X-Git-Url: https://git.pterodactylus.net/?a=blobdiff_plain;f=synfig-studio%2Fsrc%2Fsynfigapp%2Fblineconvert.cpp;fp=synfig-studio%2Fsrc%2Fsynfigapp%2Fblineconvert.cpp;h=42cb57a369511a8bef21b59b39347ae2fa9433c4;hb=a095981e18cc37a8ecc7cd237cc22b9c10329264;hp=0000000000000000000000000000000000000000;hpb=9459638ad6797b8139f1e9f0715c96076dbf0890;p=synfig.git diff --git a/synfig-studio/src/synfigapp/blineconvert.cpp b/synfig-studio/src/synfigapp/blineconvert.cpp new file mode 100644 index 0000000..42cb57a --- /dev/null +++ b/synfig-studio/src/synfigapp/blineconvert.cpp @@ -0,0 +1,839 @@ +/* === S Y N F I G ========================================================= */ +/*! \file blineconvert.cpp +** \brief Template File +** +** $Id$ +** +** \legal +** Copyright (c) 2002-2005 Robert B. Quattlebaum Jr., Adrian Bentley +** Copyright (c) 2007 Chris Moore +** +** This package is free software; you can redistribute it and/or +** modify it under the terms of the GNU General Public License as +** published by the Free Software Foundation; either version 2 of +** the License, or (at your option) any later version. +** +** This package is distributed in the hope that it will be useful, +** but WITHOUT ANY WARRANTY; without even the implied warranty of +** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +** General Public License for more details. +** \endlegal +*/ +/* ========================================================================= */ + +/* === H E A D E R S ======================================================= */ + +#ifdef USING_PCH +# include "pch.h" +#else +#ifdef HAVE_CONFIG_H +# include +#endif + +#include "blineconvert.h" +#include +#include +#include +#include +#include +#include +#include +#include + +#include "general.h" + +#endif + +/* === U S I N G =========================================================== */ + +using namespace std; +using namespace etl; +using namespace synfig; + +/* === M A C R O S ========================================================= */ + +#define EPSILON (1e-10) + +/* === G L O B A L S ======================================================= */ + +/* === P R O C E D U R E S ================================================= */ + +/* === M E T H O D S ======================================================= */ + + +//Derivative Functions for numerical approximation + +//bias == 0 will get F' at f3, bias < 0 will get F' at f1, and bias > 0 will get F' at f5 +template < class T > +inline void FivePointdt(T &df, const T &f1, const T &f2, const T &f3, const T &f4, const T &f5, int bias) +{ + if (bias == 0) // middle + df = (f1 - f2*8 + f4*8 - f5)*(1/12.0f); + else if (bias < 0) // left + df = (-f1*25 + f2*48 - f3*36 + f4*16 - f5*3)*(1/12.0f); + else // right + df = (f1*3 - f2*16 + f3*36 - f4*48 + f5*25)*(1/12.0f); +} + +template < class T > +inline void ThreePointdt(T &df, const T &f1, const T &f2, const T &f3, int bias) +{ + if (bias == 0) // middle + df = (-f1 + f3)*(1/2.0f); + else if (bias < 0) // left + df = (-f1*3 + f2*4 - f3)*(1/2.0f); + else // right + df = (f1 - f2*4 + f3*3)*(1/2.0f); +} + +// template < class T > +// inline void ThreePointddt(T &df, const T &f1, const T &f2, const T &f3, int bias) +// { +// // a 3 point approximation pretends to have constant acceleration, +// // so only one algorithm needed for left, middle, or right +// df = (f1 -f2*2 + f3)*(1/2.0f); +// } +// +// // WARNING -- totally broken +// template < class T > +// inline void FivePointddt(T &df, const T &f1, const T &f2, const T &f3, int bias) +// { +// if(bias == 0) +// { +// assert(0); // !? +// //middle +// //df = (- f1 + f2*16 - f3*30 + f4*16 - f5)*(1/12.0f); +// }/*else if(bias < 0) +// { +// //left +// df = (f1*7 - f2*26*4 + f3*19*6 - f4*14*4 + f5*11)*(1/12.0f); +// }else +// { +// //right +// df = (f1*3 - f2*16 + f3*36 - f4*48 + f5*25)*(1/12.0f); +// }*/ +// //side ones don't work, use 3 point +// } +// +// //implement an arbitrary derivative +// //dumb algorithm +// template < class T > +// void DerivativeApprox(T &df, const T f[], const Real t[], int npoints, int indexval) +// { +// /* +// Lj(x) = PI_i!