlite3_vtab_cursor { sqlite3_vtab *pVtab; /* Virtual table of this cursor */ @@ -3451,13 +5454,22 @@ struct sqlite3_vtab_cursor { }; /* +** CAPI3REF: Declare The Schema Of A Virtual Table {H18280} +** EXPERIMENTAL +** ** The xCreate and xConnect methods of a module use the following API ** to declare the format (the names and datatypes of the columns) of ** the virtual tables they implement. +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. */ int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable); /* +** CAPI3REF: Overload A Function For A Virtual Table {H18300} +** EXPERIMENTAL +** ** Virtual tables can provide alternative implementations of functions ** using the xFindFunction method. But global versions of those functions ** must exist in order to be overloaded. @@ -3467,7 +5479,7 @@ int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable); ** before this API is called, a new function is created. The implementation ** of the new function always causes an exception to be thrown. So ** the new function is not good for anything by itself. Its only -** purpose is to be a place-holder function that can be overloaded +** purpose is to be a placeholder function that can be overloaded ** by virtual tables. ** ** This API should be considered part of the virtual table interface, @@ -3488,41 +5500,83 @@ int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); */ /* -** CAPI3REF: A Handle To An Open BLOB {F17800} +** CAPI3REF: A Handle To An Open BLOB {H17800} +** KEYWORDS: {BLOB handle} {BLOB handles} ** -** An instance of the following opaque structure is used to -** represent an blob-handle. A blob-handle is created by -** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()]. +** An instance of this object represents an open BLOB on which +** [sqlite3_blob_open | incremental BLOB I/O] can be performed. +** Objects of this type are created by [sqlite3_blob_open()] +** and destroyed by [sqlite3_blob_close()]. ** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces -** can be used to read or write small subsections of the blob. -** The [sqlite3_blob_bytes()] interface returns the size of the -** blob in bytes. +** can be used to read or write small subsections of the BLOB. +** The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes. */ typedef struct sqlite3_blob sqlite3_blob; /* -** CAPI3REF: Open A BLOB For Incremental I/O {F17810} +** CAPI3REF: Open A BLOB For Incremental I/O {H17810} ** -** {F17811} This interfaces opens a handle to the blob located -** in row iRow,, column zColumn, table zTable in database zDb; -** in other words, the same blob that would be selected by: +** This interfaces opens a [BLOB handle | handle] to the BLOB located +** in row iRow, column zColumn, table zTable in database zDb; +** in other words, the same BLOB that would be selected by: ** **
       **     SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
       ** 
      {END} ** -** {F17812} If the flags parameter is non-zero, the blob is opened for -** read and write access. If it is zero, the blob is opened for read -** access. {END} +** If the flags parameter is non-zero, the the BLOB is opened for read +** and write access. If it is zero, the BLOB is opened for read access. +** +** Note that the database name is not the filename that contains +** the database but rather the symbolic name of the database that +** is assigned when the database is connected using [ATTACH]. +** For the main database file, the database name is "main". +** For TEMP tables, the database name is "temp". ** -** {F17813} On success, [SQLITE_OK] is returned and the new -** [sqlite3_blob | blob handle] is written to *ppBlob. -** {F17814} Otherwise an error code is returned and -** any value written to *ppBlob should not be used by the caller. -** {F17815} This function sets the database-handle error code and message +** On success, [SQLITE_OK] is returned and the new [BLOB handle] is written +** to *ppBlob. Otherwise an [error code] is returned and any value written +** to *ppBlob should not be used by the caller. +** This function sets the [database connection] error code and message ** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()]. -** We should go through and mark all interfaces that behave this -** way with a similar statement +** +** If the row that a BLOB handle points to is modified by an +** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects +** then the BLOB handle is marked as "expired". +** This is true if any column of the row is changed, even a column +** other than the one the BLOB handle is open on. +** Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for +** a expired BLOB handle fail with an return code of [SQLITE_ABORT]. +** Changes written into a BLOB prior to the BLOB expiring are not +** rollback by the expiration of the BLOB. Such changes will eventually +** commit if the transaction continues to completion. +** +** INVARIANTS: +** +** {H17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)] +** interface shall open an [sqlite3_blob] object P on the BLOB +** in column C of the table T in the database B on +** the [database connection] D. +** +** {H17814} A successful invocation of [sqlite3_blob_open(D,...)] shall start +** a new transaction on the [database connection] D if that +** connection is not already in a transaction. +** +** {H17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface shall open +** the BLOB for read and write access if and only if the F +** parameter is non-zero. +** +** {H17819} The [sqlite3_blob_open()] interface