X-Git-Url: https://git.pterodactylus.net/?a=blobdiff_plain;f=synfig-core%2Fsrc%2Fsynfig%2Fgradient.cpp;fp=synfig-core%2Fsrc%2Fsynfig%2Fgradient.cpp;h=00f67b04562925c8f2daa0d59b357f05bd3e1a85;hb=a095981e18cc37a8ecc7cd237cc22b9c10329264;hp=0000000000000000000000000000000000000000;hpb=9459638ad6797b8139f1e9f0715c96076dbf0890;p=synfig.git diff --git a/synfig-core/src/synfig/gradient.cpp b/synfig-core/src/synfig/gradient.cpp new file mode 100644 index 0000000..00f67b0 --- /dev/null +++ b/synfig-core/src/synfig/gradient.cpp @@ -0,0 +1,574 @@ +/* === S Y N F I G ========================================================= */ +/*! \file gradient.cpp +** \brief Color Gradient Class Member Definitions +** +** $Id$ +** +** \legal +** Copyright (c) 2002-2005 Robert B. Quattlebaum Jr., Adrian Bentley +** Copyright (c) 2007 Chris Moore +** +** This package is free software; you can redistribute it and/or +** modify it under the terms of the GNU General Public License as +** published by the Free Software Foundation; either version 2 of +** the License, or (at your option) any later version. +** +** This package is distributed in the hope that it will be useful, +** but WITHOUT ANY WARRANTY; without even the implied warranty of +** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +** General Public License for more details. +** \endlegal +*/ +/* ========================================================================= */ + +/* === H E A D E R S ======================================================= */ + +#ifdef USING_PCH +# include "pch.h" +#else +#ifdef HAVE_CONFIG_H +# include +#endif + +#include "gradient.h" +#include "general.h" +#include +#include "exception.h" +#include + +#include +#endif + +/* === U S I N G =========================================================== */ + +using namespace std; +using namespace etl; +using namespace synfig; + +/* === M A C R O S ========================================================= */ + +/* === G L O B A L S ======================================================= */ + +/* === P R O C E D U R E S ================================================= */ + +/* === M E T H O D S ======================================================= */ + +synfig::Gradient::Gradient(const Color &c1, const Color &c2) +{ + push_back(CPoint(0.0,c1)); + push_back(CPoint(1.0,c2)); +} + +synfig::Gradient::Gradient(const Color &c1, const Color &c2, const Color &c3) +{ + push_back(CPoint(0.0,c1)); + push_back(CPoint(0.5,c2)); + push_back(CPoint(1.0,c3)); +} + +// This sort algorithm MUST be stable +// ie: it must not change the order of items with the same value. +// I am using a bubble sort. +// This algorithm will sort a nearly-sorted list at ~O(N), and +// it will sort an inverse sorted list at ~O(N*N). +void +synfig::Gradient::sort() +{ + stable_sort(begin(),end()); + /* + iterator iter; + iterator iter2,next; + + for(iter=begin();iter!=end();iter++) + { + for(next=iter, iter2=next--;iter2!=begin();iter2=next--) + { + if(*iter<*next) + { + //insert(next,*iter); + //erase(iter); + iter_swap(next,iter); + + continue; + } + else + break; + } + } + */ +} + +static synfig::ColorAccumulator +supersample_helper(const synfig::Gradient::CPoint &color1, const synfig::Gradient::CPoint &color2, float begin, float end, float &weight) +{ + if(color1.pos==color2.pos || color1.pos>=end || color2.pos<=begin) + { + weight=0; + return Color::alpha(); + } + if(color1.pos>=begin && color2.pos=begin && color2.pos>=end) + { + weight=end-color1.pos; + float pos((end+color1.pos)*0.5); + float amount((pos-color1.pos)/(color2.pos-color1.pos)); + //if(abs(amount)>1)amount=(amount>0)?1:-1; + ColorAccumulator ret(Color::blend(color2.color,color1.color, amount, Color::BLEND_STRAIGHT).premult_alpha()*weight); + return ret; + } + if(color1.pos1)amount=(amount>0)?1:-1; + ColorAccumulator ret(Color::blend(color2.color,color1.color, amount, Color::BLEND_STRAIGHT).premult_alpha()*weight); + return