=j (x - xi) / PI_i!=j (xj - xi) +// +// so Lj'(x) = SUM_k PI_i!=j|k (x - xi) / PI_i!=j (xj - xi) +// */ +// +// unsigned int i,j,k,i0,i1; +// +// Real Lpj,mult,div,tj; +// Real tval = t[indexval]; +// +// //sum k +// for(j=0;j +// inline int sign(T f, T tol) +// { +// if(f < -tol) return -1; +// if(f > tol) return 1; +// return 0; +// } + +void GetFirstDerivatives(const std::vector &f, unsigned int left, unsigned int right, char *out, unsigned int dfstride) +{ + unsigned int current = left; + + if(right - left < 2) + return; + else if(right - left == 2) + { + synfig::Vector v = f[left+1] - f[left]; + + //set both to the one we want + *(synfig::Vector*)out = v; + out += dfstride; + *(synfig::Vector*)out = v; + out += dfstride; + } + else if(right - left < 6/*5*/) //should use 3 point + { + //left then middle then right + ThreePointdt(*(synfig::Vector*)out,f[left+0], f[left+1], f[left+2], -1); + current++; + out += dfstride; + + for(;current < right-1; current++, out += dfstride) + ThreePointdt(*(synfig::Vector*)out,f[current-1], f[current], f[current+1], 0); + + ThreePointdt(*(synfig::Vector*)out,f[right-3], f[right-2], f[right-1], 1); + current++; + out += dfstride; + + }else //can use 5 point + { + //left 2 then middle bunch then right two + //may want to use 3 point for inner edge ones + + FivePointdt(*(synfig::Vector*)out,f[left+0], f[left+1], f[left+2], f[left+3], f[left+4], -2); + out += dfstride; + FivePointdt(*(synfig::Vector*)out,f[left+1], f[left+2], f[left+3], f[left+4], f[left+5], -1); + out += dfstride; + current += 2; + + for(;current < right-2; current++, out += dfstride) + FivePointdt(*(synfig::Vector*)out,f[current-2], f[current-1], f[current], f[current+1], f[current+2], 0); + + FivePointdt(*(synfig::Vector*)out,f[right-6], f[right-5], f[right-4], f[right-3], f[right-2], 2); + out += dfstride; + FivePointdt(*(synfig::Vector*)out,f[right-5], f[right-4], f[right-3], f[right-2], f[right-1], 1); + out += dfstride; + current += 2; + } +} + +void GetSimpleDerivatives(const std::vector &f, int left, int right, + std::vector &df, int outleft, + const std::vector &/*di*/) +{ + int i1,i2,i; + int offset = 2; //df = 1/2 (f[i+o]-f[i-o]) + + assert((int)df.size() >= right-left+outleft); //must be big enough + + for(i = left; i < right; ++i) + { + //right now indices (figure out distance later) + i1 = std::max(left,i-offset); + i2 = std::max(left,i+offset); + + df[outleft++] = (f[i2] - f[i1])*0.5f; + } +} + +//get the curve error from the double sample list of work points (hopefully that's enough) +Real CurveError(const synfig::Point *pts, unsigned int n, std::vector &work, int left, int right) +{ + if(right-left < 2) return -1; + + int i,j; + + //get distances to each point + Real d,dtemp,dsum; + //synfig::Vector v,vt; + //synfig::Point p1,p2; + synfig::Point pi; + std::vector::const_iterator it;//,end = work.begin()+right; + + //unsigned int size = work.size(); + + //for each line, get distance + d = 0; //starts at 0 + for(i = 0; i < (int)n; ++i) + { + pi = pts[i]; + + dsum = FLT_MAX; + + it = work.begin()+left; + //p2 = *it++; //put it at left+1 + for(j = left/*+1*/; j < right; ++j,++it) + { + /*p1 = p2; + p2 = *it; + + v = p2 - p1; + vt = pi - p1; + + dtemp = v.mag_squared() > 1e-12 ? (vt*v)/v.mag_squared() : 0; //get the projected time value for the current line + + //get distance to line segment with the time value clamped 0-1 + if(dtemp >= 1) //use p+v + { + vt += v; //makes it pp - (p+v) + }else if(dtemp > 0) //use vt-proj + { + vt -= v*dtemp; // vt - proj_v(vt) //must normalize the projection vector to work + } + + //else use p + dtemp = vt.mag_squared();*/ + + dtemp = (pi - *it).mag_squared(); + if(dtemp < dsum) + dsum = dtemp; + } + + //accumulate the points' min distance from the curve + d += sqrt(dsum); + } + + return d; +} + +typedef synfigapp::BLineConverter::cpindex cpindex; + +//has the index data and the tangent scale data (relevant as it may be) +int tessellate_curves(const std::vector &inds, const std::vector &f, const std::vector &df, std::vector &work) +{ + if(inds.size() < 2) + return 0; + + etl::hermite curve; + int ntess = 0; + + std::vector::const_iterator j = inds.begin(),j2, end = inds.end(); + + unsigned int ibase = inds[0].curind; + + j2 = j++; + for(; j != end; j2 = j++) + { + //if this curve has invalid error (in j) then retessellate its work points (requires reparametrization, etc.) + if(j->error < 0) + { + //get the stepsize etc. for the number of points in here + unsigned int n = j->curind - j2->curind + 1; //thats the number of points in the span + unsigned int k, kend, i0, i3; + //so reset the right chunk + + Real t, dt = 1/(Real)(n*2-2); //assuming that they own only n points + + //start at first intermediate + t = 0; + + i0 = j2->curind; i3 = j->curind; + k = (i0-ibase)*2; //start on first intermediary point (2x+1) + kend = (i3-ibase)*2; //last point to set (not intermediary) + + //build hermite curve, it's easier + curve.p1() = f[i0]; + curve.p2() = f[i3]; + curve.t1() = df[i0-ibase] * (df[i0-ibase].mag_squared() > 1e-4 + ? j2->tangentscale/df[i0-ibase].mag() + : j2->tangentscale); + curve.t2() = df[i3-ibase] * (df[i3-ibase].mag_squared() > 1e-4 + ? j->tangentscale/df[i3-ibase].mag() + : j->tangentscale); + curve.sync(); + + //MUST include the end point (since we are ignoring left one) + for(; k < kend; ++k, t += dt) + { + work[k] = curve(t); + } + + work[k] = curve(1); //k == kend, t == 1 -> c(t) == p2 + ++ntess; + } + } + + return ntess; +} + +synfigapp::BLineConverter::BLineConverter() +{ + pixelwidth = 1; + smoothness = 0.70f; + width = 0; +}; + +void +synfigapp::BLineConverter::clear() +{ + point_cache.clear(); + width_cache.clear(); + ftemp.clear(); + deriv.clear(); + curvature.clear(); + break_tangents.clear(); + cum_dist.clear(); + this_dist.clear(); + work.clear(); + curind.clear(); +} + +void +synfigapp::BLineConverter::operator()(std::list &blinepoints_out, + const std::list &points_in, + const std::list &widths_in) +{ + //Profiling information + /*etl::clock::value_type initialprocess=0, curveval=0, breakeval=0, disteval=0; + etl::clock::value_type preproceval=0, tesseval=0, erroreval=0, spliteval=0; + unsigned int numpre=0, numtess=0, numerror=0, numsplit=0; + etl::clock_realtime timer,total;*/ + + //total.reset(); + if (points_in.size() < 2) + return; + + clear(); + + //removing digitization error harder than expected + + //intended to fix little pen errors caused by the way people draw (tiny juts in opposite direction) + //Different solutions + // Average at both end points (will probably eliminate many points at each end of the samples) + // Average after the break points are found (weird points would still affect the curve) + // Just always get rid of breaks at the beginning and end if they are a certain distance apart + // This is will be current approach so all we do now is try to remove duplicate points + + //remove duplicate points - very bad for fitting + + //timer.reset(); + + { + std::list::const_iterator point_iter = points_in.begin(), end = points_in.end(); + std::list::const_iterator width_iter = widths_in.begin(); + synfig::Point c; + + if (points_in.size() == widths_in.size()) + { + for(bool first = true; point_iter != end; ++point_iter,++width_iter) + if (first || *point_iter != c) // eliminate duplicate points + { + first = false; + point_cache.push_back(c = *point_iter); + width_cache.push_back(*width_iter); + } + } + else + for(;point_iter != end; ++point_iter) + if(*point_iter != c) // eliminate duplicate points + point_cache.push_back(c = *point_iter); + } + //initialprocess = timer(); + + if (point_cache.size() < 7) + { + info("only %d unique points - giving up", point_cache.size()); + return; + } + + //get