shall return [SQLITE_OK] on +** success and an appropriate [error code] on failure. +** +** {H17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)] +** then subsequent calls to [sqlite3_errcode(D)], +** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] shall return +** information appropriate for that error. +** +** {H17824} If any column in the row that a [sqlite3_blob] has open is +** changed by a separate [UPDATE] or [DELETE] statement or by +** an [ON CONFLICT] side effect, then the [sqlite3_blob] shall +** be marked as invalid. */ int sqlite3_blob_open( sqlite3*, @@ -3535,118 +5589,242 @@ int sqlite3_blob_open( ); /* -** CAPI3REF: Close A BLOB Handle {F17830} +** CAPI3REF: Close A BLOB Handle {H17830} ** -** Close an open [sqlite3_blob | blob handle]. +** Closes an open [BLOB handle]. ** -** {F17831} Closing a BLOB shall cause the current transaction to commit +** Closing a BLOB shall cause the current transaction to commit ** if there are no other BLOBs, no pending prepared statements, and the -** database connection is in autocommit mode. -** {F17832} If any writes were made to the BLOB, they might be held in cache +** database connection is in [autocommit mode]. +** If any writes were made to the BLOB, they might be held in cache ** until the close operation if they will fit. {END} +** ** Closing the BLOB often forces the changes ** out to disk and so if any I/O errors occur, they will likely occur -** at the time when the BLOB is closed. {F17833} Any errors that occur during +** at the time when the BLOB is closed. {H17833} Any errors that occur during ** closing are reported as a non-zero return value. ** -** {F17839} The BLOB is closed unconditionally. Even if this routine returns +** The BLOB is closed unconditionally. Even if this routine returns ** an error code, the BLOB is still closed. +** +** INVARIANTS: +** +** {H17833} The [sqlite3_blob_close(P)] interface closes an [sqlite3_blob] +** object P previously opened using [sqlite3_blob_open()]. +** +** {H17836} Closing an [sqlite3_blob] object using +** [sqlite3_blob_close()] shall cause the current transaction to +** commit if there are no other open [sqlite3_blob] objects +** or [prepared statements] on the same [database connection] and +** the database connection is in [autocommit mode]. +** +** {H17839} The [sqlite3_blob_close(P)] interfaces shall close the +** [sqlite3_blob] object P unconditionally, even if +** [sqlite3_blob_close(P)] returns something other than [SQLITE_OK]. */ int sqlite3_blob_close(sqlite3_blob *); /* -** CAPI3REF: Return The Size Of An Open BLOB {F17805} +** CAPI3REF: Return The Size Of An Open BLOB {H17840} ** -** {F16806} Return the size in bytes of the blob accessible via the open -** [sqlite3_blob | blob-handle] passed as an argument. +** Returns the size in bytes of the BLOB accessible via the open +** []BLOB handle] in its only argument. +** +** INVARIANTS: +** +** {H17843} The [sqlite3_blob_bytes(P)] interface returns the size +** in bytes of the BLOB that the [sqlite3_blob] object P +** refers to. */ int sqlite3_blob_bytes(sqlite3_blob *); /* -** CAPI3REF: Read Data From A BLOB Incrementally {F17850} +** CAPI3REF: Read Data From A BLOB Incrementally {H17850} +** +** This function is used to read data from an open [BLOB handle] into a +** caller-supplied buffer. N bytes of data are copied into buffer Z +** from the open BLOB, starting at offset iOffset. +** +** If offset iOffset is less than N bytes from the end of the BLOB, +** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is +** less than zero, [SQLITE_ERROR] is returned and no data is read. ** -** This function is used to read data from an open -** [sqlite3_blob | blob-handle] into a caller supplied buffer. -** {F17851} n bytes of data are copied into buffer -** z from the open blob, starting at offset iOffset. +** An attempt to read from an expired [BLOB handle] fails with an +** error code of [SQLITE_ABORT]. ** -** {F17852} If offset iOffset is less than n bytes from the end of the blob, -** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is -** less than zero [SQLITE_ERROR] is returned and no data is read. +** On success, SQLITE_OK is returned. +** Otherwise, an [error code] or an [extended error code] is returned. ** -** {F17854} On success, SQLITE_OK is returned. Otherwise, an -** [SQLITE_ERROR | SQLite error code] or an -** [SQLITE_IOERR_READ | extended error code] is returned. +** INVARIANTS: +** +** {H17853} A successful invocation of [sqlite3_blob_read(P,Z,N,X)] +** shall reads N bytes of data out of the BLOB referenced by +** [BLOB handle] P beginning at offset X and store those bytes +** into buffer Z. +** +** {H17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the BLOB +** is less than N+X bytes, then the function shall leave the +** Z buffer unchanged and return [SQLITE_ERROR]. +** +** {H17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero +** then the function shall leave the Z buffer unchanged +** and return [SQLITE_ERROR]. +** +** {H17862} The [sqlite3_blob_read(P,Z,N,X)] interface shall return [SQLITE_OK] +** if N bytes are successfully read into buffer Z. +** +** {H17863} If the [BLOB handle] P is expired and X and N are within bounds +** then [sqlite3_blob_read(P,Z,N,X)] shall leave the Z buffer +** unchanged and return [SQLITE_ABORT]. +** +** {H17865} If the requested read could not be completed, +** the [sqlite3_blob_read(P,Z,N,X)] interface shall return an +** appropriate [error code] or [extended error code]. +** +** {H17868} If an error occurs during evaluation