X-Git-Url: https://git.pterodactylus.net/?a=blobdiff_plain;f=synfig-core%2Ftags%2Fsynfig_0_61_03%2Fsynfig-core%2Fsrc%2Fmodules%2Fmod_libavcodec%2Flibavcodec%2Fmpegaudiodec.c;fp=synfig-core%2Ftags%2Fsynfig_0_61_03%2Fsynfig-core%2Fsrc%2Fmodules%2Fmod_libavcodec%2Flibavcodec%2Fmpegaudiodec.c;h=0000000000000000000000000000000000000000;hb=3a6643238c67c043fc3592837a05d6d2861967f1;hp=51c8ef1305afefb92ba5ad9ab578f45539481af5;hpb=47fce282611fbba1044921d22ca887f9b53ad91a;p=synfig.git diff --git a/synfig-core/tags/synfig_0_61_03/synfig-core/src/modules/mod_libavcodec/libavcodec/mpegaudiodec.c b/synfig-core/tags/synfig_0_61_03/synfig-core/src/modules/mod_libavcodec/libavcodec/mpegaudiodec.c deleted file mode 100644 index 51c8ef1..0000000 --- a/synfig-core/tags/synfig_0_61_03/synfig-core/src/modules/mod_libavcodec/libavcodec/mpegaudiodec.c +++ /dev/null @@ -1,2608 +0,0 @@ -/* - * MPEG Audio decoder - * Copyright (c) 2001, 2002 Fabrice Bellard. - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - */ - -/** - * @file mpegaudiodec.c - * MPEG Audio decoder. - */ - -//#define DEBUG -#include "avcodec.h" -#include "mpegaudio.h" - -/* - * TODO: - * - in low precision mode, use more 16 bit multiplies in synth filter - * - test lsf / mpeg25 extensively. - */ - -/* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg - audio decoder */ -#ifdef CONFIG_MPEGAUDIO_HP -#define USE_HIGHPRECISION -#endif - -#ifdef USE_HIGHPRECISION -#define FRAC_BITS 23 /* fractional bits for sb_samples and dct */ -#define WFRAC_BITS 16 /* fractional bits for window */ -#else -#define FRAC_BITS 15 /* fractional bits for sb_samples and dct */ -#define WFRAC_BITS 14 /* fractional bits for window */ -#endif - -#define FRAC_ONE (1 << FRAC_BITS) - -#define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS) -#define MUL64(a,b) ((int64_t)(a) * (int64_t)(b)) -#define FIX(a) ((int)((a) * FRAC_ONE)) -/* WARNING: only correct for posititive numbers */ -#define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) -#define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS) - -#if FRAC_BITS <= 15 -typedef int16_t MPA_INT; -#else -typedef int32_t MPA_INT; -#endif - -/****************/ - -#define HEADER_SIZE 4 -#define BACKSTEP_SIZE 512 - -typedef struct MPADecodeContext { - uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */ - int inbuf_index; - uint8_t *inbuf_ptr, *inbuf; - int frame_size; - int free_format_frame_size; /* frame size in case of free format - (zero if currently unknown) */ - /* next header (used in free format parsing) */ - uint32_t free_format_next_header; - int error_protection; - int layer; - int sample_rate; - int sample_rate_index; /* between 0 and 8 */ - int bit_rate; - int old_frame_size; - GetBitContext gb; - int nb_channels; - int mode; - int mode_ext; - int lsf; - MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16))); - int synth_buf_offset[MPA_MAX_CHANNELS]; - int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16))); - int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */ -#ifdef DEBUG - int frame_count; -#endif -} MPADecodeContext; - -/* layer 3 "granule" */ -typedef struct GranuleDef { - uint8_t scfsi; - int part2_3_length; - int big_values; - int global_gain; - int scalefac_compress; - uint8_t block_type; - uint8_t switch_point; - int table_select[3]; - int subblock_gain[3]; - uint8_t scalefac_scale; - uint8_t count1table_select; - int region_size[3]; /* number of huffman codes in each region */ - int preflag; - int short_start, long_end; /* long/short band indexes */ - uint8_t scale_factors[40]; - int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */ -} GranuleDef; - -#define MODE_EXT_MS_STEREO 2 -#define MODE_EXT_I_STEREO 1 - -/* layer 3 huffman tables */ -typedef struct HuffTable { - int xsize; - const uint8_t *bits; - const uint16_t *codes; -} HuffTable; - -#include "mpegaudiodectab.h" - -/* vlc structure for decoding layer 3 huffman tables */ -static VLC huff_vlc[16]; -static uint8_t *huff_code_table[16]; -static VLC huff_quad_vlc[2]; -/* computed from band_size_long */ -static uint16_t band_index_long[9][23]; -/* XXX: free when all decoders are closed */ -#define TABLE_4_3_SIZE (8191 + 16) -static int8_t *table_4_3_exp; -#if FRAC_BITS <= 15 -static uint16_t *table_4_3_value; -#else -static uint32_t *table_4_3_value; -#endif -/* intensity stereo coef table */ -static int32_t is_table[2][16]; -static int32_t is_table_lsf[2][2][16]; -static int32_t csa_table[8][2]; -static int32_t mdct_win[8][36]; - -/* lower 2 bits: modulo 3, higher bits: shift */ -static uint16_t scale_factor_modshift[64]; -/* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */ -static int32_t scale_factor_mult[15][3]; -/* mult table for layer 2 group quantization */ - -#define SCALE_GEN(v) \ -{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) } - -static int32_t scale_factor_mult2[3][3] = { - SCALE_GEN(4.0 / 3.0), /* 3 steps */ - SCALE_GEN(4.0 / 5.0), /* 5 steps */ - SCALE_GEN(4.0 / 9.0), /* 9 steps */ -}; - -/* 2^(n/4) */ -static uint32_t scale_factor_mult3[4] = { - FIXR(1.0), - FIXR(1.18920711500272106671), - FIXR(1.41421356237309504880), - FIXR(1.68179283050742908605), -}; - -static MPA_INT window[512] __attribute__((aligned(16))); - -/* layer 1 unscaling */ -/* n = number of bits of the mantissa minus 1 */ -static inline int l1_unscale(int n, int mant, int scale_factor) -{ - int shift, mod; - int64_t val; - - shift = scale_factor_modshift[scale_factor]; - mod = shift & 3; - shift >>= 2; - val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]); - shift += n; - /* NOTE: at this point, 1 <= shift >= 21 + 15 */ - return (int)((val + (1LL << (shift - 1))) >> shift); -} - -static inline int l2_unscale_group(int steps, int mant, int scale_factor) -{ - int shift, mod, val; - - shift = scale_factor_modshift[scale_factor]; - mod = shift & 3; - shift >>= 2; - - val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod]; - /* NOTE: at this point, 0 <= shift <= 21 */ - if (shift > 0) - val = (val + (1 << (shift - 1))) >> shift; - return val; -} - -/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */ -static inline int l3_unscale(int value, int exponent) -{ -#if FRAC_BITS <= 15 - unsigned int m; -#else - uint64_t m; -#endif - int e; - - e = table_4_3_exp[value]; - e += (exponent >> 2); - e = FRAC_BITS - e; -#if FRAC_BITS <= 15 - if (e > 31) - e = 31; -#endif - m = table_4_3_value[value]; -#if FRAC_BITS <= 15 - m = (m * scale_factor_mult3[exponent & 3]); - m = (m + (1 << (e-1))) >> e; - return m; -#else - m = MUL64(m, scale_factor_mult3[exponent & 3]); - m = (m + (uint64_t_C(1) << (e-1))) >> e; - return m; -#endif -} - -/* all integer n^(4/3) computation code */ -#define DEV_ORDER 13 - -#define POW_FRAC_BITS 24 -#define POW_FRAC_ONE (1 << POW_FRAC_BITS) -#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE)) -#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS) - -static int dev_4_3_coefs[DEV_ORDER]; - -static int pow_mult3[3] = { - POW_FIX(1.0), - POW_FIX(1.25992104989487316476), - POW_FIX(1.58740105196819947474), -}; - -static