ret; + } + synfig::error("color1.pos=%f",color1.pos); + synfig::error("color2.pos=%f",color2.pos); + synfig::error("begin=%f",begin); + synfig::error("end=%f",end); + + weight=0; + return Color::alpha(); + +// assert(0); +} + +static void show_gradient(const Gradient::CPointList x) +{ + int i = 0; + for (Gradient::const_iterator iter = x.begin(); iter != x.end(); iter++) + printf("%3d : %.3f %s\n", i++, (*iter).pos, (*iter).color.get_string().c_str()); +} + +Gradient & +synfig::Gradient::operator+=(const Gradient &rhs) +{ + bool print=false; // for debugging + if (print) { printf("\nadding lhs:\n"); show_gradient(this->cpoints); printf("\n"); } + if (print) { printf("adding rhs:\n"); show_gradient(rhs.cpoints); printf("\n"); } + CPointList ret; + const_iterator iter1 = begin(), iter2 = rhs.begin(), left_same, right_same; + CPoint left, right; + if (iter1 != end()) left = *iter1; + if (iter2 != rhs.end()) right = *iter2; + int pos1 = 0, pos2 = 0; + CPoint old1, old2; + + // if there are cpoints in both gradients run through both until one runs out + if (iter1 != end() && iter2 != rhs.end()) + while(true) + // if the left one has the first cpoint + if (left.pos < right.pos) + { + // add on the right gradient's value at this point + if (print) printf("using pos %.2f from left %d in loop\n", left.pos, pos1++); + ret.push_back(CPoint(left.pos, left.color + rhs(left.pos))); + if(++iter1 == end()) break; + left=*iter1; + } + // if the right one has the first cpoint + else if (left.pos > right.pos) + { + // add on the left gradient's value at this point + if (print) printf("using pos %.2f from right %d in loop\n", right.pos, pos2++); + ret.push_back(CPoint(right.pos, right.color + (*this)(right.pos))); + if(++iter2 == rhs.end()) break; + right=*iter2; + } + // they both have a cpoint at the same time + else + { + int tpos1 = pos1, tpos2 = pos2; + // skip past all cpoints at the same position + for(left_same = ++iter1; iter1 != end() && (*iter1).pos == left.pos; iter1++, pos1++) + if (print) printf("skipping past pos %d in left\n", pos1); + for(right_same = ++iter2; iter2 != rhs.end() && (*iter2).pos == right.pos; iter2++, pos2++) + if (print) printf("skipping past pos %d in right\n", pos2); + + // if there is only one cpoint at this position in each gradient, + // there's only one corresponding cpoint in the sum + if (iter1 == left_same && iter2 == right_same) + { + if (print) printf("two singles at left %d and right %d\n", pos1++, pos2++); + ret.push_back(CPoint(left.pos, left.color + right.color)); + } + // otherwise we sum the first in each, and the last in each + else + { + if (print) printf("[copying %ld from left %d and %ld from right %d at %.2f]\n", iter1-left_same+1, tpos1, iter2-right_same+1, tpos2, left.pos); + // merge the front two cpoints + if (print) printf(" copy front from left %d right %d\n", tpos1++, tpos2++); + ret.push_back(CPoint(left.pos, left.color + right.color)); + + // merge the middle pairs of points - each middle point merges with its counterpart + while(left_same < iter1-1 && right_same < iter2-1) + { + old1 = *(left_same++); + old2 = *(right_same++); + if (print) printf(" copy middle from left %d and right %d\n", tpos1++, tpos2++); + ret.push_back(CPoint(old1.pos, old1.color+old2.color)); + } + // if one gradient has more middle points than the other, merge the rest with the last point in the other gradient + for(old2 = (*(iter2-1)); left_same < iter1-1; left_same++) + { + old1 = *left_same; + if (print) printf(" copy middle from left %d plus end of right\n", tpos1++); + ret.push_back(CPoint(old1.pos, old1.color + old2.color)); + } + for(old1 = (*(iter1-1)); right_same < iter2-1; right_same++) + { + old2 = *right_same; + if (print) printf(" copy middle from right %d plus end of left\n", tpos2++); + ret.push_back(CPoint(old2.pos, old1.color + old2.color)); + } + // merge the back two