of [sqlite3_blob_read(P,...)] +** then subsequent calls to [sqlite3_errcode(D)], +** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] shall return +** information appropriate for that error, where D is the +** [database connection] that was used to open the [BLOB handle] P. */ -int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset); +int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); /* -** CAPI3REF: Write Data Into A BLOB Incrementally {F17870} +** CAPI3REF: Write Data Into A BLOB Incrementally {H17870} ** -** This function is used to write data into an open -** [sqlite3_blob | blob-handle] from a user supplied buffer. -** {F17871} n bytes of data are copied from the buffer -** pointed to by z into the open blob, starting at offset iOffset. +** This function is used to write data into an open [BLOB handle] from a +** caller-supplied buffer. N bytes of data are copied from the buffer Z +** into the open BLOB, starting at offset iOffset. ** -** {F17872} If the [sqlite3_blob | blob-handle] passed as the first argument -** was not opened for writing (the flags parameter to [sqlite3_blob_open()] -*** was zero), this function returns [SQLITE_READONLY]. +** If the [BLOB handle] passed as the first argument was not opened for +** writing (the flags parameter to [sqlite3_blob_open()] was zero), +** this function returns [SQLITE_READONLY]. ** -** {F17873} This function may only modify the contents of the blob; it is -** not possible to increase the size of a blob using this API. -** {F17874} If offset iOffset is less than n bytes from the end of the blob, -** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is +** This function may only modify the contents of the BLOB; it is +** not possible to increase the size of a BLOB using this API. +** If offset iOffset is less than N bytes from the end of the BLOB, +** [SQLITE_ERROR] is returned and no data is written. If N is ** less than zero [SQLITE_ERROR] is returned and no data is written. ** -** {F17876} On success, SQLITE_OK is returned. Otherwise, an -** [SQLITE_ERROR | SQLite error code] or an -** [SQLITE_IOERR_READ | extended error code] is returned. +** An attempt to write to an expired [BLOB handle] fails with an +** error code of [SQLITE_ABORT]. Writes to the BLOB that occurred +** before the [BLOB handle] expired are not rolled back by the +** expiration of the handle, though of course those changes might +** have been overwritten by the statement that expired the BLOB handle +** or by other independent statements. +** +** On success, SQLITE_OK is returned. +** Otherwise, an [error code] or an [extended error code] is returned. +** +** INVARIANTS: +** +** {H17873} A successful invocation of [sqlite3_blob_write(P,Z,N,X)] +** shall write N bytes of data from buffer Z into the BLOB +** referenced by [BLOB handle] P beginning at offset X into +** the BLOB. +** +** {H17874} In the absence of other overridding changes, the changes +** written to a BLOB by [sqlite3_blob_write()] shall +** remain in effect after the associated [BLOB handle] expires. +** +** {H17875} If the [BLOB handle] P was opened for reading only then +** an invocation of [sqlite3_blob_write(P,Z,N,X)] shall leave +** the referenced BLOB unchanged and return [SQLITE_READONLY]. +** +** {H17876} If the size of the BLOB referenced by [BLOB handle] P is +** less than N+X bytes then [sqlite3_blob_write(P,Z,N,X)] shall +** leave the BLOB unchanged and return [SQLITE_ERROR]. +** +** {H17877} If the [BLOB handle] P is expired and X and N are within bounds +** then [sqlite3_blob_read(P,Z,N,X)] shall leave the BLOB +** unchanged and return [SQLITE_ABORT]. +** +** {H17879} If X or N are less than zero then [sqlite3_blob_write(P,Z,N,X)] +** shall leave the BLOB referenced by [BLOB handle] P unchanged +** and return [SQLITE_ERROR]. +** +** {H17882} The [sqlite3_blob_write(P,Z,N,X)] interface shall return +** [SQLITE_OK] if N bytes where successfully written into the BLOB. +** +** {H17885} If the requested write could not be completed, +** the [sqlite3_blob_write(P,Z,N,X)] interface shall return an +** appropriate [error code] or [extended error code]. +** +** {H17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)] +** then subsequent calls to [sqlite3_errcode(D)], +** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] shall return +** information appropriate for that error. */ int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); /* -** CAPI3REF: Virtual File System Objects {F11200} +** CAPI3REF: Virtual File System Objects {H11200} ** ** A virtual filesystem (VFS) is an [sqlite3_vfs] object ** that SQLite uses to interact -** with the underlying operating system. Most builds come with a +** with the underlying operating system. Most SQLite builds come with a ** single default VFS that is appropriate for the host computer. ** New VFSes can be registered and existing VFSes can be unregistered. ** The following interfaces are provided. ** -** {F11201} The sqlite3_vfs_find() interface returns a pointer to -** a VFS given its name. {F11202} Names are case sensitive. -** {F11203} Names are zero-terminated UTF-8 strings. -** {F11204} If there is no match, a NULL -** pointer is returned. {F11205} If zVfsName is NULL then the default -** VFS is returned. {END} -** -** {F11210} New VFSes are registered with sqlite3_vfs_register(). -** {F11211} Each new VFS becomes the default VFS if the makeDflt flag is set. -** {F11212} The same VFS can be registered multiple times without injury. -** {F11213} To make an existing VFS into the default VFS, register