void int_pow_init(void) -{ - int i, a; - - a = POW_FIX(1.0); - for(i=0;i= 0; j--) - a1 = POW_MULL(a, dev_4_3_coefs[j] + a1); - a = (1 << POW_FRAC_BITS) + a1; - /* exponent compute (exact) */ - e = e * 4; - er = e % 3; - eq = e / 3; - a = POW_MULL(a, pow_mult3[er]); - while (a >= 2 * POW_FRAC_ONE) { - a = a >> 1; - eq++; - } - /* convert to float */ - while (a < POW_FRAC_ONE) { - a = a << 1; - eq--; - } - /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */ -#if POW_FRAC_BITS > FRAC_BITS - a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS); - /* correct overflow */ - if (a >= 2 * (1 << FRAC_BITS)) { - a = a >> 1; - eq++; - } -#endif - *exp_ptr = eq; - return a; -} - -static int decode_init(AVCodecContext * avctx) -{ - MPADecodeContext *s = avctx->priv_data; - static int init=0; - int i, j, k; - - if (!init && !avctx->parse_only) { - /* scale factors table for layer 1/2 */ - for(i=0;i<64;i++) { - int shift, mod; - /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */ - shift = (i / 3); - mod = i % 3; - scale_factor_modshift[i] = mod | (shift << 2); - } - - /* scale factor multiply for layer 1 */ - for(i=0;i<15;i++) { - int n, norm; - n = i + 2; - norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1); - scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm); - scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm); - scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm); - dprintf("%d: norm=%x s=%x %x %x\n", - i, norm, - scale_factor_mult[i][0], - scale_factor_mult[i][1], - scale_factor_mult[i][2]); - } - - /* window */ - /* max = 18760, max sum over all 16 coefs : 44736 */ - for(i=0;i<257;i++) { - int v; - v = mpa_enwindow[i]; -#if WFRAC_BITS < 16 - v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS); -#endif - window[i] = v; - if ((i & 63) != 0) - v = -v; - if (i != 0) - window[512 - i] = v; - } - - /* huffman decode tables */ - huff_code_table[0] = NULL; - for(i=1;i<16;i++) { - const HuffTable *h = &mpa_huff_tables[i]; - int xsize, x, y; - unsigned int n; - uint8_t *code_table; - - xsize = h->xsize; - n = xsize * xsize; - /* XXX: fail test */ - init_vlc(&huff_vlc[i], 8, n, - h->bits, 1, 1, h->codes, 2, 2); - - code_table = av_mallocz(n); - j = 0; - for(x=0;x> 1; - e1++; - } -#endif - e1--; - if (m != m1 || e != e1) { - printf("%4d: m=%x m1=%x e=%d e1=%d\n", - i, m, m1, e, e1); - } - } -#endif - /* normalized to FRAC_BITS */ - table_4_3_value[i] = m; - table_4_3_exp[i] = e; - } - - for(i=0;i<7;i++) { - float f; - int v; - if (i != 6) { - f = tan((double)i * M_PI / 12.0); - v = FIXR(f / (1.0 + f)); - } else { - v = FIXR(1.0); - } - is_table[0][i] = v; - is_table[1][6 - i] = v; - } - /* invalid values */ - for(i=7;i<16;i++) - is_table[0][i] = is_table[1][i] = 0.0; - - for(i=0;i<16;i++) { - double f; - int e, k; - - for(j=0;j<2;j++) { - e = -(j + 1) * ((i + 1) >> 1); - f = pow(2.0, e / 4.0); - k = i & 1; - is_table_lsf[j][k ^ 1][i] = FIXR(f); - is_table_lsf[j][k][i] = FIXR(1.0); - dprintf("is_table_lsf %d %d: %x %x\n", - i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]); - } - } - - for(i=0;i<8;i++) { - float ci, cs, ca; - ci = ci_table[i]; - cs = 1.0 / sqrt(1.0 + ci * ci); - ca = cs * ci; - csa_table[i][0] = FIX(cs); - csa_table[i][1] = FIX(ca); - } - - /* compute mdct windows */ - for(i=0;i<36;i++) { - int v; - v = FIXR(sin(M_PI * (i + 0.5) / 36.0)); - mdct_win[0][i] = v; - mdct_win[1][i] = v; - mdct_win[3][i] = v; - } - for(i=0;i<6;i++) { - mdct_win[1][18 + i] = FIXR(1.0); - mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0)); - mdct_win[1][30 + i] = FIXR(0.0); - - mdct_win[3][i] = FIXR(0.0); - mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0)); - mdct_win[3][12 + i] = FIXR(1.0); - } - - for(i=0;i<12;i++) - mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0)); - - /* NOTE: we do frequency inversion adter the MDCT by changing - the sign of the right window coefs */ - for(j=0;j<4;j++) { - for(i=0;i<36;i+=2) { - mdct_win[j + 4][i] = mdct_win[j][i]; - mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1]; - } - } - -#if defined(DEBUG) - for(j=0;j<8;j++) { - printf("win%d=\n", j); - for(i=0;i<36;i++) - printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE); - printf("\n"); - } -#endif - init = 1; - } - - s->inbuf_index = 0; - s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE]; - s->inbuf_ptr = s->inbuf; -#ifdef DEBUG - s->frame_count = 0; -#endif - return 0; -} - -/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */ - -/* cos(i*pi/64) */ - -#define COS0_0 FIXR(0.50060299823519630134) -#define COS0_1 FIXR(0.50547095989754365998) -#define COS0_2 FIXR(0.51544730992262454697) -#define COS0_3 FIXR(0.53104259108978417447) -#define COS0_4 FIXR(0.55310389603444452782) -#define COS0_5 FIXR(0.58293496820613387367) -#define COS0_6 FIXR(0.62250412303566481615) -#define COS0_7 FIXR(0.67480834145500574602) -#define COS0_8 FIXR(0.74453627100229844977) -#define COS0_9 FIXR(0.83934964541552703873) -#define COS0_10 FIXR(0.97256823786196069369) -#define COS0_11 FIXR(1.16943993343288495515) -#define COS0_12 FIXR(1.48416461631416627724) -#define COS0_13 FIXR(2.05778100995341155085) -#define COS0_14 FIXR(3.40760841846871878570) -#define COS0_15 FIXR(10.19000812354805681150) - -#define COS1_0 FIXR(0.50241928618815570551) -#define COS1_1 FIXR(0.52249861493968888062) -#define COS1_2 FIXR(0.56694403481635770368) -#define COS1_3 FIXR(0.64682178335999012954) -#define COS1_4 FIXR(0.78815462345125022473) -#define COS1_5 FIXR(1.06067768599034747134) -#define COS1_6 FIXR(1.72244709823833392782) -#define COS1_7 FIXR(5.10114861868916385802) - -#define COS2_0 FIXR(0.50979557910415916894) -#define COS2_1 FIXR(0.60134488693504528054) -#define COS2_2 FIXR(0.89997622313641570463) -#define COS2_3 FIXR(2.56291544774150617881) - -#define COS3_0 FIXR(0.54119610014619698439) -#define COS3_1 FIXR(1.30656296487637652785) - -#define COS4_0 FIXR(0.70710678118654752439) - -/* butterfly operator */ -#define BF(a, b, c)\ -{\ - tmp0 = tab[a] + tab[b];\ - tmp1 = tab[a] - tab[b];\ - tab[a] = tmp0;\ - tab[b] = MULL(tmp1, c);\ -} - -#define BF1(a, b, c, d)\ -{\ - BF(a, b, COS4_0);\ - BF(c, d, -COS4_0);\ - tab[c] += tab[d];\ -} - -#define BF2(a, b, c, d)\ -{\ - BF(a, b, COS4_0);\ - BF(c, d, -COS4_0);\ - tab[c] += tab[d];\ - tab[a] += tab[c];\ - tab[c] += tab[b];\ - tab[b] += tab[d];\ -} - -#define ADD(a, b) tab[a] += tab[b] - -/* DCT32 without 1/sqrt(2) coef zero scaling. */ -static void dct32(int32_t *out, int32_t *tab) -{ - int tmp0, tmp1; - - /* pass 1 */ - BF(0, 31, COS0_0); - BF(1, 30, COS0_1); - BF(2, 29, COS0_2); - BF(3, 28, COS0_3); - BF(4, 27, COS0_4); - BF(5, 26, COS0_5); - BF(6, 25, COS0_6); - BF(7, 24, COS0_7); - BF(8, 23, COS0_8); - BF(9, 22, COS0_9); - BF(10, 21, COS0_10); - BF(11, 20, COS0_11); - BF(12, 19, COS0_12); - BF(13, 18, COS0_13); - BF(14, 17, COS0_14); - BF(15, 16, COS0_15); - - /* pass 2 */ - BF(0, 15, COS1_0); - BF(1, 14, COS1_1); - BF(2, 13, COS1_2); - BF(3, 12, COS1_3); - BF(4, 11, COS1_4); - BF(5, 10, COS1_5); - BF(6, 9, COS1_6); - BF(7, 8, COS1_7); - - BF(16, 31, -COS1_0); - BF(17, 30, -COS1_1); - BF(18, 29, -COS1_2); - BF(19, 28, -COS1_3); - BF(20, 27, -COS1_4); - BF(21, 26, -COS1_5); - BF(22, 25, -COS1_6); - BF(23, 24, -COS1_7); - - /* pass 3 */ - BF(0, 7, COS2_0); - BF(1, 6, COS2_1); - BF(2, 5, COS2_2); - BF(3, 4, COS2_3); - - BF(8, 15, -COS2_0); - BF(9, 14, -COS2_1); - BF(10, 13, -COS2_2); - BF(11, 12, -COS2_3); - - BF(16, 23, COS2_0); - BF(17, 22, COS2_1); - BF(18, 21, COS2_2); - BF(19, 20, COS2_3); - - BF(24, 31, -COS2_0); - BF(25, 30, -COS2_1); - BF(26, 29, -COS2_2); - BF(27, 28, -COS2_3); - - /* pass 4 */ - BF(0, 3, COS3_0); - BF(1, 2, COS3_1); - - BF(4, 7, -COS3_0); - BF(5, 6, -COS3_1); - - BF(8, 11, COS3_0); - BF(9, 10, COS3_1); - - BF(12, 15, -COS3_0); - BF(13, 14, -COS3_1); - - BF(16, 19, COS3_0); - BF(17, 18, COS3_1); - - BF(20, 23, -COS3_0); - BF(21, 22, -COS3_1); - - BF(24, 27, COS3_0); - BF(25, 26, COS3_1); - - BF(28, 31, -COS3_0); - BF(29, 30, -COS3_1); - - /* pass 5 */ - BF1(0, 1, 2, 3); - BF2(4, 5, 6, 7); - BF1(8, 9, 10, 11); - BF2(12, 13, 14, 15); - BF1(16, 17, 18, 19); - BF2(20, 21, 22, 23); - BF1(24, 25, 26, 27); - BF2(28, 29, 30, 31); - - /* pass 6 */ - - ADD( 8, 12); - ADD(12, 10); - ADD(10, 14); - ADD(14, 9); - ADD( 9, 13); - ADD(13, 11); - ADD(11, 15); - - out[ 0] = tab[0]; - out[16] = tab[1]; - out[ 8] = tab[2]; - out[24] = tab[3]; - out[ 4] = tab[4]; - out[20] = tab[5]; - out[12] = tab[6]; - out[28] = tab[7]; - out[ 2] = tab[8]; - out[18] = tab[9]; - out[10] = tab[10]; - out[26] = tab[11]; - out[ 6] = tab[12]; - out[22] = tab[13]; - out[14] = tab[14]; - out[30] = tab[15]; - - ADD(24, 28); - ADD(28, 26); - ADD(26, 30); - ADD(30, 25); - ADD(25, 29); - ADD(29, 27); - ADD(27, 31); - - out[ 1] = tab[16] + tab[24]; - out[17] = tab[17] + tab[25]; - out[ 9] = tab[18] + tab[26]; - out[25] = tab[19] + tab[27]; - out[ 5] = tab[20] + tab[28]; - out[21] = tab[21] + tab[29]; - out[13] = tab[22] + tab[30]; - out[29] = tab[23] + tab[31]; - out[ 3] = tab[24] + tab[20]; - out[19] = tab[25] + tab[21]; - out[11] = tab[26] + tab[22]; - out[27] = tab[27] + tab[23]; - out[ 7] = tab[28] + tab[18]; - out[23] = tab[29] + tab[19]; - out[15] = tab[30] + tab[17]; - out[31] = tab[31]; -} - -#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15) - -#if FRAC_BITS <= 15 - -static inline int round_sample(int sum) -{ - int sum1; - sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT; - if (sum1 < -32768) - sum1 = -32768; - else if (sum1 > 32767) - sum1 = 32767; - return sum1; -} - -#if defined(ARCH_POWERPC_405) - -/* signed 16x16 -> 32 multiply add accumulate */ -#define MACS(rt, ra, rb) \ - asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb)); - -/* signed 16x16 -> 32 multiply */ -#define MULS(ra, rb) \ - ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; }) - -#else - -/* signed 16x16 -> 32 multiply add accumulate */ -#define MACS(rt, ra, rb) rt += (ra) * (rb) - -/* signed 16x16 -> 32 multiply */ -#define MULS(ra, rb) ((ra) * (rb)) - -#endif - -#else - -static inline int round_sample(int64_t sum) -{ - int sum1; - sum1 = (int)((sum + (int64_t_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT); - if (sum1 < -32768) - sum1 = -32768; - else if (sum1 > 32767) - sum1 = 32767; - return sum1; -} - -#define MULS(ra, rb) MUL64(ra, rb) - -#endif - -#define SUM8(sum, op, w, p) \ -{ \ - sum op MULS((w)[0 * 64], p[0 * 64]);\ - sum op MULS((w)[1 * 64], p[1 * 64]);\ - sum op MULS((w)[2 * 64], p[2 * 64]);\ - sum op MULS((w)[3 * 64], p[3 * 64]);\ - sum op MULS((w)[4 * 64], p[4 * 64]);\ - sum op MULS((w)[5 * 64], p[5 * 64]);\ - sum op MULS((w)[6 * 64], p[6 * 64]);\ - sum op MULS((w)[7 * 64], p[7 * 64]);\ -} - -#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \ -{ \ - int tmp;\ - tmp = p[0 * 64];\ - sum1 op1 MULS((w1)[0 * 64], tmp);\ - sum2 op2 MULS((w2)[0 * 64], tmp);\ - tmp = p[1 * 64];\ - sum1 op1 MULS((w1)[1 * 64], tmp);\ - sum2 op2 MULS((w2)[1 * 64], tmp);\ - tmp = p[2 * 64];\ - sum1 op1 MULS((w1)[2 * 64], tmp);\ - sum2 op2 MULS((w2)[2 * 64], tmp);\ - tmp = p[3 * 64];\ - sum1 op1 MULS((w1)[3 * 64], tmp);\ - sum2 op2 MULS((w2)[3 * 64], tmp);\ - tmp = p[4 * 64];\ - sum1 op1 MULS((w1)[4 * 64], tmp);\ - sum2 op2 MULS((w2)[4 * 64], tmp);\ - tmp = p[5 * 64];\ - sum1 op1 MULS((w1)[5 * 64], tmp);\ - sum2 op2 MULS((w2)[5 * 64], tmp);\ - tmp = p[6 * 64];\ - sum1 op1 MULS((w1)[6 * 64], tmp);\ - sum2 op2 MULS((w2)[6 * 64], tmp);\ - tmp = p[7 * 64];\ - sum1 op1 MULS((w1)[7 * 64], tmp);\ - sum2 op2 MULS((w2)[7 * 64], tmp);\ -} - - -/* 32 sub band synthesis filter. Input: 32 sub band samples, Output: - 32 samples. */ -/* XXX: optimize by avoiding ring buffer usage */ -static void synth_filter(MPADecodeContext *s1, - int ch, int16_t *samples, int incr, - int32_t sb_samples[SBLIMIT]) -{ - int32_t tmp[32]; - register MPA_INT *synth_buf; - const register MPA_INT *w, *w2, *p; - int j, offset, v; - int16_t *samples2; -#if FRAC_BITS <= 15 - int sum, sum2; -#else - int64_t sum, sum2; -#endif - - dct32(tmp, sb_samples); - - offset = s1->synth_buf_offset[ch]; - synth_buf = s1->synth_buf[ch] + offset; - - for(j=0;j<32;j++) { - v = tmp[j]; -#if FRAC_BITS <= 15 - /* NOTE: can cause a loss in precision if very high amplitude - sound */ - if (v > 32767) - v = 32767; - else if (v < -32768) - v = -32768; -#endif - synth_buf[j] = v; - } - /* copy to avoid wrap */ - memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT)); - - samples2 = samples + 31 * incr; - w = window; - w2 = window + 31; - - sum = 0; - p = synth_buf + 16; - SUM8(sum, +=, w, p); - p = synth_buf + 48; - SUM8(sum, -=, w + 32, p); - *samples = round_sample(sum); - samples += incr; - w++; - - /* we calculate two samples at the same time to avoid one memory - access per two sample */ - for(j=1;j<16;j++) { - sum = 0; - sum2 = 0; - p = synth_buf + 16 + j; - SUM8P2(sum, +=, sum2, -=, w, w2, p); - p = synth_buf + 48 - j; - SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p); - - *samples = round_sample(sum); - samples += incr; - *samples2 = round_sample(sum2); - samples2 -= incr; - w++; - w2--; - } - - p = synth_buf + 32; - sum = 0; - SUM8(sum, -=, w + 32, p); - *samples = round_sample(sum); - - offset = (offset - 32) & 511; - s1->synth_buf_offset[ch] = offset; -} - -/* cos(pi*i/24) */ -#define C1 FIXR(0.99144486137381041114) -#define C3 FIXR(0.92387953251128675612) -#define C5 FIXR(0.79335334029123516458) -#define C7 FIXR(0.60876142900872063941) -#define C9 FIXR(0.38268343236508977173) -#define C11 FIXR(0.13052619222005159154) - -/* 12 points IMDCT. We compute it "by hand" by factorizing obvious - cases. */ -static void imdct12(int *out, int *in) -{ - int tmp; - int64_t in1_3, in1_9, in4_3, in4_9; - - in1_3 = MUL64(in[1], C3); - in1_9 = MUL64(in[1], C9); - in4_3 = MUL64(in[4], C3); - in4_9 = MUL64(in[4], C9); - - tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) + - MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5)); - out[0] = tmp; - out[5] = -tmp; - tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 + - MUL64(in[2] + in[5], C3) - in4_9); - out[1] = tmp; - out[4] = -tmp; - tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) - - MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1)); - out[2] = tmp; - out[3] = -tmp; - tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) + - MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7)); - out[6] = tmp; - out[11] = tmp; - tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 + - MUL64(in[2] + in[5], C9) + in4_3); - out[7] = tmp; - out[10] = tmp; - tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) - - MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11)); - out[8] = tmp; - out[9] = tmp; -} - -#undef C1 -#undef C3 -#undef C5 -#undef C7 -#undef C9 -#undef C11 - -/* cos(pi*i/18) */ -#define C1 FIXR(0.98480775301220805936) -#define C2 FIXR(0.93969262078590838405) -#define C3 FIXR(0.86602540378443864676) -#define C4 FIXR(0.76604444311897803520) -#define C5 FIXR(0.64278760968653932632) -#define C6 FIXR(0.5) -#define C7 FIXR(0.34202014332566873304) -#define C8 FIXR(0.17364817766693034885) - -/* 0.5 / cos(pi*(2*i+1)/36) */ -static const int icos36[9] = { - FIXR(0.50190991877167369479), - FIXR(0.51763809020504152469), - FIXR(0.55168895948124587824), - FIXR(0.61038729438072803416), - FIXR(0.70710678118654752439), - FIXR(0.87172339781054900991), - FIXR(1.18310079157624925896), - FIXR(1.93185165257813657349), - FIXR(5.73685662283492756461), -}; - -static const int icos72[18] = { - /* 0.5 / cos(pi*(2*i+19)/72) */ - FIXR(0.74009361646113053152), - FIXR(0.82133981585229078570), - FIXR(0.93057949835178895673), - FIXR(1.08284028510010010928), - FIXR(1.30656296487637652785), - FIXR(1.66275476171152078719), - FIXR(2.31011315767264929558), - FIXR(3.83064878777019433457), - FIXR(11.46279281302667383546), - - /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */ - FIXR(-0.67817085245462840086), - FIXR(-0.63023620700513223342), - FIXR(-0.59284452371708034528), - FIXR(-0.56369097343317117734), - FIXR(-0.54119610014619698439), - FIXR(-0.52426456257040533932), - FIXR(-0.51213975715725461845), - FIXR(-0.50431448029007636036), - FIXR(-0.50047634258165998492), -}; - -/* using Lee like decomposition followed by hand coded 9 points DCT */ -static void imdct36(int *out, int *in) -{ - int i, j, t0, t1, t2, t3, s0, s1, s2, s3; - int tmp[18], *tmp1, *in1; - int64_t in3_3, in6_6; - - for(i=17;i>=1;i--) - in[i] += in[i-1]; - for(i=17;i>=3;i-=2) - in[i] += in[i-2]; - - for(j=0;j<2;j++) { - tmp1 = tmp + j; - in1 = in + j; - - in3_3 = MUL64(in1[2*3], C3); - in6_6 = MUL64(in1[2*6], C6); - - tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 + - MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7)); - tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) + - MUL64(in1[2*4], C4) + in6_6 + - MUL64(in1[2*8], C8)); - tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3)); - tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) - - in1[2*6] + in1[2*0]; - tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 - - MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1)); - tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) - - MUL64(in1[2*4], C2) + in6_6 + - MUL64(in1[2*8], C4)); - tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 + - MUL64(in1[2*5], C1) - - MUL64(in1[2*7], C5)); - tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) + - MUL64(in1[2*4], C8) + in6_6 - - MUL64(in1[2*8], C2)); - tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8]; - } - - i = 0; - for(j=0;j<4;j++) { - t0 = tmp[i]; - t1 = tmp[i + 2]; - s0 = t1 + t0; - s2 = t1 - t0; - - t2 = tmp[i + 1]; - t3 = tmp[i + 3]; - s1 = MULL(t3 + t2, icos36[j]); - s3 = MULL(t3 - t2, icos36[8 - j]); - - t0 = MULL(s0 + s1, icos72[9 + 8 - j]); - t1 = MULL(s0 - s1, icos72[8 - j]); - out[18 + 9 + j] = t0; - out[18 + 8 - j] = t0; - out[9 + j] = -t1; - out[8 - j] = t1; - - t0 = MULL(s2 + s3, icos72[9+j]); - t1 = MULL(s2 - s3, icos72[j]); - out[18 + 9 + (8 - j)] = t0; - out[18 + j] = t0; - out[9 + (8 - j)] = -t1; - out[j] = t1; - i += 4; - } - - s0 = tmp[16]; - s1 = MULL(tmp[17], icos36[4]); - t0 = MULL(s0 + s1, icos72[9 + 4]); - t1 = MULL(s0 - s1, icos72[4]); - out[18 + 9 + 4] = t0; - out[18 + 8 - 4] = t0; - out[9 + 4] = -t1; - out[8 - 4] = t1; -} - -/* fast header check for resync */ -static int check_header(uint32_t header) -{ - /* header */ - if ((header & 0xffe00000) != 0xffe00000) - return -1; - /* layer check */ - if (((header >> 17) & 3) == 0) - return -1; - /* bit rate */ - if (((header >> 12) & 0xf) == 0xf) - return -1; - /* frequency */ - if (((header >> 10) & 3) == 3) - return -1; - return 0; -} - -/* header + layer + bitrate + freq + lsf/mpeg25 */ -#define SAME_HEADER_MASK \ - (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19)) - -/* header decoding. MUST check the header before because no - consistency check is done there. Return 1 if free format found and - that the frame size must be computed externally */ -static int decode_header(MPADecodeContext *s, uint32_t header) -{ - int sample_rate, frame_size, mpeg25, padding; - int sample_rate_index, bitrate_index; - if (header & (1<<20)) { - s->lsf = (header & (1<<19)) ? 0 : 1; - mpeg25 = 0; - } else { - s->lsf = 1; - mpeg25 = 1; - } - - s->layer = 4 - ((header >> 17) & 3); - /* extract frequency */ - sample_rate_index = (header >> 10) & 3; - sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25); - sample_rate_index += 3 * (s->lsf + mpeg25); - s->sample_rate_index = sample_rate_index; - s->error_protection = ((header >> 16) & 1) ^ 1; - s->sample_rate = sample_rate; - - bitrate_index = (header >> 12) & 0xf; - padding = (header >> 9) & 1; - //extension = (header >> 8) & 1; - s->mode = (header >> 6) & 3; - s->mode_ext = (header >> 4) & 3; - //copyright = (header >> 3) & 1; - //original = (header >> 2) & 1; - //emphasis = header & 3; - - if (s->mode == MPA_MONO) - s->nb_channels = 1; - else - s->nb_channels = 2; - - if (bitrate_index != 0) { - frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index]; - s->bit_rate = frame_size * 1000; - switch(s->layer) { - case 1: - frame_size = (frame_size * 12000) / sample_rate; - frame_size = (frame_size + padding) * 4; - break; - case 2: - frame_size = (frame_size * 144000) / sample_rate; - frame_size += padding; - break; - default: - case 3: - frame_size = (frame_size * 144000) / (sample_rate << s->lsf); - frame_size += padding; - break; - } - s->frame_size = frame_size; - } else { - /* if no frame size computed, signal it */ - if (!s->free_format_frame_size) - return 1; - /* free format: compute bitrate and real frame size from the - frame size we extracted by reading the bitstream */ - s->frame_size = s->free_format_frame_size; - switch(s->layer) { - case 1: - s->frame_size += padding * 4; - s->bit_rate = (s->frame_size * sample_rate) / 48000; - break; - case 2: - s->frame_size += padding; - s->bit_rate = (s->frame_size * sample_rate) / 144000; - break; - default: - case 3: - s->frame_size += padding; - s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000; - break; - } - } - -#if defined(DEBUG) - printf("layer%d, %d Hz, %d kbits/s, ", - s->layer, s->sample_rate, s->bit_rate); - if (s->nb_channels == 2) { - if (s->layer == 3) { - if (s->mode_ext & MODE_EXT_MS_STEREO) - printf("ms-"); - if (s->mode_ext & MODE_EXT_I_STEREO) - printf("i-"); - } - printf("stereo"); - } else { - printf("mono"); - } - printf("\n"); -#endif - return 0; -} - -/* useful helper to get mpeg audio stream infos. Return -1 if error in - header */ -int mp_decode_header(int *sample_rate_ptr, - int *nb_channels_ptr, - int *coded_frame_size_ptr, - int *decoded_frame_size_ptr, - uint32_t head) -{ - MPADecodeContext s1, *s = &s1; - int decoded_frame_size; - - if (check_header(head) != 0) - return -1; - - if (decode_header(s, head) != 0) { - return -1; - } - - switch(s->layer) { - case 1: - decoded_frame_size = 384; - break; - case 2: - decoded_frame_size = 1152; - break; - default: - case 3: - if (s->lsf) - decoded_frame_size = 576; - else - decoded_frame_size = 1152; - break; - } - - *sample_rate_ptr = s->sample_rate; - *nb_channels_ptr = s->nb_channels; - *coded_frame_size_ptr = s->frame_size; - *decoded_frame_size_ptr = decoded_frame_size * 2 * s->nb_channels; - return 0; -} - -/* return the number of decoded frames */ -static int mp_decode_layer1(MPADecodeContext *s) -{ - int bound, i, v, n, ch, j, mant; - uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT]; - uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; - - if (s->mode == MPA_JSTEREO) - bound = (s->mode_ext + 1) * 4; - else - bound = SBLIMIT; - - /* allocation bits */ - for(i=0;inb_channels;ch++) { - allocation[ch][i] = get_bits(&s->gb, 4); - } - } - for(i=bound;igb, 4); - } - - /* scale factors */ - for(i=0;inb_channels;ch++) { - if (allocation[ch][i]) - scale_factors[ch][i] = get_bits(&s->gb, 6); - } - } - for(i=bound;igb, 6); - scale_factors[1][i] = get_bits(&s->gb, 6); - } - } - - /* compute samples */ - for(j=0;j<12;j++) { - for(i=0;inb_channels;ch++) { - n = allocation[ch][i]; - if (n) { - mant = get_bits(&s->gb, n + 1); - v = l1_unscale(n, mant, scale_factors[ch][i]); - } else { - v = 0; - } - s->sb_samples[ch][j][i] = v; - } - } - for(i=bound;igb, n + 1); - v = l1_unscale(n, mant, scale_factors[0][i]); - s->sb_samples[0][j][i] = v; - v = l1_unscale(n, mant, scale_factors[1][i]); - s->sb_samples[1][j][i] = v; - } else { - s->sb_samples[0][j][i] = 0; - s->sb_samples[1][j][i] = 0; - } - } - } - return 12; -} - -/* bitrate is in kb/s */ -int l2_select_table(int bitrate, int nb_channels, int freq, int lsf) -{ - int ch_bitrate, table; - - ch_bitrate = bitrate / nb_channels; - if (!lsf) { - if ((freq == 48000 && ch_bitrate >= 56) || - (ch_bitrate >= 56 && ch_bitrate <= 80)) - table = 0; - else if (freq != 48000 && ch_bitrate >= 96) - table = 1; - else if (freq != 32000 && ch_bitrate <= 48) - table = 2; - else - table = 3; - } else { - table = 4; - } - return table; -} - -static int mp_decode_layer2(MPADecodeContext *s) -{ - int sblimit; /* number of used subbands */ - const unsigned char *alloc_table; - int table, bit_alloc_bits, i, j, ch, bound, v; - unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; - unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; - unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; - int scale, qindex, bits, steps, k, l, m, b; - - /* select decoding table */ - table = l2_select_table(s->bit_rate / 1000, s->nb_channels, - s->sample_rate, s->lsf); - sblimit = sblimit_table[table]; - alloc_table = alloc_tables[table]; - - if (s->mode == MPA_JSTEREO) - bound = (s->mode_ext + 1) * 4; - else - bound = sblimit; - - dprintf("bound=%d sblimit=%d\n", bound, sblimit); - /* parse bit allocation */ - j = 0; - for(i=0;inb_channels;ch++) { - bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits); - } - j += 1 << bit_alloc_bits; - } - for(i=bound;igb, bit_alloc_bits); - bit_alloc[0][i] = v; - bit_alloc[1][i] = v; - j += 1 << bit_alloc_bits; - } - -#ifdef DEBUG - { - for(ch=0;chnb_channels;ch++) { - for(i=0;inb_channels;ch++) { - if (bit_alloc[ch][i]) - scale_code[ch][i] = get_bits(&s->gb, 2); - } - } - - /* scale factors */ - for(i=0;inb_channels;ch++) { - if (bit_alloc[ch][i]) { - sf = scale_factors[ch][i]; - switch(scale_code[ch][i]) { - default: - case 0: - sf[0] = get_bits(&s->gb, 6); - sf[1] = get_bits(&s->gb, 6); - sf[2] = get_bits(&s->gb, 6); - break; - case 2: - sf[0] = get_bits(&s->gb, 6); - sf[1] = sf[0]; - sf[2] = sf[0]; - break; - case 1: - sf[0] = get_bits(&s->gb, 6); - sf[2] = get_bits(&s->gb, 6); - sf[1] = sf[0]; - break; - case 3: - sf[0] = get_bits(&s->gb, 6); - sf[2] = get_bits(&s->gb, 6); - sf[1] = sf[2]; - break; - } - } - } - } - -#ifdef DEBUG - for(ch=0;chnb_channels;ch++) { - for(i=0;inb_channels;ch++) { - b = bit_alloc[ch][i]; - if (b) { - scale = scale_factors[ch][i][k]; - qindex = alloc_table[j+b]; - bits = quant_bits[qindex]; - if (bits < 0) { - /* 3 values at the same time */ - v = get_bits(&s->gb, -bits); - steps = quant_steps[qindex]; - s->sb_samples[ch][k * 12 + l + 0][i] = - l2_unscale_group(steps, v % steps, scale); - v = v / steps; - s->sb_samples[ch][k * 12 + l + 1][i] = - l2_unscale_group(steps, v % steps, scale); - v = v / steps; - s->sb_samples[ch][k * 12 + l + 2][i] = - l2_unscale_group(steps, v, scale); - } else { - for(m=0;m<3;m++) { - v = get_bits(&s->gb, bits); - v = l1_unscale(bits - 1, v, scale); - s->sb_samples[ch][k * 12 + l + m][i] = v; - } - } - } else { - s->sb_samples[ch][k * 12 + l + 0][i] = 0; - s->sb_samples[ch][k * 12 + l + 1][i] = 0; - s->sb_samples[ch][k * 12 + l + 2][i] = 0; - } - } - /* next subband in alloc table */ - j += 1 << bit_alloc_bits; - } - /* XXX: find a way to avoid this duplication of code */ - for(i=bound;igb, -bits); - steps = quant_steps[qindex]; - mant = v % steps; - v = v / steps; - s->sb_samples[0][k * 12 + l + 0][i] = - l2_unscale_group(steps, mant, scale0); - s->sb_samples[1][k * 12 + l + 0][i] = - l2_unscale_group(steps, mant, scale1); - mant = v % steps; - v = v / steps; - s->sb_samples[0][k * 12 + l + 1][i] = - l2_unscale_group(steps, mant, scale0); - s->sb_samples[1][k * 12 + l + 1][i] = - l2_unscale_group(steps, mant, scale1); - s->sb_samples[0][k * 12 + l + 2][i] = - l2_unscale_group(steps, v, scale0); - s->sb_samples[1][k * 12 + l + 2][i] = - l2_unscale_group(steps, v, scale1); - } else { - for(m=0;m<3;m++) { - mant = get_bits(&s->gb, bits); - s->sb_samples[0][k * 12 + l + m][i] = - l1_unscale(bits - 1, mant, scale0); - s->sb_samples[1][k * 12 + l + m][i] = - l1_unscale(bits - 1, mant, scale1); - } - } - } else { - s->sb_samples[0][k * 12 + l + 0][i] = 0; - s->sb_samples[0][k * 12 + l + 1][i] = 0; - s->sb_samples[0][k * 12 + l + 2][i] = 0; - s->sb_samples[1][k * 12 + l + 0][i] = 0; - s->sb_samples[1][k * 12 + l + 1][i] = 0; - s->sb_samples[1][k * 12 + l + 2][i] = 0; - } - /* next subband in alloc table */ - j += 1 << bit_alloc_bits; - } - /* fill remaining samples to zero */ - for(i=sblimit;inb_channels;ch++) { - s->sb_samples[ch][k * 12 + l + 0][i] = 0; - s->sb_samples[ch][k * 12 + l + 1][i] = 0; - s->sb_samples[ch][k * 12 + l + 2][i] = 0; - } - } - } - } - return 3 * 12; -} - -/* - * Seek back in the stream for backstep bytes (at most 511 bytes) - */ -static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep) -{ - uint8_t *ptr; - - /* compute current position in stream */ - ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3)); - - /* copy old data before current one */ - ptr -= backstep; - memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] + - BACKSTEP_SIZE + s->old_frame_size - backstep, backstep); - /* init get bits again */ - init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8); - - /* prepare next buffer */ - s->inbuf_index ^= 1; - s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE]; - s->old_frame_size = s->frame_size; -} - -static inline void lsf_sf_expand(int *slen, - int sf, int n1, int n2, int n3) -{ - if (n3) { - slen[3] = sf % n3; - sf /= n3; - } else { - slen[3] = 0; - } - if (n2) { - slen[2] = sf % n2; - sf /= n2; - } else { - slen[2] = 0; - } - slen[1] = sf % n1; - sf /= n1; - slen[0] = sf; -} - -static void exponents_from_scale_factors(MPADecodeContext *s, - GranuleDef *g, - int16_t *exponents) -{ - const uint8_t *bstab, *pretab; - int len, i, j, k, l, v0, shift, gain, gains[3]; - int16_t *exp_ptr; - - exp_ptr = exponents; - gain = g->global_gain - 210; - shift = g->scalefac_scale + 1; - - bstab = band_size_long[s->sample_rate_index]; - pretab = mpa_pretab[g->preflag]; - for(i=0;ilong_end;i++) { - v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift); - len = bstab[i]; - for(j=len;j>0;j--) - *exp_ptr++ = v0; - } - - if (g->short_start < 13) { - bstab = band_size_short[s->sample_rate_index]; - gains[0] = gain - (g->subblock_gain[0] << 3); - gains[1] = gain - (g->subblock_gain[1] << 3); - gains[2] = gain - (g->subblock_gain[2] << 3); - k = g->long_end; - for(i=g->short_start;i<13;i++) { - len = bstab[i]; - for(l=0;l<3;l++) { - v0 = gains[l] - (g->scale_factors[k++] << shift); - for(j=len;j>0;j--) - *exp_ptr++ = v0; - } - } - } -} - -/* handle n = 0 too */ -static inline int get_bitsz(GetBitContext *s, int n) -{ - if (n == 0) - return 0; - else - return get_bits(s, n); -} - -static int huffman_decode(MPADecodeContext *s, GranuleDef *g, - int16_t *exponents, int end_pos) -{ - int s_index; - int linbits, code, x, y, l, v, i, j, k, pos; - GetBitContext last_gb; - VLC *vlc; - uint8_t *code_table; - - /* low frequencies (called big values) */ - s_index = 0; - for(i=0;i<3;i++) { - j = g->region_size[i]; - if (j == 0) - continue; - /* select vlc table */ - k = g->table_select[i]; - l = mpa_huff_data[k][0]; - linbits = mpa_huff_data[k][1]; - vlc = &huff_vlc[l]; - code_table = huff_code_table[l]; - - /* read huffcode and compute each couple */ - for(;j>0;j--) { - if (get_bits_count(&s->gb) >= end_pos) - break; - if (code_table) { - code = get_vlc(&s->gb, vlc); - if (code < 0) - return -1; - y = code_table[code]; - x = y >> 4; - y = y & 0x0f; - } else { - x = 0; - y = 0; - } - dprintf("region=%d n=%d x=%d y=%d exp=%d\n", - i, g->region_size[i] - j, x, y, exponents[s_index]); - if (x) { - if (x == 15) - x += get_bitsz(&s->gb, linbits); - v = l3_unscale(x, exponents[s_index]); - if (get_bits1(&s->gb)) - v = -v; - } else { - v = 0; - } - g->sb_hybrid[s_index++] = v; - if (y) { - if (y == 15) - y += get_bitsz(&s->gb, linbits); - v = l3_unscale(y, exponents[s_index]); - if (get_bits1(&s->gb)) - v = -v; - } else { - v = 0; - } - g->sb_hybrid[s_index++] = v; - } - } - - /* high frequencies */ - vlc = &huff_quad_vlc[g->count1table_select]; - last_gb.buffer = NULL; - while (s_index <= 572) { - pos = get_bits_count(&s->gb); - if (pos >= end_pos) { - if (pos > end_pos && last_gb.buffer != NULL) { - /* some encoders generate an incorrect size for this - part. We must go back into the data */ - s_index -= 4; - s->gb = last_gb; - } - break; - } - last_gb= s->gb; - - code = get_vlc(&s->gb, vlc); - dprintf("t=%d code=%d\n", g->count1table_select, code); - if (code < 0) - return -1; - for(i=0;i<4;i++) { - if (code & (8 >> i)) { - /* non zero value. Could use a hand coded function for - 'one' value */ - v = l3_unscale(1, exponents[s_index]); - if(get_bits1(&s->gb)) - v = -v; - } else { - v = 0; - } - g->sb_hybrid[s_index++] = v; - } - } - while (s_index < 576) - g->sb_hybrid[s_index++] = 0; - return 0; -} - -/* Reorder short blocks from bitstream order to interleaved order. It - would be faster to do it in parsing, but the code would be far more - complicated */ -static void reorder_block(MPADecodeContext *s, GranuleDef *g) -{ - int i, j, k, len; - int32_t *ptr, *dst, *ptr1; - int32_t tmp[576]; - - if (g->block_type != 2) - return; - - if (g->switch_point) { - if (s->sample_rate_index != 8) { - ptr = g->sb_hybrid + 36; - } else { - ptr = g->sb_hybrid + 48; - } - } else { - ptr = g->sb_hybrid; - } - - for(i=g->short_start;i<13;i++) { - len = band_size_short[s->sample_rate_index][i]; - ptr1 = ptr; - for(k=0;k<3;k++) { - dst = tmp + k; - for(j=len;j>0;j--) { - *dst = *ptr++; - dst += 3; - } - } - memcpy(ptr1, tmp, len * 3 * sizeof(int32_t)); - } -} - -#define ISQRT2 FIXR(0.70710678118654752440) - -static void compute_stereo(MPADecodeContext *s, - GranuleDef *g0, GranuleDef *g1) -{ - int i, j, k, l; - int32_t v1, v2; - int sf_max, tmp0, tmp1, sf, len, non_zero_found; - int32_t (*is_tab)[16]; - int32_t *tab0, *tab1; - int non_zero_found_short[3]; - - /* intensity stereo */ - if (s->mode_ext & MODE_EXT_I_STEREO) { - if (!s->lsf) { - is_tab = is_table; - sf_max = 7; - } else { - is_tab = is_table_lsf[g1->scalefac_compress & 1]; - sf_max = 16; - } - - tab0 = g0->sb_hybrid + 576; - tab1 = g1->sb_hybrid + 576; - - non_zero_found_short[0] = 0; - non_zero_found_short[1] = 0; - non_zero_found_short[2] = 0; - k = (13 - g1->short_start) * 3 + g1->long_end - 3; - for(i = 12;i >= g1->short_start;i--) { - /* for last band, use previous scale factor */ - if (i != 11) - k -= 3; - len = band_size_short[s->sample_rate_index][i]; - for(l=2;l>=0;l--) { - tab0 -= len; - tab1 -= len; - if (!non_zero_found_short[l]) { - /* test if non zero band. if so, stop doing i-stereo */ - for(j=0;jscale_factors[k + l]; - if (sf >= sf_max) - goto found1; - - v1 = is_tab[0][sf]; - v2 = is_tab[1][sf]; - for(j=0;jmode_ext & MODE_EXT_MS_STEREO) { - /* lower part of the spectrum : do ms stereo - if enabled */ - for(j=0;jlong_end - 1;i >= 0;i--) { - len = band_size_long[s->sample_rate_index][i]; - tab0 -= len; - tab1 -= len; - /* test if non zero band. if so, stop doing i-stereo */ - if (!non_zero_found) { - for(j=0;jscale_factors[k]; - if (sf >= sf_max) - goto found2; - v1 = is_tab[0][sf]; - v2 = is_tab[1][sf]; - for(j=0;jmode_ext & MODE_EXT_MS_STEREO) { - /* lower part of the spectrum : do ms stereo - if enabled */ - for(j=0;jmode_ext & MODE_EXT_MS_STEREO) { - /* ms stereo ONLY */ - /* NOTE: the 1/sqrt(2) normalization factor is included in the - global gain */ - tab0 = g0->sb_hybrid; - tab1 = g1->sb_hybrid; - for(i=0;i<576;i++) { - tmp0 = tab0[i]; - tmp1 = tab1[i]; - tab0[i] = tmp0 + tmp1; - tab1[i] = tmp0 - tmp1; - } - } -} - -static void compute_antialias(MPADecodeContext *s, - GranuleDef *g) -{ - int32_t *ptr, *p0, *p1, *csa; - int n, tmp0, tmp1, i, j; - - /* we antialias only "long" bands */ - if (g->block_type == 2) { - if (!g->switch_point) - return; - /* XXX: check this for 8000Hz case */ - n = 1; - } else { - n = SBLIMIT - 1; - } - - ptr = g->sb_hybrid + 18; - for(i = n;i > 0;i--) { - p0 = ptr - 1; - p1 = ptr; - csa = &csa_table[0][0]; - for(j=0;j<8;j++) { - tmp0 = *p0; - tmp1 = *p1; - *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1])); - *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0])); - p0--; - p1++; - csa += 2; - } - ptr += 18; - } -} - -static void compute_imdct(MPADecodeContext *s, - GranuleDef *g, - int32_t *sb_samples, - int32_t *mdct_buf) -{ - int32_t *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1; - int32_t in[6]; - int32_t out[36]; - int32_t out2[12]; - int i, j, k, mdct_long_end, v, sblimit; - - /* find last non zero block */ - ptr = g->sb_hybrid + 576; - ptr1 = g->sb_hybrid + 2 * 18; - while (ptr >= ptr1) { - ptr -= 6; - v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5]; - if (v != 0) - break; - } - sblimit = ((ptr - g->sb_hybrid) / 18) + 1; - - if (g->block_type == 2) { - /* XXX: check for 8000 Hz */ - if (g->switch_point) - mdct_long_end = 2; - else - mdct_long_end = 0; - } else { - mdct_long_end = sblimit; - } - - buf = mdct_buf; - ptr = g->sb_hybrid; - for(j=0;jswitch_point && j < 2) - win1 = mdct_win[0]; - else - win1 = mdct_win[g->block_type]; - /* select frequency inversion */ - win = win1 + ((4 * 36) & -(j & 1)); - for(i=0;i<18;i++) { - *out_ptr = MULL(out[i], win[i]) + buf[i]; - buf[i] = MULL(out[i + 18], win[i + 18]); - out_ptr += SBLIMIT; - } - ptr += 18; - buf += 18; - } - for(j=mdct_long_end;jlsf) { - main_data_begin = get_bits(&s->gb, 8); - if (s->nb_channels == 2) - private_bits = get_bits(&s->gb, 2); - else - private_bits = get_bits(&s->gb, 1); - nb_granules = 1; - } else { - main_data_begin = get_bits(&s->gb, 9); - if (s->nb_channels == 2) - private_bits = get_bits(&s->gb, 3); - else - private_bits = get_bits(&s->gb, 5); - nb_granules = 2; - for(ch=0;chnb_channels;ch++) { - granules[ch][0].scfsi = 0; /* all scale factors are transmitted */ - granules[ch][1].scfsi = get_bits(&s->gb, 4); - } - } - - for(gr=0;grnb_channels;ch++) { - dprintf("gr=%d ch=%d: side_info\n", gr, ch); - g = &granules[ch][gr]; - g->part2_3_length = get_bits(&s->gb, 12); - g->big_values = get_bits(&s->gb, 9); - g->global_gain = get_bits(&s->gb, 8); - /* if MS stereo only is selected, we precompute the - 1/sqrt(2) renormalization factor */ - if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) == - MODE_EXT_MS_STEREO) - g->global_gain -= 2; - if (s->lsf) - g->scalefac_compress = get_bits(&s->gb, 9); - else - g->scalefac_compress = get_bits(&s->gb, 4); - blocksplit_flag = get_bits(&s->gb, 1); - if (blocksplit_flag) { - g->block_type = get_bits(&s->gb, 2); - if (g->block_type == 0) - return -1; - g->switch_point = get_bits(&s->gb, 1); - for(i=0;i<2;i++) - g->table_select[i] = get_bits(&s->gb, 5); - for(i=0;i<3;i++) - g->subblock_gain[i] = get_bits(&s->gb, 3); - /* compute huffman coded region sizes */ - if (g->block_type == 2) - g->region_size[0] = (36 / 2); - else { - if (s->sample_rate_index <= 2) - g->region_size[0] = (36 / 2); - else if (s->sample_rate_index != 8) - g->region_size[0] = (54 / 2); - else - g->region_size[0] = (108 / 2); - } - g->region_size[1] = (576 / 2); - } else { - int region_address1, region_address2, l; - g->block_type = 0; - g->switch_point = 0; - for(i=0;i<3;i++) - g->table_select[i] = get_bits(&s->gb, 5); - /* compute huffman coded region sizes */ - region_address1 = get_bits(&s->gb, 4); - region_address2 = get_bits(&s->gb, 3); - dprintf("region1=%d region2=%d\n", - region_address1, region_address2); - g->region_size[0] = - band_index_long[s->sample_rate_index][region_address1 + 1] >> 1; - l = region_address1 + region_address2 + 2; - /* should not overflow */ - if (l > 22) - l = 22; - g->region_size[1] = - band_index_long[s->sample_rate_index][l] >> 1; - } - /* convert region offsets to region sizes and truncate - size to big_values */ - g->region_size[2] = (576 / 2); - j = 0; - for(i=0;i<3;i++) { - k = g->region_size[i]; - if (k > g->big_values) - k = g->big_values; - g->region_size[i] = k - j; - j = k; - } - - /* compute band indexes */ - if (g->block_type == 2) { - if (g->switch_point) { - /* if switched mode, we handle the 36 first samples as - long blocks. For 8000Hz, we handle the 48 first - exponents as long blocks (XXX: check this!) */ - if (s->sample_rate_index <= 2) - g->long_end = 8; - else if (s->sample_rate_index != 8) - g->long_end = 6; - else - g->long_end = 4; /* 8000 Hz */ - - if (s->sample_rate_index != 8) - g->short_start = 3; - else - g->short_start = 2; - } else { - g->long_end = 0; - g->short_start = 0; - } - } else { - g->short_start = 13; - g->long_end = 22; - } - - g->preflag = 0; - if (!s->lsf) - g->preflag = get_bits(&s->gb, 1); - g->scalefac_scale = get_bits(&s->gb, 1); - g->count1table_select = get_bits(&s->gb, 1); - dprintf("block_type=%d switch_point=%d\n", - g->block_type, g->switch_point); - } - } - - /* now we get bits from the main_data_begin offset */ - dprintf("seekback: %d\n", main_data_begin); - seek_to_maindata(s, main_data_begin); - - for(gr=0;grnb_channels;ch++) { - g = &granules[ch][gr]; - - bits_pos = get_bits_count(&s->gb); - - if (!s->lsf) { - uint8_t *sc; - int slen, slen1, slen2; - - /* MPEG1 scale factors */ - slen1 = slen_table[0][g->scalefac_compress]; - slen2 = slen_table[1][g->scalefac_compress]; - dprintf("slen1=%d slen2=%d\n", slen1, slen2); - if (g->block_type == 2) { - n = g->switch_point ? 17 : 18; - j = 0; - for(i=0;iscale_factors[j++] = get_bitsz(&s->gb, slen1); - for(i=0;i<18;i++) - g->scale_factors[j++] = get_bitsz(&s->gb, slen2); - for(i=0;i<3;i++) - g->scale_factors[j++] = 0; - } else { - sc = granules[ch][0].scale_factors; - j = 0; - for(k=0;k<4;k++) { - n = (k == 0 ? 6 : 5); - if ((g->scfsi & (0x8 >> k)) == 0) { - slen = (k < 2) ? slen1 : slen2; - for(i=0;iscale_factors[j++] = get_bitsz(&s->gb, slen); - } else { - /* simply copy from last granule */ - for(i=0;iscale_factors[j] = sc[j]; - j++; - } - } - } - g->scale_factors[j++] = 0; - } -#if defined(DEBUG) - { - printf("scfsi=%x gr=%d ch=%d scale_factors:\n", - g->scfsi, gr, ch); - for(i=0;iscale_factors[i]); - printf("\n"); - } -#endif - } else { - int tindex, tindex2, slen[4], sl, sf; - - /* LSF scale factors */ - if (g->block_type == 2) { - tindex = g->switch_point ? 2 : 1; - } else { - tindex = 0; - } - sf = g->scalefac_compress; - if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) { - /* intensity stereo case */ - sf >>= 1; - if (sf < 180) { - lsf_sf_expand(slen, sf, 6, 6, 0); - tindex2 = 3; - } else if (sf < 244) { - lsf_sf_expand(slen, sf - 180, 4, 4, 0); - tindex2 = 4; - } else { - lsf_sf_expand(slen, sf - 244, 3, 0, 0); - tindex2 = 5; - } - } else { - /* normal case */ - if (sf < 400) { - lsf_sf_expand(slen, sf, 5, 4, 4); - tindex2 = 0; - } else if (sf < 500) { - lsf_sf_expand(slen, sf - 400, 5, 4, 0); - tindex2 = 1; - } else { - lsf_sf_expand(slen, sf - 500, 3, 0, 0); - tindex2 = 2; - g->preflag = 1; - } - } - - j = 0; - for(k=0;k<4;k++) { - n = lsf_nsf_table[tindex2][tindex][k]; - sl = slen[k]; - for(i=0;iscale_factors[j++] = get_bitsz(&s->gb, sl); - } - /* XXX: should compute exact size */ - for(;j<40;j++) - g->scale_factors[j] = 0; -#if defined(DEBUG) - { - printf("gr=%d ch=%d scale_factors:\n", - gr, ch); - for(i=0;i<40;i++) - printf(" %d", g->scale_factors[i]); - printf("\n"); - } -#endif - } - - exponents_from_scale_factors(s, g, exponents); - - /* read Huffman coded residue */ - if (huffman_decode(s, g, exponents, - bits_pos + g->part2_3_length) < 0) - return -1; -#if defined(DEBUG) - sample_dump(0, g->sb_hybrid, 576); -#endif - - /* skip extension bits */ - bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos); - if (bits_left < 0) { - dprintf("bits_left=%d\n", bits_left); - return -1; - } - while (bits_left >= 16) { - skip_bits(&s->gb, 16); - bits_left -= 16; - } - if (bits_left > 0) - skip_bits(&s->gb, bits_left); - } /* ch */ - - if (s->nb_channels == 2) - compute_stereo(s, &granules[0][gr], &granules[1][gr]); - - for(ch=0;chnb_channels;ch++) { - g = &granules[ch][gr]; - - reorder_block(s, g); -#if defined(DEBUG) - sample_dump(0, g->sb_hybrid, 576); -#endif - compute_antialias(s, g); -#if defined(DEBUG) - sample_dump(1, g->sb_hybrid, 576); -#endif - compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); -#if defined(DEBUG) - sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576); -#endif - } - } /* gr */ - return nb_granules * 18; -} - -static int mp_decode_frame(MPADecodeContext *s, - short *samples) -{ - int i, nb_frames, ch; - short *samples_ptr; - - init_get_bits(&s->gb, s->inbuf + HEADER_SIZE, - (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8); - - /* skip error protection field */ - if (s->error_protection) - get_bits(&s->gb, 16); - - dprintf("frame %d:\n", s->frame_count); - switch(s->layer) { - case 1: - nb_frames = mp_decode_layer1(s); - break; - case 2: - nb_frames = mp_decode_layer2(s); - break; - case 3: - default: - nb_frames = mp_decode_layer3(s); - break; - } -#if defined(DEBUG) - for(i=0;inb_channels;ch++) { - int j; - printf("%d-%d:", i, ch); - for(j=0;jsb_samples[ch][i][j] / FRAC_ONE); - printf("\n"); - } - } -#endif - /* apply the synthesis filter */ - for(ch=0;chnb_channels;ch++) { - samples_ptr = samples + ch; - for(i=0;inb_channels, - s->sb_samples[ch][i]); - samples_ptr += 32 * s->nb_channels; - } - } -#ifdef DEBUG - s->frame_count++; -#endif - return nb_frames * 32 * sizeof(short) * s->nb_channels; -} - -static int decode_frame(AVCodecContext * avctx, - void *data, int *data_size, - uint8_t * buf, int buf_size) -{ - MPADecodeContext *s = avctx->priv_data; - uint32_t header; - uint8_t *buf_ptr; - int len, out_size; - short *out_samples = data; - - *data_size = 0; - buf_ptr = buf; - while (buf_size > 0) { - len = s->inbuf_ptr - s->inbuf; - if (s->frame_size == 0) { - /* special case for next header for first frame in free - format case (XXX: find a simpler method) */ - if (s->free_format_next_header != 0) { - s->inbuf[0] = s->free_format_next_header >> 24; - s->inbuf[1] = s->free_format_next_header >> 16; - s->inbuf[2] = s->free_format_next_header >> 8; - s->inbuf[3] = s->free_format_next_header; - s->inbuf_ptr = s->inbuf + 4; - s->free_format_next_header = 0; - goto got_header; - } - /* no header seen : find one. We need at least HEADER_SIZE - bytes to parse it */ - len = HEADER_SIZE - len; - if (len > buf_size) - len = buf_size; - if (len > 0) { - memcpy(s->inbuf_ptr, buf_ptr, len); - buf_ptr += len; - buf_size -= len; - s->inbuf_ptr += len; - } - if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) { - got_header: - header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) | - (s->inbuf[2] << 8) | s->inbuf[3]; - - if (check_header(header) < 0) { - /* no sync found : move by one byte (inefficient, but simple!) */ - memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1); - s->inbuf_ptr--; - dprintf("skip %x\n", header); - /* reset free format frame size to give a chance - to get a new bitrate */ - s->free_format_frame_size = 0; - } else { - if (decode_header(s, header) == 1) { - /* free format: prepare to compute frame size */ - s->frame_size = -1; - } - /* update codec info */ - avctx->sample_rate = s->sample_rate; - avctx->channels = s->nb_channels; - avctx->bit_rate = s->bit_rate; - avctx->sub_id = s->layer; - switch(s->layer) { - case 1: - avctx->frame_size = 384; - break; - case 2: - avctx->frame_size = 1152; - break; - case 3: - if (s->lsf) - avctx->frame_size = 576; - else - avctx->frame_size = 1152; - break; - } - } - } - } else if (s->frame_size == -1) { - /* free format : find next sync to compute frame size */ - len = MPA_MAX_CODED_FRAME_SIZE - len; - if (len > buf_size) - len = buf_size; - if (len == 0) { - /* frame too long: resync */ - s->frame_size = 0; - memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1); - s->inbuf_ptr--; - } else { - uint8_t *p, *pend; - uint32_t header1; - int padding; - - memcpy(s->inbuf_ptr, buf_ptr, len); - /* check for header */ - p = s->inbuf_ptr - 3; - pend = s->inbuf_ptr + len - 4; - while (p <= pend) { - header = (p[0] << 24) | (p[1] << 16) | - (p[2] << 8) | p[3]; - header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) | - (s->inbuf[2] << 8) | s->inbuf[3]; - /* check with high probability that we have a - valid header */ - if ((header & SAME_HEADER_MASK) == - (header1 & SAME_HEADER_MASK)) { - /* header found: update pointers */ - len = (p + 4) - s->inbuf_ptr; - buf_ptr += len; - buf_size -= len; - s->inbuf_ptr = p; - /* compute frame size */ - s->free_format_next_header = header; - s->free_format_frame_size = s->inbuf_ptr - s->inbuf; - padding = (header1 >> 9) & 1; - if (s->layer == 1) - s->free_format_frame_size -= padding * 4; - else - s->free_format_frame_size -= padding; - dprintf("free frame size=%d padding=%d\n", - s->free_format_frame_size, padding); - decode_header(s, header1); - goto next_data; - } - p++; - } - /* not found: simply increase pointers */ - buf_ptr += len; - s->inbuf_ptr += len; - buf_size -= len; - } - } else if (len < s->frame_size) { - if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE) - s->frame_size = MPA_MAX_CODED_FRAME_SIZE; - len = s->frame_size - len; - if (len > buf_size) - len = buf_size; - memcpy(s->inbuf_ptr, buf_ptr, len); - buf_ptr += len; - s->inbuf_ptr += len; - buf_size -= len; - } - next_data: - if (s->frame_size > 0 && - (s->inbuf_ptr - s->inbuf) >= s->frame_size) { - if (avctx->parse_only) { - /* simply return the frame data */ - *(uint8_t **)data = s->inbuf; - out_size = s->inbuf_ptr - s->inbuf; - } else { - out_size = mp_decode_frame(s, out_samples); - } - s->inbuf_ptr = s->inbuf; - s->frame_size = 0; - *data_size = out_size; - break; - } - } - return buf_ptr - buf; -} - -AVCodec mp2_decoder = -{ - "mp2", - CODEC_TYPE_AUDIO, - CODEC_ID_MP2, - sizeof(MPADecodeContext), - decode_init, - NULL, - NULL, - decode_frame, - CODEC_CAP_PARSE_ONLY, -}; - -AVCodec mp3_decoder = -{ - "mp3", - CODEC_TYPE_AUDIO, - CODEC_ID_MP3, - sizeof(MPADecodeContext), - decode_init, - NULL, - NULL, - decode_frame, - CODEC_CAP_PARSE_ONLY, -};