cpoints + if (print) printf(" copy end from left %d right %d\n", pos1++, pos2++); + ret.push_back(CPoint(left.pos, (*(iter1-1)).color + (*(iter2-1)).color)); + } + // make sure we update 'left' and 'right' + if (iter1 != end()) left=*iter1; + if (iter2 == rhs.end()) break; + right = *iter2; + if (iter1 == end()) break; + } + + // one of the gradients has run out of points + // does the left one have points left? + if (iter1 != end()) + while(true) + { + if (print) printf("finish end from left %d\n", pos1++); + ret.push_back(CPoint(left.pos, left.color + rhs(left.pos))); + if(++iter1 == end()) break; + left = *iter1; + } + // the left one was empty, so maybe the right one has points left + else if (iter2 != rhs.end()) + while(true) + { + if (print) printf("finish end from right %d\n", pos2++); + ret.push_back(CPoint(right.pos, right.color + (*this)(right.pos))); + if(++iter2 == rhs.end()) break; + right = *iter2; + } + + if (print) { printf("\nsummed ret:\n"); show_gradient(ret); printf("\n"); } + cpoints = ret; + return *this; +} + +Gradient & +synfig::Gradient::operator-=(const Gradient &rhs) +{ + return (*this)+=(rhs*-1); +} + +Gradient & +synfig::Gradient::operator*=(const float &rhs) +{ + if (rhs == 0) + cpoints.clear(); + else + for (iterator iter = cpoints.begin(); iter!=cpoints.end(); iter++) + (*iter).color *= rhs; + return *this; +} + +Gradient & +synfig::Gradient::operator/=(const float &rhs) +{ + for (iterator iter = cpoints.begin(); iter!=cpoints.end(); iter++) + (*iter).color /= rhs; + return *this; +} + +Color +synfig::Gradient::operator()(const Real &x,float supersample)const +{ + if(cpoints.empty()) + return Color(0,0,0,0); + if(supersample<0) + supersample=-supersample; + if(supersample>2.0) + supersample=2.0f; + + float begin_sample(x-supersample*0.5); + float end_sample(x+supersample*0.5); + + if(cpoints.size()==1 || end_sample<=cpoints.front().pos || isnan(x)) + return cpoints.front().color; + + if(begin_sample>=cpoints.back().pos) + return cpoints.back().color; + + /* + if(end_sample>=back().pos) + end_sample=back().pos; + + if(begin_sample<=front().pos) + begin_sample=front().pos; + */ + + const_iterator iter,next; + + /* + //optimize... + Real left = x-supersample/2, right = x+supersample/2; + + if(left < front().pos) left = front().pos; + if(right > back().pos) right = back().pos; + + //find using binary search... + const_iterator iterl,iterr; + + //the binary search should give us the values BEFORE the point we're looking for... + iterl = binary_find(begin(),end(),left); + iterr = binary_find(iterl,end(),right); + + //now integrate over the range of left to right... + + if(iterl == iterr) + { + iterr++; //let's look at the next one shall we :) + + //interpolate neighboring colors + const Real one = iterr->pos - iterl->pos; + const Real lambda = (x - iterl->pos)/one; + + //(1-l)iterl + (l)iterr + return iterl->color.premult_alpha()*(1-lambda) + iterr->color.premult_alpha()*lambda; + + //return Color::blend(iterr->color,iterl->color,lambda,Color::BLEND_STRAIGHT); + }else + { + //integration madness + const_iterator i = iterl, ie = iterr+1; + Real wlast = left; + + ColorAccumulator clast,cwork; + { + const Real lambda = (x - iterl->pos)/(iterr->pos - iterl->pos); + + //premultiply because that's the form in which we can combine things... + clast = iterl->color.premult_alpha()*(1-lambda) + iterr->color.premult_alpha()*lambda; + //Color::blend((i+1)->color,i->color,(left - i->pos)/((i+1)->pos - i->pos),Color::BLEND_STRAIGHT); + } + + ColorAccumulator accum = 0; + + //loop through all the trapezoids and integrate them as we go... + // area of trap = (yi + yi1)*(xi1 - xi) + // yi = clast, xi = wlast, yi1 = i->color, xi1 = i->pos + + for(;i<=iterr; wlast=i->pos,clast=i->color.premult_alpha(),++i) + { + const Real diff = i->pos - wlast; + if(diff > 0) //only accumulate if there will be area to add + { + cwork = i->color.premult_alpha(); + accum += (cwork + clast)*diff; + } + } + + { + const_iterator ibef = i-1; + const Real diff = right - ibef->pos; + + if(diff > 0) + { + const Real lambda = diff/(i->pos - ibef->pos); + cwork = ibef->color.premult_alpha()*(1-lambda) + i->color.premult_alpha()*lambda; + + accum += (cwork + clast)*diff; //can probably optimize this more... but it's not too bad + } + } + + accum /= supersample; //should be the total area it was sampled over... + return accum.demult_alpha(); + }*/ + + next=begin(),iter=next++; + + //add for optimization + next = binary_find(begin(),end(),(Real)begin_sample); + iter = next++; + + //! As a future optimization, this could be performed faster + //! using a binary search. + for(;iter=iter->pos && xpos && iter->pos!=next->pos)) + { + // If the supersample region falls square in between + // two CPoints, then we don't have to do anything special. + if(next!=end() && (!supersample || (iter->pos<=begin_sample && next->pos>=end_sample))) + { + const Real dist(next->pos-iter->pos); + const Real pos(x-iter->pos); + const Real amount(pos/dist); + return Color::blend(next->color,iter->color, amount, Color::BLEND_STRAIGHT); + } + // In this case our supersample region extends over one or more + // CPoints. So, we need to calculate our coverage amount. + ColorAccumulator pool(Color::alpha()); + float divisor(0.0),weight(0); + + const_iterator iter2,next2; + iter2=iter; + if(iter==begin() && iter->pos>x) + { + weight=x-iter->pos; + //weight*=iter->color.get_a(); + pool+=ColorAccumulator(iter->color).premult_alpha()*weight; + divisor+=weight; + } + else + { + while(iter2->pos>=begin_sample) + { + if(iter2==begin()) + { + weight=iter2->pos-(begin_sample); + //weight*=iter2->color.get_a(); + pool+=ColorAccumulator(iter2->color).premult_alpha()*weight; + divisor+=weight; + break; + } + next2=iter2--; + pool+=supersample_helper(*iter2, *next2, begin_sample, end_sample, weight); + divisor+=weight; + } + } + + next2=iter; + iter2=next2++; + while(iter2->pos<=end_sample) + { + if(next2==end()) + { + weight=(end_sample)-iter2->pos; + pool+=ColorAccumulator(iter2->color).premult_alpha()*weight; + divisor+=weight; + break; + } + pool+=supersample_helper(*iter2, *next2, begin_sample, end_sample, weight); + divisor+=weight; + iter2=next2++; + } + + if(divisor && pool.get_a() && pool.is_valid()) + { +/* + pool.set_r(pool.get_r()/pool.get_a()); + pool.set_g(pool.get_g()/pool.get_a()); + pool.set_b(pool.get_b()/pool.get_a()); + pool.set_a(pool.get_a()/divisor); +*/ + pool/=divisor; + pool.set_r(pool.get_r()/pool.get_a()); + pool.set_g(pool.get_g()/pool.get_a()); + pool.set_b(pool.get_b()/pool.get_a()); + if(pool.is_valid()) + return pool; + else + return Color::alpha(); + } + else + return Color::alpha(); + } + } + + // We should never get to this point. + + synfig::error("synfig::Gradient::operator()(): Logic Error (x=%f)",x); + assert(0); + throw std::logic_error(strprintf("synfig::Gradient::operator()(): Logic Error (x=%f)",x)); +} + +synfig::Gradient::iterator +synfig::Gradient::proximity(const Real &x) +{ + iterator iter; + float dist(100000000); + float prev_pos(-0230); + // This algorithm requires a sorted list. + for(iter=begin();iterpos) + new_dist=(abs(x-iter->pos-0.00001)); + else + new_dist=(abs(x-iter->pos)); + + if(new_dist>dist) + { + iter--; + return iter; + } + dist=new_dist; + prev_pos=iter->pos; + } + iter--; + return iter; +} + +synfig::Gradient::const_iterator +synfig::Gradient::proximity(const Real &x)const +{ + return const_cast(this)->proximity(x); + /* + const_iterator iter; + float dist(100000000); + + // This algorithm requires a sorted list. + for(iter=begin();iterpos)); + if(new_dist>dist) + { + iter--; + return iter; + } + dist=new_dist; + } + iter--; + return iter; + */ +} + +synfig::Gradient::iterator +synfig::Gradient::find(const UniqueID &id) +{ + iterator iter; + + for(iter=begin();iter