it again -** with the makeDflt flag set. {U11214} If two different VFSes with the -** same name are registered, the behavior is undefined. {U11215} If a +** The sqlite3_vfs_find() interface returns a pointer to a VFS given its name. +** Names are case sensitive. +** Names are zero-terminated UTF-8 strings. +** If there is no match, a NULL pointer is returned. +** If zVfsName is NULL then the default VFS is returned. +** +** New VFSes are registered with sqlite3_vfs_register(). +** Each new VFS becomes the default VFS if the makeDflt flag is set. +** The same VFS can be registered multiple times without injury. +** To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. If two different VFSes with the +** same name are registered, the behavior is undefined. If a ** VFS is registered with a name that is NULL or an empty string, ** then the behavior is undefined. -** -** {F11220} Unregister a VFS with the sqlite3_vfs_unregister() interface. -** {F11221} If the default VFS is unregistered, another VFS is chosen as +** +** Unregister a VFS with the sqlite3_vfs_unregister() interface. +** If the default VFS is unregistered, another VFS is chosen as ** the default. The choice for the new VFS is arbitrary. +** +** INVARIANTS: +** +** {H11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the +** registered [sqlite3_vfs] object whose name exactly matches +** the zero-terminated UTF-8 string N, or it returns NULL if +** there is no match. +** +** {H11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then +** the function returns a pointer to the default [sqlite3_vfs] +** object if there is one, or NULL if there is no default +** [sqlite3_vfs] object. +** +** {H11209} The [sqlite3_vfs_register(P,F)] interface registers the +** well-formed [sqlite3_vfs] object P using the name given +** by the zName field of the object. +** +** {H11212} Using the [sqlite3_vfs_register(P,F)] interface to register +** the same [sqlite3_vfs] object multiple times is a harmless no-op. +** +** {H11215} The [sqlite3_vfs_register(P,F)] interface makes the [sqlite3_vfs] +** object P the default [sqlite3_vfs] object if F is non-zero. +** +** {H11218} The [sqlite3_vfs_unregister(P)] interface unregisters the +** [sqlite3_vfs] object P so that it is no longer returned by +** subsequent calls to [sqlite3_vfs_find()]. */ sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); int sqlite3_vfs_unregister(sqlite3_vfs*); /* -** CAPI3REF: Mutexes {F17000} +** CAPI3REF: Mutexes {H17000} ** ** The SQLite core uses these routines for thread -** synchronization. Though they are intended for internal +** synchronization. Though they are intended for internal ** use by SQLite, code that links against SQLite is ** permitted to use any of these routines. ** -** The SQLite source code contains multiple implementations +** The SQLite source code contains multiple implementations ** of these mutex routines. An appropriate implementation ** is selected automatically at compile-time. The following ** implementations are available in the SQLite core: @@ -3658,25 +5836,24 @@ int sqlite3_vfs_unregister(sqlite3_vfs*); **
    • SQLITE_MUTEX_NOOP ** ** -** The SQLITE_MUTEX_NOOP implementation is a set of routines -** that does no real locking and is appropriate for use in +** The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in ** a single-threaded application. The SQLITE_MUTEX_OS2, ** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations -** are appropriate for use on os/2, unix, and windows. -** +** are appropriate for use on OS/2, Unix, and Windows. +** ** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor ** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex -** implementation is included with the library. The -** mutex interface routines defined here become external -** references in the SQLite library for which implementations -** must be provided by the application. This facility allows an -** application that links against SQLite to provide its own mutex -** implementation without having to modify the SQLite core. -** -** {F17011} The sqlite3_mutex_alloc() routine allocates a new -** mutex and returns a pointer to it. {F17012} If it returns NULL -** that means that a mutex could not be allocated. {F17013} SQLite -** will unwind its stack and return an error. {F17014} The argument +** implementation is included with the library. In this case the +** application must supply a custom mutex implementation using the +** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function +** before calling sqlite3_initialize() or any other public sqlite3_ +** function that calls sqlite3_initialize(). +** +** {H17011} The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. {H17012} If it returns NULL +** that means that a mutex could not be allocated. {H17013} SQLite +** will unwind its stack and return an error. {H17014} The argument ** to sqlite3_mutex_alloc() is one of these integer constants: ** **
        @@ -3687,19 +5864,20 @@ int sqlite3_vfs_unregister(sqlite3_vfs*); **
      • SQLITE_MUTEX_STATIC_MEM2 **
      • SQLITE_MUTEX_STATIC_PRNG **
      • SQLITE_MUTEX_STATIC_LRU -**
      {END} +**