curvature information + //timer.reset(); + + { + int i_this, i_prev, i_next; + synfig::Vector v_prev, v_next; + + curvature.resize(point_cache.size()); + curvature.front() = curvature.back() = 1; + + for (i_this = 1; i_this < (int)point_cache.size()-1; i_this++) + { + i_prev = std::max(0, i_this-2); + i_next = std::min((int)(point_cache.size()-1), i_this+2); + + v_prev = point_cache[i_this] - point_cache[i_prev]; + v_next = point_cache[i_next] - point_cache[i_this]; + + curvature[i_this] = (v_prev*v_next) / (v_prev.mag()*v_next.mag()); + } + } + + //curveval = timer(); + //synfig::info("calculated curvature"); + + //find corner points and interpolate inside those + //timer.reset(); + { + //break at sharp derivative points + //TODO tolerance should be set based upon digitization resolution (length dependent index selection) + Real tol = 0; //break tolerance, for the cosine of the change in angle (really high curvature or something) + unsigned int i = 0; + + int sharpest_i=-1; + int last=0; + Real sharpest_curvature = 1; + + break_tangents.push_back(0); + + // loop through the curvatures; in each continuous run of + // curvatures that exceed the tolerence, find the one with the + // sharpest curvature and add its index to the list of indices + // at which to split tangents + for (i = 1; i < curvature.size()-1; ++i) + { + if (curvature[i] < tol) + { + if(curvature[i] < sharpest_curvature) + { + sharpest_curvature = curvature[i]; + sharpest_i = i; + } + } + else if (sharpest_i > 0) + { + // don't have 2 corners too close to each other + if (sharpest_i >= last + 8) //! \todo make this configurable + { + //synfig::info("break: %d-%d",sharpest_i+1,curvature.size()); + break_tangents.push_back(sharpest_i); + last = sharpest_i; + } + sharpest_i = -1; + sharpest_curvature = 1; + } + } + + break_tangents.push_back(i); + +// this section causes bug 1892566 if enabled +#if 1 + //postprocess for breaks too close to each other + Real fixdistsq = 4*width*width; //the distance to ignore breaks at the end points (for fixing stuff) + Real d = 0; + Point p = point_cache[break_tangents.front()]; + + //first set + for (i = 1; i < break_tangents.size()-1; ++i) //do not want to include end point... + { + d = (point_cache[break_tangents[i]] - p).mag_squared(); + if(d > fixdistsq) break; //don't want to group breaks if we ever get over the dist... + } + //want to erase all points before... + if(i != 1) + break_tangents.erase(break_tangents.begin(),break_tangents.begin()+i-1); + + //end set + p = point_cache[break_tangents.back()]; + for(i = break_tangents.size()-2; i > 0; --i) //start at one in from the end + { + d = (point_cache[break_tangents[i]] - p).mag_squared(); + if(d > fixdistsq) break; //don't want to group breaks if we ever get over the dist + } + if(i != break_tangents.size()-2) + break_tangents.erase(break_tangents.begin()+i+2,break_tangents.end()); //erase all points that we found... found none if i has not advanced + //must not include the one we ended up on +#endif + } + //breakeval = timer(); + //synfig::info("found break points: %d",break_tangents.size()); + + //get the distance calculation of the entire curve (for tangent scaling) + + //timer.reset(); + { + synfig::Point p1,p2; + + p1=p2=point_cache[0]; + + cum_dist.resize(point_cache.size()); this_dist.resize(point_cache.size()); + Real d = 0; + for(unsigned int i = 0; i < point_cache.size();) + { + d += (this_dist[i] = (p2-p1).mag()); + cum_dist[i] = d; + + p1=p2; + //! \todo is this legal? it reads off the end of the vector + p2=point_cache[++i]; + } + } + //disteval = timer(); + //synfig::info("calculated distance"); + + //now break at every point - calculate new derivatives each time + + //TODO + //must be sure that the break points are 3 or more apart + //then must also store the breaks which are not smooth, etc. + //and figure out tangents between there + + //for each pair of break points (as