    • SQLITE_MUTEX_STATIC_LRU2 +** ** -** {F17015} The first two constants cause sqlite3_mutex_alloc() to create +** {H17015} The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END} ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does -** not want to. {F17016} But SQLite will only request a recursive mutex in +** not want to. {H17016} But SQLite will only request a recursive mutex in ** cases where it really needs one. {END} If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** -** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return +** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return ** a pointer to a static preexisting mutex. {END} Four static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal @@ -3707,43 +5885,47 @@ int sqlite3_vfs_unregister(sqlite3_vfs*); ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** -** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() -** returns a different mutex on every call. {F17034} But for the static +** returns a different mutex on every call. {H17034} But for the static ** mutex types, the same mutex is returned on every call that has -** the same type number. {END} +** the same type number. ** -** {F17019} The sqlite3_mutex_free() routine deallocates a previously -** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every -** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in -** use when they are deallocated. {U17022} Attempting to deallocate a static -** mutex results in undefined behavior. {F17023} SQLite never deallocates +** {H17019} The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. {H17020} SQLite is careful to deallocate every +** dynamic mutex that it allocates. {A17021} The dynamic mutexes must not be in +** use when they are deallocated. {A17022} Attempting to deallocate a static +** mutex results in undefined behavior. {H17023} SQLite never deallocates ** a static mutex. {END} ** ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt -** to enter a mutex. {F17024} If another thread is already within the mutex, +** to enter a mutex. {H17024} If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return -** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK -** upon successful entry. {F17026} Mutexes created using +** SQLITE_BUSY. {H17025} The sqlite3_mutex_try() interface returns [SQLITE_OK] +** upon successful entry. {H17026} Mutexes created using ** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. -** {F17027} In such cases the, +** {H17027} In such cases the, ** mutex must be exited an equal number of times before another thread -** can enter. {U17028} If the same thread tries to enter any other +** can enter. {A17028} If the same thread tries to enter any other ** kind of mutex more than once, the behavior is undefined. -** {F17029} SQLite will never exhibit -** such behavior in its own use of mutexes. {END} +** {H17029} SQLite will never exhibit +** such behavior in its own use of mutexes. ** -** Some systems (ex: windows95) do not the operation implemented by -** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will -** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses -** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END} +** Some systems (for example, Windows 95) do not support the operation +** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() +** will always return SQLITE_BUSY. {H17030} The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior. ** -** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was -** previously entered by the same thread. {U17032} The behavior +** {H17031} The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. {A17032} The behavior ** is undefined if the mutex is not currently entered by the -** calling thread or is not currently allocated. {F17033} SQLite will +** calling thread or is not currently allocated. {H17033} SQLite will ** never do either. {END} ** +** If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or +** sqlite3_mutex_leave() is a NULL pointer, then all three routines +** behave as no-ops. +** ** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. */ sqlite3_mutex *sqlite3_mutex_alloc(int); @@ -3753,44 +5935,110 @@ int sqlite3_mutex_try(sqlite3_mutex*); void sqlite3_mutex_leave(sqlite3_mutex*); /* -** CAPI3REF: Mutex Verifcation Routines {F17080} +** CAPI3REF: Mutex Methods Object {H17120} +** EXPERIMENTAL +** +** An instance of this structure defines the low-level routines +** used to allocate and use mutexes. +** +** Usually, the default mutex implementations provided by SQLite are +** sufficient, however the user has the option of substituting a custom +** implementation for specialized deployments or systems for which SQLite +** does not provide a suitable implementation. In this case, the user +** creates and populates an instance of this structure to pass +** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option. +** Additionally, an instance of this structure can be used as an +** output variable when querying the system for the current mutex +** implementation, using the [SQLITE_CONFIG_GETMUTEX] option. +** +** The xMutexInit method defined by this structure is invoked as +** part of system initialization by the sqlite3_initialize() function. +** {H17001} The xMutexInit routine shall be called by SQLite once for each +** effective call to [sqlite3_initialize()]. +** +** The xMutexEnd method defined by this structure is invoked as +** part of system shutdown by the sqlite3_shutdown() function. The +** implementation of this method is expected to release all outstanding +** resources obtained by the mutex methods implementation, especially +** those obtained by the xMutexInit method. {H17003} The xMutexEnd() +** interface shall be invoked once for each call to [sqlite3_shutdown()]. +** +** The remaining seven methods defined by this structure (xMutexAlloc, +** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and +** xMutexNotheld) implement the following interfaces (respectively): +** +**
        +**
      • [sqlite3_mutex_alloc()]
      • +**
      • [sqlite3_mutex_free()]
      • +**
      • [sqlite3_mutex_enter()]
      • +**
      • [sqlite3_mutex_try()]
      • +**
      • [sqlite3_mutex_leave()]
      • +**
      • [sqlite3_mutex_held()]
      • +**
      • [sqlite3_mutex_notheld()]
      • +**
      +** +** The only difference is that the public sqlite3_XXX functions enumerated +** above silently ignore any invocations that pass a NULL pointer instead +** of a valid mutex handle. The implementations of the methods defined +** by this structure are not required to handle this case, the results +** of passing a NULL pointer instead of a valid mutex handle are undefined +** (i.e. it is acceptable to provide an implementation that segfaults if +** it is passed a NULL pointer). +*/ +typedef struct sqlite3_mutex_methods sqlite3_mutex_methods; +struct sqlite3_mutex_methods { + int (*xMutexInit)(void); + int (*xMutexEnd)(void); + sqlite3_mutex *(*xMutexAlloc)(int); + void (*xMutexFree)(sqlite3_mutex *); + void (*xMutexEnter)(sqlite3_mutex *); + int (*xMutexTry)(sqlite3_mutex *); + void (*xMutexLeave)(sqlite3_mutex *); + int (*xMutexHeld)(sqlite3_mutex *); + int (*xMutexNotheld)(sqlite3_mutex *); +}; + +/* +** CAPI3REF: Mutex Verification Routines {H17080} ** ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines -** are intended for use inside assert() statements. {F17081} The SQLite core +** are intended for use inside assert() statements. {H17081} The SQLite core ** never uses these routines except inside an assert() and applications -** are advised to follow the lead of the core. {F17082} The core only +** are advised to follow the lead of the core. {H17082} The core only ** provides implementations for these routines when it is compiled -** with the SQLITE_DEBUG flag. {U17087} External mutex implementations +** with the SQLITE_DEBUG flag. {A17087} External mutex implementations ** are only required to provide these routines if SQLITE_DEBUG is ** defined and if NDEBUG is not defined. ** -** {F17083} These routines should return true if the mutex in their argument -** is held or not held, respectively, by the calling thread. {END} +** {H17083} These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. ** ** {X17084} The implementation is not required to provided versions of these -** routines that actually work. -** If the implementation does not provide working -** versions of these routines, it should at least provide stubs -** that always return true so that one does not get spurious -** assertion failures. {END} +** routines that actually work. If the implementation does not provide working +** versions of these routines, it should at least provide stubs that always +** return true so that one does not get spurious assertion failures. ** -** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then +** {H17085} If the argument to sqlite3_mutex_held() is a NULL pointer then ** the routine should return 1. {END} This seems counter-intuitive since ** clearly the mutex cannot be held if it does not exist. But the ** the reason the mutex does not exist is because the build is not ** using mutexes. And we do not want the assert() containing the ** call to sqlite3_mutex_held() to fail, so a non-zero return is -** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld() +** the appropriate thing to do. {H17086} The sqlite3_mutex_notheld() ** interface should also return 1 when given a NULL pointer. */ int sqlite3_mutex_held(sqlite3_mutex*); int sqlite3_mutex_notheld(sqlite3_mutex*); /* -** CAPI3REF: Mutex Types {F17001} +** CAPI3REF: Mutex Types {H17001} ** -** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument -** which is one of these integer constants. {END} +** The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. +** +** The set of static mutexes may change from one SQLite release to the +** next. Applications that override the built-in mutex logic must be +** prepared to accommodate additional static mutexes. */ #define SQLITE_MUTEX_FAST 0 #define SQLITE_MUTEX_RECURSIVE 1 @@ -3799,26 +6047,27 @@ int sqlite3_mutex_notheld(sqlite3_mutex*); #define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */ #define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ #define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ +#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */ /* -** CAPI3REF: Low-Level Control Of Database Files {F11300} +** CAPI3REF: Low-Level Control Of Database Files {H11300} ** -** {F11301} The [sqlite3_file_control()] interface makes a direct call to the +** {H11301} The [sqlite3_file_control()] interface makes a direct call to the ** xFileControl method for the [sqlite3_io_methods] object associated -** with a particular database identified by the second argument. {F11302} The +** with a particular database identified by the second argument. {H11302} The ** name of the database is the name assigned to the database by the ** ATTACH SQL command that opened the -** database. {F11303} To control the main database file, use the name "main" -** or a NULL pointer. {F11304} The third and fourth parameters to this routine +** database. {H11303} To control the main database file, use the name "main" +** or a NULL pointer. {H11304} The third and fourth parameters to this routine ** are passed directly through to the second and third parameters of -** the xFileControl method. {F11305} The return value of the xFileControl +** the xFileControl method. {H11305} The return value of the xFileControl ** method