long as they are far enough apart) recursively subdivide stuff + //ignore the detected intermediate points + { + unsigned int i0=0,i3=0,is=0; + int i=0,j=0; + + bool done = false; + + Real errortol = smoothness*pixelwidth; //???? what should this value be + + BLinePoint a; + synfig::Vector v; + + //intemp = f; //don't want to smooth out the corners + + bool breaktan = false, setwidth; + a.set_split_tangent_flag(false); + //a.set_width(width); + a.set_width(1.0f); + + setwidth = (point_cache.size() == width_cache.size()); + + for(j = 0; j < (int)break_tangents.size() - 1; ++j) + { + //for b[j] to b[j+1] subdivide and stuff + i0 = break_tangents[j]; + i3 = break_tangents[j+1]; + + unsigned int size = i3-i0+1; //must include the end points + + //new derivatives + //timer.reset(); + ftemp.assign(point_cache.begin()+i0, point_cache.begin()+i3+1); + for(i=0;i<20;++i) + gaussian_blur_3(ftemp.begin(),ftemp.end(),false); + + deriv.resize(size); + + // Wondering whether the modification of the deriv vector + // using a char* pointer and pointer arithmetric was safe, + // I looked it up... + // + // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2369.pdf tells me: + // + // 23.2.5 Class template vector [vector] + // + // [...] The elements of a vector are stored contiguously, + // meaning that if v is a vector where T is + // some type other than bool, then it obeys the identity + // &v[n] == &v[0] + n for all 0 <= n < v.size(). + // + GetFirstDerivatives(ftemp,0,size,(char*)&deriv[0],sizeof(deriv[0])); + + //GetSimpleDerivatives(ftemp,0,size,deriv,0,cum_dist); + //< don't have to worry about indexing stuff as it is all being taken care of right now + //preproceval += timer(); + //numpre++; + + work.resize(size*2-1); //guarantee that all points will be tessellated correctly (one point in between every 2 adjacent points) + + //if size of work is size*2-1, the step size should be 1/(size*2 - 2) + //Real step = 1/(Real)(size*2 - 1); + + //start off with break points as indices + curind.clear(); + curind.push_back(cpindex(i0,cum_dist[i3]-cum_dist[i0],0)); //0 error because no curve on the left + curind.push_back(cpindex(i3,cum_dist[i3]-cum_dist[i0],-1)); //error needs to be reevaluated + done = false; //we want to loop + + unsigned int dcount = 0; + + //while there are still enough points between us, and the error is too high subdivide (and invalidate neighbors that share tangents) + while(!done) + { + //tessellate all curves with invalid error values + work[0] = point_cache[i0]; + + //timer.reset(); + /*numtess += */tessellate_curves(curind,point_cache,deriv,work); + //tesseval += timer(); + + //now get all error values + //timer.reset(); + for(i = 1; i < (int)curind.size(); ++i) + { + if(curind[i].error < 0) //must have been retessellated, so now recalculate error value + { + //evaluate error from points (starting at current index) + int size = curind[i].curind - curind[i-1].curind + 1; + curind[i].error = CurveError(&point_cache[curind[i-1].curind], size, + work,(curind[i-1].curind - i0)*2,(curind[i].curind - i0)*2+1); + + /*if(curind[i].error > 1.0e5) + { + synfig::info("Holy crap %d-%d error %f",curind[i-1].curind,curind[i].curind,curind[i].error); + curind[i].error = -1; + numtess += tessellate_curves(curind,f,deriv,work); + curind[i].error = CurveError(&point_cache[curind[i-1].curind], size, + work,0,work.size());//(curind[i-1].curind - i0)*2,(curind[i].curind - i0)*2+1); + }*/ + //numerror++; + } + } + //erroreval += timer(); + + //assume we're done + done = true; + + //check each error to see if it's too big, if so, then subdivide etc. + int indsize = (int)curind.size(); + Real maxrelerror = 0; + int maxi = -1;//, numpoints; + + //timer.reset(); + //get the maximum error and split there + for(i = 1; i < indsize; ++i) + { + //numpoints = curind[i].curind - curind[i-1].curind + 1; + + if(curind[i].error > maxrelerror && curind[i].curind - curind[i-1].curind > 2) //only accept if it's valid + { + maxrelerror = curind[i].error; + maxi = i; + } + } + + //split if error is too great + if(maxrelerror > errortol) + { + //add one to the left etc + unsigned int ibase = curind[maxi-1].curind, itop = curind[maxi].curind, + ibreak = (ibase + itop)/2; + Real scale, scale2; + + assert(ibreak < point_cache.size()); + + //synfig::info("Split %d -%d- %d, error: %f", ibase,ibreak,itop,maxrelerror); + + if(ibase != itop) + { + //invalidate current error of the changed tangents and add an extra segment + //enforce minimum tangents property + curind[maxi].error = -1; + curind[maxi-1].error = -1; + if(maxi+1 < indsize) curind[maxi+1].error = -1; //if there is a curve segment beyond this it will be effected as well + + scale = cum_dist[itop] - cum_dist[ibreak]; + scale2 = maxi+1 < indsize ? cum_dist[curind[maxi+1].curind] - cum_dist[itop] : scale; //to the right valid? + curind[maxi].tangentscale = std::min(scale, scale2); + + scale = cum_dist[ibreak] - cum_dist[ibase]; + scale2 = maxi >= 2 ? cum_dist[ibase] - cum_dist[curind[maxi-2].curind] : scale; // to the left valid -2 ? + curind[maxi-1].tangentscale = std::min(scale, scale2); + + scale = std::min(cum_dist[ibreak] - cum_dist[ibase], cum_dist[itop] - cum_dist[ibreak]); + + curind.insert(curind.begin()+maxi,cpindex(ibreak, scale, -1)); + //curind.push_back(cpindex(ibreak, scale, -1)); + //std::sort(curind.begin(), curind.end()); + + done = false; + //numsplit++; + } + } + //spliteval += timer(); + + dcount++; + } + + //insert the last point too (just set tangent for now + is = curind[0].curind; + + //first point inherits current tangent status + v = deriv[is - i0]; + if(v.mag_squared() > EPSILON) + v *= (curind[0].tangentscale/v.mag()); + + if(!breaktan) + a.set_tangent(v); + else a.set_tangent2(v); + + a.set_vertex(point_cache[is]); + if(setwidth)a.set_width(width_cache[is]); + + blinepoints_out.push_back(a); + a.set_split_tangent_flag(false); //won't need to break anymore + breaktan = false; + + for(i = 1; i < (int)curind.size()-1; ++i) + { + is = curind[i].curind; + + //first point inherits current tangent status + v = deriv[is-i0]; + if(v.mag_squared() > EPSILON) + v *= (curind[i].tangentscale/v.mag()); + + a.set_tangent(v); // always inside, so guaranteed to be smooth + a.set_vertex(point_cache[is]); + if(setwidth)a.set_width(width_cache[is]); + + blinepoints_out.push_back(a); + } + + //set the last point's data + is = curind.back().curind; //should already be this + + v = deriv[is-i0]; + if(v.mag_squared() > EPSILON) + v *= (curind.back().tangentscale/v.mag()); + + a.set_tangent1(v); + a.set_split_tangent_flag(true); + breaktan = true; + + //will get the vertex and tangent 2 from next round + } + + a.set_vertex(point_cache[i3]); + a.set_split_tangent_flag(false); + if(setwidth) + a.set_width(width_cache[i3]); + blinepoints_out.push_back(a); + + /*etl::clock::value_type totaltime = total(), + misctime = totaltime - initialprocess - curveval - breakeval - disteval + - preproceval - tesseval - erroreval - spliteval; + + synfig::info( + "Curve Convert Profile:\n" + "\tInitial Preprocess: %f\n" + "\tCurvature Calculation: %f\n" + "\tBreak Calculation: %f\n" + "\tDistance Calculation: %f\n" + " Algorithm: (numtimes,totaltime)\n" + "\tPreprocess step: (%d,%f)\n" + "\tTessellation step: (%d,%f)\n" + "\tError step: (%d,%f)\n" + "\tSplit step: (%d,%f)\n" + " Num Input: %d, Num Output: %d\n" + " Total time: %f, Misc time: %f\n", + initialprocess, curveval,breakeval,disteval, + numpre,preproceval,numtess,tesseval,numerror,erroreval,numsplit,spliteval, + points_in.size(),blinepoints_out.size(), + totaltime,misctime);*/ + + return; + } +} + +void synfigapp::BLineConverter::EnforceMinWidth(std::list &bline, synfig::Real min_pressure) +{ + std::list::iterator i = bline.begin(), + end = bline.end(); + + for(i = bline.begin(); i != end; ++i) + if(i->get_width() < min_pressure) + i->set_width(min_pressure); +}