becomes the return value of this routine. ** -** {F11306} If the second parameter (zDbName) does not match the name of any -** open database file, then SQLITE_ERROR is returned. {F11307} This error +** {H11306} If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. {H11307} This error ** code is not remembered and will not be recalled by [sqlite3_errcode()] -** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might -** also return SQLITE_ERROR. {U11309} There is no way to distinguish between +** or [sqlite3_errmsg()]. {A11308} The underlying xFileControl method might +** also return SQLITE_ERROR. {A11309} There is no way to distinguish between ** an incorrect zDbName and an SQLITE_ERROR return from the underlying ** xFileControl method. {END} ** @@ -3827,6 +6076,196 @@ int sqlite3_mutex_notheld(sqlite3_mutex*); int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); /* +** CAPI3REF: Testing Interface {H11400} +** +** The sqlite3_test_control() interface is used to read out internal +** state of SQLite and to inject faults into SQLite for testing +** purposes. The first parameter is an operation code that determines +** the number, meaning, and operation of all subsequent parameters. +** +** This interface is not for use by applications. It exists solely +** for verifying the correct operation of the SQLite library. Depending +** on how the SQLite library is compiled, this interface might not exist. +** +** The details of the operation codes, their meanings, the parameters +** they take, and what they do are all subject to change without notice. +** Unlike most of the SQLite API, this function is not guaranteed to +** operate consistently from one release to the next. +*/ +int sqlite3_test_control(int op, ...); + +/* +** CAPI3REF: Testing Interface Operation Codes {H11410} +** +** These constants are the valid operation code parameters used +** as the first argument to [sqlite3_test_control()]. +** +** These parameters and their meanings are subject to change +** without notice. These values are for testing purposes only. +** Applications should not use any of these parameters or the +** [sqlite3_test_control()] interface. +*/ +#define SQLITE_TESTCTRL_PRNG_SAVE 5 +#define SQLITE_TESTCTRL_PRNG_RESTORE 6 +#define SQLITE_TESTCTRL_PRNG_RESET 7 +#define SQLITE_TESTCTRL_BITVEC_TEST 8 +#define SQLITE_TESTCTRL_FAULT_INSTALL 9 +#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10 + +/* +** CAPI3REF: SQLite Runtime Status {H17200} +** EXPERIMENTAL +** +** This interface is used to retrieve runtime status information +** about the preformance of SQLite, and optionally to reset various +** highwater marks. The first argument is an integer code for +** the specific parameter to measure. Recognized integer codes +** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...]. +** The current value of the parameter is returned into *pCurrent. +** The highest recorded value is returned in *pHighwater. If the +** resetFlag is true, then the highest record value is reset after +** *pHighwater is written. Some parameters do not record the highest +** value. For those parameters +** nothing is written into *pHighwater and the resetFlag is ignored. +** Other parameters record only the highwater mark and not the current +** value. For these latter parameters nothing is written into *pCurrent. +** +** This routine returns SQLITE_OK on success and a non-zero +** [error code] on failure. +** +** This routine is threadsafe but is not atomic. This routine can +** called while other threads are running the same or different SQLite +** interfaces. However the values returned in *pCurrent and +** *pHighwater reflect the status of SQLite at different points in time +** and it is possible that another thread might change the parameter +** in between the times when *pCurrent and *pHighwater are written. +** +** See also: [sqlite3_db_status()] +*/ +int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag); + +/* +** CAPI3REF: Database Connection Status {H17201} +** EXPERIMENTAL +** +** This interface is used to retrieve runtime status information +** about a single [database connection]. The first argument is the +** database connection object to be interrogated. The second argument +** is the parameter to interrogate. Currently, the only allowed value +** for the second parameter is [SQLITE_DBSTATUS_LOOKASIDE_USED]. +** Additional options will likely appear in future releases of SQLite. +** +** The current value of the request parameter is written into *pCur +** and the highest instantaneous value is written into *pHiwtr. If +** the resetFlg is true, then the highest instantaneous value is +** reset back down to the current value. +** +** See also: [sqlite3_status()]. +*/ +int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); + +/* +** CAPI3REF: Status Parameters {H17250} +** EXPERIMENTAL +** +** These integer constants designate various run-time status parameters +** that can be returned by [sqlite3_status()]. +** +**
      +**
      SQLITE_STATUS_MEMORY_USED
      +**
      This parameter is the current amount of memory checked out +** using [sqlite3_malloc()], either directly or indirectly. The +** figure includes calls made to [sqlite3_malloc()] by the application +** and internal memory usage by the SQLite library. Scratch memory +** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache +** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in +** this parameter. The amount returned is the sum of the allocation +** sizes as reported by the xSize method in [sqlite3_mem_methods].
      +** +**
      SQLITE_STATUS_MALLOC_SIZE
      +**
      This parameter records the largest memory allocation request +** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their +** internal equivalents). Only the value returned in the +** *pHighwater parameter to [sqlite3_status()] is of interest. +** The value written into the *pCurrent parameter is undefined.
      +** +**
      SQLITE_STATUS_PAGECACHE_USED
      +**
      This parameter returns the number of pages used out of the +** [pagecache memory allocator] that was configured using +** [SQLITE_CONFIG_PAGECACHE]. The +** value returned is in pages, not in bytes.
      +** +**
      SQLITE_STATUS_PAGECACHE_OVERFLOW
      +**
      This parameter returns the number of bytes of page cache +** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE] +** buffer and where forced to overflow to [sqlite3_malloc()]. The +** returned value includes allocations that overflowed because they +** where too large (they were larger than the "sz" parameter to +** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because +** no space was left in the page cache.
      +** +**
      SQLITE_STATUS_PAGECACHE_SIZE
      +**
      This parameter records the largest memory allocation request +** handed to [pagecache memory allocator]. Only the value returned in the +** *pHighwater parameter to [sqlite3_status()] is of interest. +** The value written into the *pCurrent parameter is undefined.
      +** +**
      SQLITE_STATUS_SCRATCH_USED
      +**
      This parameter returns the number of allocations used out of the +** [scratch memory allocator] configured using +** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not +** in bytes. Since a single thread may only have one scratch allocation +** outstanding at time, this parameter also reports the number of threads +** using scratch memory at the same time.
      +** +**
      SQLITE_STATUS_SCRATCH_OVERFLOW
      +**
      This parameter returns the number of bytes of scratch memory +** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH] +** buffer and where forced to overflow to [sqlite3_malloc()]. The values +** returned include overflows because the requested allocation was too +** larger (that is, because the requested allocation was larger than the +** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer +** slots were available. +**
      +** +**
      SQLITE_STATUS_SCRATCH_SIZE
      +**
      This parameter records the largest memory allocation request +** handed to [scratch memory allocator]. Only the value returned in the +** *pHighwater parameter to [sqlite3_status()] is of interest. +** The value written into the *pCurrent parameter is undefined.
      +** +**
      SQLITE_STATUS_PARSER_STACK
      +**
      This parameter records the deepest parser stack. It is only +** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].
      +**
      +** +** New status parameters may be added from time to time. +*/ +#define SQLITE_STATUS_MEMORY_USED 0 +#define SQLITE_STATUS_PAGECACHE_USED 1 +#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2 +#define SQLITE_STATUS_SCRATCH_USED 3 +#define SQLITE_STATUS_SCRATCH_OVERFLOW 4 +#define SQLITE_STATUS_MALLOC_SIZE 5 +#define SQLITE_STATUS_PARSER_STACK 6 +#define SQLITE_STATUS_PAGECACHE_SIZE 7 +#define SQLITE_STATUS_SCRATCH_SIZE 8 + +/* +** CAPI3REF: Status Parameters for database connections {H17275} +** EXPERIMENTAL +** +** Status verbs for [sqlite3_db_status()]. +** +**
      +**
      SQLITE_DBSTATUS_LOOKASIDE_USED
      +**
      This parameter returns the number of lookaside memory slots currently +** checked out.
      +**
      +*/ +#define SQLITE_DBSTATUS_LOOKASIDE_USED 0 + +/* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */