/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
-** version 3.5.9. By combining all the individual C code files into this
+** version 3.6.1. By combining all the individual C code files into this
** single large file, the entire code can be compiled as a one translation
** unit. This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately. Performance improvements
** programs, you need this file and the "sqlite3.h" header file that defines
** the programming interface to the SQLite library. (If you do not have
** the "sqlite3.h" header file at hand, you will find a copy in the first
-** 5638 lines past this header comment.) Additional code files may be
+** 6279 lines past this header comment.) Additional code files may be
** needed if you want a wrapper to interface SQLite with your choice of
** programming language. The code for the "sqlite3" command-line shell
** is also in a separate file. This file contains only code for the core
** SQLite library.
**
-** This amalgamation was generated on 2008-05-14 16:20:58 UTC.
+** This amalgamation was generated on 2008-08-05 21:36:42 UTC.
*/
#define SQLITE_CORE 1
#define SQLITE_AMALGAMATION 1
*************************************************************************
** Internal interface definitions for SQLite.
**
-** @(#) $Id: sqliteInt.h,v 1.704 2008/05/13 13:27:34 drh Exp $
+** @(#) $Id: sqliteInt.h,v 1.752 2008/08/04 20:13:27 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_
#endif
/* Needed for various definitions... */
-#define _GNU_SOURCE
+#ifndef _GNU_SOURCE
+# define _GNU_SOURCE
+#endif
/*
** Include standard header files as necessary
# define testcase(X)
#endif
+/*
+** The ALWAYS and NEVER macros surround boolean expressions which
+** are intended to always be true or false, respectively. Such
+** expressions could be omitted from the code completely. But they
+** are included in a few cases in order to enhance the resilience
+** of SQLite to unexpected behavior - to make the code "self-healing"
+** or "ductile" rather than being "brittle" and crashing at the first
+** hint of unplanned behavior.
+**
+** When doing coverage testing ALWAYS and NEVER are hard-coded to
+** be true and false so that the unreachable code then specify will
+** not be counted as untested code.
+*/
+#ifdef SQLITE_COVERAGE_TEST
+# define ALWAYS(X) (1)
+# define NEVER(X) (0)
+#else
+# define ALWAYS(X) (X)
+# define NEVER(X) (X)
+#endif
/*
** The macro unlikely() is a hint that surrounds a boolean
# define unlikely(X) !!(X)
#endif
+/*
+ * This macro is used to "hide" some ugliness in casting an int
+ * value to a ptr value under the MSVC 64-bit compiler. Casting
+ * non 64-bit values to ptr types results in a "hard" error with
+ * the MSVC 64-bit compiler which this attempts to avoid.
+ *
+ * A simple compiler pragma or casting sequence could not be found
+ * to correct this in all situations, so this macro was introduced.
+ *
+ * It could be argued that the intptr_t type could be used in this
+ * case, but that type is not available on all compilers, or
+ * requires the #include of specific headers which differs between
+ * platforms.
+ */
+#define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X])
+#define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0))
/*
** These #defines should enable >2GB file support on Posix if the
**
** Some of the definitions that are in this file are marked as
** "experimental". Experimental interfaces are normally new
-** features recently added to SQLite. We do not anticipate changes
+** features recently added to SQLite. We do not anticipate changes
** to experimental interfaces but reserve to make minor changes if
** experience from use "in the wild" suggest such changes are prudent.
**
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.
**
-** @(#) $Id: sqlite.h.in,v 1.312 2008/05/12 12:39:56 drh Exp $
+** @(#) $Id: sqlite.h.in,v 1.387 2008/08/05 17:53:23 drh Exp $
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
#endif
/*
-** Make sure these symbols where not defined by some previous header
-** file.
+** Ensure these symbols were not defined by some previous header file.
*/
#ifdef SQLITE_VERSION
# undef SQLITE_VERSION
#endif
/*
-** CAPI3REF: Compile-Time Library Version Numbers {F10010}
+** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100>
**
** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
** the sqlite3.h file specify the version of SQLite with which
** The "version" of SQLite is a string of the form "X.Y.Z".
** The phrase "alpha" or "beta" might be appended after the Z.
** The X value is major version number always 3 in SQLite3.
-** The X value only changes when backwards compatibility is
-** broken and we intend to never break
-** backwards compatibility. The Y value is the minor version
-** number and only changes when
+** The X value only changes when backwards compatibility is
+** broken and we intend to never break backwards compatibility.
+** The Y value is the minor version number and only changes when
** there are major feature enhancements that are forwards compatible
-** but not backwards compatible. The Z value is release number
-** and is incremented with
-** each release but resets back to 0 when Y is incremented.
+** but not backwards compatible.
+** The Z value is the release number and is incremented with
+** each release but resets back to 0 whenever Y is incremented.
**
** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
**
** INVARIANTS:
**
-** {F10011} The SQLITE_VERSION #define in the sqlite3.h header file
-** evaluates to a string literal that is the SQLite version
+** {H10011} The SQLITE_VERSION #define in the sqlite3.h header file shall
+** evaluate to a string literal that is the SQLite version
** with which the header file is associated.
**
-** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer
-** with the value (X*1000000 + Y*1000 + Z) where X, Y, and
-** Z are the major version, minor version, and release number.
+** {H10014} The SQLITE_VERSION_NUMBER #define shall resolve to an integer
+** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z
+** are the major version, minor version, and release number.
*/
-#define SQLITE_VERSION "3.5.9"
-#define SQLITE_VERSION_NUMBER 3005009
+#define SQLITE_VERSION "3.6.1"
+#define SQLITE_VERSION_NUMBER 3006001
/*
-** CAPI3REF: Run-Time Library Version Numbers {F10020}
+** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100>
** KEYWORDS: sqlite3_version
**
** These features provide the same information as the [SQLITE_VERSION]
** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
** with the library instead of the header file. Cautious programmers might
-** include a check in their application to verify that
-** sqlite3_libversion_number() always returns the value
+** include a check in their application to verify that
+** sqlite3_libversion_number() always returns the value
** [SQLITE_VERSION_NUMBER].
**
** The sqlite3_libversion() function returns the same information as is
**
** INVARIANTS:
**
-** {F10021} The [sqlite3_libversion_number()] interface returns an integer
-** equal to [SQLITE_VERSION_NUMBER].
+** {H10021} The [sqlite3_libversion_number()] interface shall return
+** an integer equal to [SQLITE_VERSION_NUMBER].
**
-** {F10022} The [sqlite3_version] string constant contains the text of the
-** [SQLITE_VERSION] string.
+** {H10022} The [sqlite3_version] string constant shall contain
+** the text of the [SQLITE_VERSION] string.
**
-** {F10023} The [sqlite3_libversion()] function returns
+** {H10023} The [sqlite3_libversion()] function shall return
** a pointer to the [sqlite3_version] string constant.
*/
SQLITE_API const char sqlite3_version[];
SQLITE_API int sqlite3_libversion_number(void);
/*
-** CAPI3REF: Test To See If The Library Is Threadsafe {F10100}
+** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} <S60100>
**
** SQLite can be compiled with or without mutexes. When
-** the SQLITE_THREADSAFE C preprocessor macro is true, mutexes
+** the [SQLITE_THREADSAFE] C preprocessor macro is true, mutexes
** are enabled and SQLite is threadsafe. When that macro is false,
** the mutexes are omitted. Without the mutexes, it is not safe
-** to use SQLite from more than one thread.
+** to use SQLite concurrently from more than one thread.
**
-** There is a measurable performance penalty for enabling mutexes.
+** Enabling mutexes incurs a measurable performance penalty.
** So if speed is of utmost importance, it makes sense to disable
** the mutexes. But for maximum safety, mutexes should be enabled.
** The default behavior is for mutexes to be enabled.
**
** This interface can be used by a program to make sure that the
** version of SQLite that it is linking against was compiled with
-** the desired setting of the SQLITE_THREADSAFE macro.
+** the desired setting of the [SQLITE_THREADSAFE] macro.
+**
+** This interface only reports on the compile-time mutex setting
+** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
+** SQLITE_THREADSAFE=1 then mutexes are enabled by default but
+** can be fully or partially disabled using a call to [sqlite3_config()]
+** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
+** or [SQLITE_CONFIG_MUTEX]. The return value of this function shows
+** only the default compile-time setting, not any run-time changes
+** to that setting.
**
** INVARIANTS:
**
-** {F10101} The [sqlite3_threadsafe()] function returns nonzero if
-** SQLite was compiled with its mutexes enabled or zero
-** if SQLite was compiled with mutexes disabled.
+** {H10101} The [sqlite3_threadsafe()] function shall return nonzero if
+** SQLite was compiled with the its mutexes enabled by default
+** or zero if SQLite was compiled such that mutexes are
+** permanently disabled.
+**
+** {H10102} The value returned by the [sqlite3_threadsafe()] function
+** shall not change when mutex setting are modified at
+** runtime using the [sqlite3_config()] interface and
+** especially the [SQLITE_CONFIG_SINGLETHREAD],
+** [SQLITE_CONFIG_MULTITHREAD], [SQLITE_CONFIG_SERIALIZED],
+** and [SQLITE_CONFIG_MUTEX] verbs.
*/
SQLITE_API int sqlite3_threadsafe(void);
/*
-** CAPI3REF: Database Connection Handle {F12000}
+** CAPI3REF: Database Connection Handle {H12000} <S40200>
** KEYWORDS: {database connection} {database connections}
**
-** Each open SQLite database is represented by pointer to an instance of the
-** opaque structure named "sqlite3". It is useful to think of an sqlite3
+** Each open SQLite database is represented by a pointer to an instance of
+** the opaque structure named "sqlite3". It is useful to think of an sqlite3
** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
-** [sqlite3_open_v2()] interfaces are its constructors
-** and [sqlite3_close()] is its destructor. There are many other interfaces
-** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and
-** [sqlite3_busy_timeout()] to name but three) that are methods on this
-** object.
+** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
+** is its destructor. There are many other interfaces (such as
+** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
+** [sqlite3_busy_timeout()] to name but three) that are methods on an
+** sqlite3 object.
*/
typedef struct sqlite3 sqlite3;
-
/*
-** CAPI3REF: 64-Bit Integer Types {F10200}
+** CAPI3REF: 64-Bit Integer Types {H10200} <S10110>
** KEYWORDS: sqlite_int64 sqlite_uint64
**
** Because there is no cross-platform way to specify 64-bit integer types
** SQLite includes typedefs for 64-bit signed and unsigned integers.
**
-** The sqlite3_int64 and sqlite3_uint64 are the preferred type
-** definitions. The sqlite_int64 and sqlite_uint64 types are
-** supported for backwards compatibility only.
+** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
+** The sqlite_int64 and sqlite_uint64 types are supported for backwards
+** compatibility only.
**
** INVARIANTS:
**
-** {F10201} The [sqlite_int64] and [sqlite3_int64] types specify a
-** 64-bit signed integer.
+** {H10201} The [sqlite_int64] and [sqlite3_int64] type shall specify
+** a 64-bit signed integer.
**
-** {F10202} The [sqlite_uint64] and [sqlite3_uint64] types specify
+** {H10202} The [sqlite_uint64] and [sqlite3_uint64] type shall specify
** a 64-bit unsigned integer.
*/
#ifdef SQLITE_INT64_TYPE
/*
** If compiling for a processor that lacks floating point support,
-** substitute integer for floating-point
+** substitute integer for floating-point.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite3_int64
#endif
/*
-** CAPI3REF: Closing A Database Connection {F12010}
+** CAPI3REF: Closing A Database Connection {H12010} <S30100><S40200>
**
-** This routine is the destructor for the [sqlite3] object.
+** This routine is the destructor for the [sqlite3] object.
**
-** Applications should [sqlite3_finalize | finalize] all
-** [prepared statements] and
-** [sqlite3_blob_close | close] all [sqlite3_blob | BLOBs]
-** associated with the [sqlite3] object prior
-** to attempting to close the [sqlite3] object.
+** Applications should [sqlite3_finalize | finalize] all [prepared statements]
+** and [sqlite3_blob_close | close] all [BLOB handles] associated with
+** the [sqlite3] object prior to attempting to close the object.
+** The [sqlite3_next_stmt()] interface can be used to locate all
+** [prepared statements] associated with a [database connection] if desired.
+** Typical code might look like this:
**
-** <todo>What happens to pending transactions? Are they
-** rolled back, or abandoned?</todo>
+** <blockquote><pre>
+** sqlite3_stmt *pStmt;
+** while( (pStmt = sqlite3_next_stmt(db, 0))!=0 ){
+** sqlite3_finalize(pStmt);
+** }
+** </pre></blockquote>
+**
+** If [sqlite3_close()] is invoked while a transaction is open,
+** the transaction is automatically rolled back.
**
** INVARIANTS:
**
-** {F12011} The [sqlite3_close()] interface destroys an [sqlite3] object
-** allocated by a prior call to [sqlite3_open()],
-** [sqlite3_open16()], or [sqlite3_open_v2()].
+** {H12011} A successful call to [sqlite3_close(C)] shall destroy the
+** [database connection] object C.
**
-** {F12012} The [sqlite3_close()] function releases all memory used by the
-** connection and closes all open files.
+** {H12012} A successful call to [sqlite3_close(C)] shall return SQLITE_OK.
**
-** {F12013} If the database connection contains
-** [prepared statements] that have not been
-** finalized by [sqlite3_finalize()], then [sqlite3_close()]
-** returns [SQLITE_BUSY] and leaves the connection open.
+** {H12013} A successful call to [sqlite3_close(C)] shall release all
+** memory and system resources associated with [database connection]
+** C.
+**
+** {H12014} A call to [sqlite3_close(C)] on a [database connection] C that
+** has one or more open [prepared statements] shall fail with
+** an [SQLITE_BUSY] error code.
**
-** {F12014} Giving sqlite3_close() a NULL pointer is a harmless no-op.
+** {H12015} A call to [sqlite3_close(C)] where C is a NULL pointer shall
+** return SQLITE_OK.
**
-** LIMITATIONS:
+** {H12019} When [sqlite3_close(C)] is invoked on a [database connection] C
+** that has a pending transaction, the transaction shall be
+** rolled back.
**
-** {U12015} The parameter to [sqlite3_close()] must be an [sqlite3] object
-** pointer previously obtained from [sqlite3_open()] or the
-** equivalent, or NULL.
+** ASSUMPTIONS:
**
-** {U12016} The parameter to [sqlite3_close()] must not have been previously
-** closed.
+** {A12016} The C parameter to [sqlite3_close(C)] must be either a NULL
+** pointer or an [sqlite3] object pointer obtained
+** from [sqlite3_open()], [sqlite3_open16()], or
+** [sqlite3_open_v2()], and not previously closed.
*/
SQLITE_API int sqlite3_close(sqlite3 *);
typedef int (*sqlite3_callback)(void*,int,char**, char**);
/*
-** CAPI3REF: One-Step Query Execution Interface {F12100}
+** CAPI3REF: One-Step Query Execution Interface {H12100} <S10000>
**
-** The sqlite3_exec() interface is a convenient way of running
-** one or more SQL statements without a lot of C code. The
-** SQL statements are passed in as the second parameter to
-** sqlite3_exec(). The statements are evaluated one by one
-** until either an error or an interrupt is encountered or
-** until they are all done. The 3rd parameter is an optional
-** callback that is invoked once for each row of any query results
-** produced by the SQL statements. The 5th parameter tells where
+** The sqlite3_exec() interface is a convenient way of running one or more
+** SQL statements without having to write a lot of C code. The UTF-8 encoded
+** SQL statements are passed in as the second parameter to sqlite3_exec().
+** The statements are evaluated one by one until either an error or
+** an interrupt is encountered, or until they are all done. The 3rd parameter
+** is an optional callback that is invoked once for each row of any query
+** results produced by the SQL statements. The 5th parameter tells where
** to write any error messages.
**
+** The error message passed back through the 5th parameter is held
+** in memory obtained from [sqlite3_malloc()]. To avoid a memory leak,
+** the calling application should call [sqlite3_free()] on any error
+** message returned through the 5th parameter when it has finished using
+** the error message.
+**
+** If the SQL statement in the 2nd parameter is NULL or an empty string
+** or a string containing only whitespace and comments, then no SQL
+** statements are evaluated and the database is not changed.
+**
** The sqlite3_exec() interface is implemented in terms of
** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
-** The sqlite3_exec() routine does nothing that cannot be done
+** The sqlite3_exec() routine does nothing to the database that cannot be done
** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
-** The sqlite3_exec() is just a convenient wrapper.
**
** INVARIANTS:
-**
-** {F12101} The [sqlite3_exec()] interface evaluates zero or more UTF-8
-** encoded, semicolon-separated, SQL statements in the
-** zero-terminated string of its 2nd parameter within the
-** context of the [sqlite3] object given in the 1st parameter.
**
-** {F12104} The return value of [sqlite3_exec()] is SQLITE_OK if all
-** SQL statements run successfully.
+** {H12101} A successful invocation of [sqlite3_exec(D,S,C,A,E)]
+** shall sequentially evaluate all of the UTF-8 encoded,
+** semicolon-separated SQL statements in the zero-terminated
+** string S within the context of the [database connection] D.
+**
+** {H12102} If the S parameter to [sqlite3_exec(D,S,C,A,E)] is NULL then
+** the actions of the interface shall be the same as if the
+** S parameter were an empty string.
**
-** {F12105} The return value of [sqlite3_exec()] is an appropriate
-** non-zero error code if any SQL statement fails.
+** {H12104} The return value of [sqlite3_exec()] shall be [SQLITE_OK] if all
+** SQL statements run successfully and to completion.
**
-** {F12107} If one or more of the SQL statements handed to [sqlite3_exec()]
+** {H12105} The return value of [sqlite3_exec()] shall be an appropriate
+** non-zero [error code] if any SQL statement fails.
+**
+** {H12107} If one or more of the SQL statements handed to [sqlite3_exec()]
** return results and the 3rd parameter is not NULL, then
-** the callback function specified by the 3rd parameter is
+** the callback function specified by the 3rd parameter shall be
** invoked once for each row of result.
**
-** {F12110} If the callback returns a non-zero value then [sqlite3_exec()]
-** will aborted the SQL statement it is currently evaluating,
+** {H12110} If the callback returns a non-zero value then [sqlite3_exec()]
+** shall abort the SQL statement it is currently evaluating,
** skip all subsequent SQL statements, and return [SQLITE_ABORT].
-** <todo>What happens to *errmsg here? Does the result code for
-** sqlite3_errcode() get set?</todo>
**
-** {F12113} The [sqlite3_exec()] routine will pass its 4th parameter through
+** {H12113} The [sqlite3_exec()] routine shall pass its 4th parameter through
** as the 1st parameter of the callback.
**
-** {F12116} The [sqlite3_exec()] routine sets the 2nd parameter of its
+** {H12116} The [sqlite3_exec()] routine shall set the 2nd parameter of its
** callback to be the number of columns in the current row of
** result.
**
-** {F12119} The [sqlite3_exec()] routine sets the 3rd parameter of its
+** {H12119} The [sqlite3_exec()] routine shall set the 3rd parameter of its
** callback to be an array of pointers to strings holding the
** values for each column in the current result set row as
** obtained from [sqlite3_column_text()].
**
-** {F12122} The [sqlite3_exec()] routine sets the 4th parameter of its
+** {H12122} The [sqlite3_exec()] routine shall set the 4th parameter of its
** callback to be an array of pointers to strings holding the
** names of result columns as obtained from [sqlite3_column_name()].
**
-** {F12125} If the 3rd parameter to [sqlite3_exec()] is NULL then
-** [sqlite3_exec()] never invokes a callback. All query
-** results are silently discarded.
+** {H12125} If the 3rd parameter to [sqlite3_exec()] is NULL then
+** [sqlite3_exec()] shall silently discard query results.
**
-** {F12128} If an error occurs while parsing or evaluating any of the SQL
-** statements handed to [sqlite3_exec()] then [sqlite3_exec()] will
-** return an [error code] other than [SQLITE_OK].
+** {H12131} If an error occurs while parsing or evaluating any of the SQL
+** statements in the S parameter of [sqlite3_exec(D,S,C,A,E)] and if
+** the E parameter is not NULL, then [sqlite3_exec()] shall store
+** in *E an appropriate error message written into memory obtained
+** from [sqlite3_malloc()].
**
-** {F12131} If an error occurs while parsing or evaluating any of the SQL
-** handed to [sqlite3_exec()] and if the 5th parameter (errmsg)
-** to [sqlite3_exec()] is not NULL, then an error message is
-** allocated using the equivalent of [sqlite3_mprintf()] and
-** *errmsg is made to point to that message.
+** {H12134} The [sqlite3_exec(D,S,C,A,E)] routine shall set the value of
+** *E to NULL if E is not NULL and there are no errors.
**
-** {F12134} The [sqlite3_exec()] routine does not change the value of
-** *errmsg if errmsg is NULL or if there are no errors.
+** {H12137} The [sqlite3_exec(D,S,C,A,E)] function shall set the [error code]
+** and message accessible via [sqlite3_errcode()],
+** [sqlite3_errmsg()], and [sqlite3_errmsg16()].
**
-** {F12137} The [sqlite3_exec()] function sets the error code and message
-** accessible via [sqlite3_errcode()], [sqlite3_errmsg()], and
-** [sqlite3_errmsg16()].
+** {H12138} If the S parameter to [sqlite3_exec(D,S,C,A,E)] is NULL or an
+** empty string or contains nothing other than whitespace, comments,
+** and/or semicolons, then results of [sqlite3_errcode()],
+** [sqlite3_errmsg()], and [sqlite3_errmsg16()]
+** shall reset to indicate no errors.
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U12141} The first parameter to [sqlite3_exec()] must be an valid and open
+** {A12141} The first parameter to [sqlite3_exec()] must be an valid and open
** [database connection].
**
-** {U12142} The database connection must not be closed while
+** {A12142} The database connection must not be closed while
** [sqlite3_exec()] is running.
-**
-** {U12143} The calling function is should use [sqlite3_free()] to free
+**
+** {A12143} The calling function should use [sqlite3_free()] to free
** the memory that *errmsg is left pointing at once the error
** message is no longer needed.
**
-** {U12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()]
+** {A12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()]
** must remain unchanged while [sqlite3_exec()] is running.
*/
SQLITE_API int sqlite3_exec(
sqlite3*, /* An open database */
- const char *sql, /* SQL to be evaluted */
+ const char *sql, /* SQL to be evaluated */
int (*callback)(void*,int,char**,char**), /* Callback function */
void *, /* 1st argument to callback */
char **errmsg /* Error msg written here */
);
/*
-** CAPI3REF: Result Codes {F10210}
+** CAPI3REF: Result Codes {H10210} <S10700>
** KEYWORDS: SQLITE_OK {error code} {error codes}
+** KEYWORDS: {result code} {result codes}
**
** Many SQLite functions return an integer result code from the set shown
** here in order to indicates success or failure.
**
+** New error codes may be added in future versions of SQLite.
+**
** See also: [SQLITE_IOERR_READ | extended result codes]
*/
#define SQLITE_OK 0 /* Successful result */
/* end-of-error-codes */
/*
-** CAPI3REF: Extended Result Codes {F10220}
+** CAPI3REF: Extended Result Codes {H10220} <S10700>
** KEYWORDS: {extended error code} {extended error codes}
-** KEYWORDS: {extended result codes}
+** KEYWORDS: {extended result code} {extended result codes}
**
** In its default configuration, SQLite API routines return one of 26 integer
-** [SQLITE_OK | result codes]. However, experience has shown that
-** many of these result codes are too course-grained. They do not provide as
+** [SQLITE_OK | result codes]. However, experience has shown that many of
+** these result codes are too coarse-grained. They do not provide as
** much information about problems as programmers might like. In an effort to
** address this, newer versions of SQLite (version 3.3.8 and later) include
** support for additional result codes that provide more detailed information
** about errors. The extended result codes are enabled or disabled
-** for each database connection using the [sqlite3_extended_result_codes()]
-** API.
-**
+** on a per database connection basis using the
+** [sqlite3_extended_result_codes()] API.
+**
** Some of the available extended result codes are listed here.
** One may expect the number of extended result codes will be expand
** over time. Software that uses extended result codes should expect
**
** The SQLITE_OK result code will never be extended. It will always
** be exactly zero.
-**
+**
** INVARIANTS:
**
-** {F10223} The symbolic name for an extended result code always contains
+** {H10223} The symbolic name for an extended result code shall contains
** a related primary result code as a prefix.
**
-** {F10224} Primary result code names contain a single "_" character.
+** {H10224} Primary result code names shall contain a single "_" character.
**
-** {F10225} Extended result code names contain two or more "_" characters.
+** {H10225} Extended result code names shall contain two or more "_" characters.
**
-** {F10226} The numeric value of an extended result code contains the
+** {H10226} The numeric value of an extended result code shall contain the
** numeric value of its corresponding primary result code in
** its least significant 8 bits.
*/
-#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
-#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
-#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
-#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
-#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
-#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
-#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
-#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
-#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
-#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
-#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
-#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
+#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
+#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
+#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
+#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
+#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
+#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
+#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
+#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
+#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
+#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8))
+#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
/*
-** CAPI3REF: Flags For File Open Operations {F10230}
+** CAPI3REF: Flags For File Open Operations {H10230} <H11120> <H12700>
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000
#define SQLITE_OPEN_SUBJOURNAL 0x00002000
#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000
+#define SQLITE_OPEN_NOMUTEX 0x00008000
/*
-** CAPI3REF: Device Characteristics {F10240}
+** CAPI3REF: Device Characteristics {H10240} <H11120>
**
** The xDeviceCapabilities method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
/*
-** CAPI3REF: File Locking Levels {F10250}
+** CAPI3REF: File Locking Levels {H10250} <H11120> <H11310>
**
** SQLite uses one of these integer values as the second
** argument to calls it makes to the xLock() and xUnlock() methods
#define SQLITE_LOCK_EXCLUSIVE 4
/*
-** CAPI3REF: Synchronization Type Flags {F10260}
+** CAPI3REF: Synchronization Type Flags {H10260} <H11120>
**
** When SQLite invokes the xSync() method of an
** [sqlite3_io_methods] object it uses a combination of
**
** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
** sync operation only needs to flush data to mass storage. Inode
-** information need not be flushed. The SQLITE_SYNC_NORMAL flag means
-** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means
+** information need not be flushed. The SQLITE_SYNC_NORMAL flag means
+** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means
** to use Mac OS-X style fullsync instead of fsync().
*/
#define SQLITE_SYNC_NORMAL 0x00002
#define SQLITE_SYNC_FULL 0x00003
#define SQLITE_SYNC_DATAONLY 0x00010
-
/*
-** CAPI3REF: OS Interface Open File Handle {F11110}
+** CAPI3REF: OS Interface Open File Handle {H11110} <S20110>
**
** An [sqlite3_file] object represents an open file in the OS
** interface layer. Individual OS interface implementations will
};
/*
-** CAPI3REF: OS Interface File Virtual Methods Object {F11120}
+** CAPI3REF: OS Interface File Virtual Methods Object {H11120} <S20110>
**
-** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to
-** an instance of this object. This object defines the
-** methods used to perform various operations against the open file.
+** Every file opened by the [sqlite3_vfs] xOpen method populates an
+** [sqlite3_file] object (or, more commonly, a subclass of the
+** [sqlite3_file] object) with a pointer to an instance of this object.
+** This object defines the methods used to perform various operations
+** against the open file represented by the [sqlite3_file] object.
**
** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
-* The second choice is an
-** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to
-** indicate that only the data of the file and not its inode needs to be
-** synced.
-**
+** The second choice is a Mac OS-X style fullsync. The [SQLITE_SYNC_DATAONLY]
+** flag may be ORed in to indicate that only the data of the file
+** and not its inode needs to be synced.
+**
** The integer values to xLock() and xUnlock() are one of
** <ul>
** <li> [SQLITE_LOCK_NONE],
** <li> [SQLITE_LOCK_PENDING], or
** <li> [SQLITE_LOCK_EXCLUSIVE].
** </ul>
-** xLock() increases the lock. xUnlock() decreases the lock.
-** The xCheckReservedLock() method looks
-** to see if any database connection, either in this
-** process or in some other process, is holding an RESERVED,
+** xLock() increases the lock. xUnlock() decreases the lock.
+** The xCheckReservedLock() method checks whether any database connection,
+** either in this process or in some other process, is holding a RESERVED,
** PENDING, or EXCLUSIVE lock on the file. It returns true
-** if such a lock exists and false if not.
-**
+** if such a lock exists and false otherwise.
+**
** The xFileControl() method is a generic interface that allows custom
** VFS implementations to directly control an open file using the
-** [sqlite3_file_control()] interface. The second "op" argument
-** is an integer opcode. The third
-** argument is a generic pointer which is intended to be a pointer
-** to a structure that may contain arguments or space in which to
+** [sqlite3_file_control()] interface. The second "op" argument is an
+** integer opcode. The third argument is a generic pointer intended to
+** point to a structure that may contain arguments or space in which to
** write return values. Potential uses for xFileControl() might be
** functions to enable blocking locks with timeouts, to change the
** locking strategy (for example to use dot-file locks), to inquire
** about the status of a lock, or to break stale locks. The SQLite
-** core reserves opcodes less than 100 for its own use.
+** core reserves all opcodes less than 100 for its own use.
** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
-** Applications that define a custom xFileControl method should use opcodes
+** Applications that define a custom xFileControl method should use opcodes
** greater than 100 to avoid conflicts.
**
** The xSectorSize() method returns the sector size of the
int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
int (*xLock)(sqlite3_file*, int);
int (*xUnlock)(sqlite3_file*, int);
- int (*xCheckReservedLock)(sqlite3_file*);
+ int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
int (*xFileControl)(sqlite3_file*, int op, void *pArg);
int (*xSectorSize)(sqlite3_file*);
int (*xDeviceCharacteristics)(sqlite3_file*);
};
/*
-** CAPI3REF: Standard File Control Opcodes {F11310}
+** CAPI3REF: Standard File Control Opcodes {H11310} <S30800>
**
** These integer constants are opcodes for the xFileControl method
-** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()]
+** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
** interface.
**
** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
#define SQLITE_FCNTL_LOCKSTATE 1
/*
-** CAPI3REF: Mutex Handle {F17110}
+** CAPI3REF: Mutex Handle {H17110} <S20130>
**
** The mutex module within SQLite defines [sqlite3_mutex] to be an
** abstract type for a mutex object. The SQLite core never looks
typedef struct sqlite3_mutex sqlite3_mutex;
/*
-** CAPI3REF: OS Interface Object {F11140}
+** CAPI3REF: OS Interface Object {H11140} <S20100>
**
-** An instance of this object defines the interface between the
-** SQLite core and the underlying operating system. The "vfs"
+** An instance of the sqlite3_vfs object defines the interface between
+** the SQLite core and the underlying operating system. The "vfs"
** in the name of the object stands for "virtual file system".
**
-** The iVersion field is initially 1 but may be larger for future
-** versions of SQLite. Additional fields may be appended to this
-** object when the iVersion value is increased.
+** The value of the iVersion field is initially 1 but may be larger in
+** future versions of SQLite. Additional fields may be appended to this
+** object when the iVersion value is increased. Note that the structure
+** of the sqlite3_vfs object changes in the transaction between
+** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not
+** modified.
**
** The szOsFile field is the size of the subclassed [sqlite3_file]
** structure used by this VFS. mxPathname is the maximum length of
** the pNext pointer. The [sqlite3_vfs_register()]
** and [sqlite3_vfs_unregister()] interfaces manage this list
** in a thread-safe way. The [sqlite3_vfs_find()] interface
-** searches the list.
+** searches the list. Neither the application code nor the VFS
+** implementation should use the pNext pointer.
**
-** The pNext field is the only field in the sqlite3_vfs
+** The pNext field is the only field in the sqlite3_vfs
** structure that SQLite will ever modify. SQLite will only access
** or modify this field while holding a particular static mutex.
** The application should never modify anything within the sqlite3_vfs
** The zName field holds the name of the VFS module. The name must
** be unique across all VFS modules.
**
-** {F11141} SQLite will guarantee that the zFilename string passed to
-** xOpen() is a full pathname as generated by xFullPathname() and
-** that the string will be valid and unchanged until xClose() is
-** called. {END} So the [sqlite3_file] can store a pointer to the
+** {H11141} SQLite will guarantee that the zFilename parameter to xOpen
+** is either a NULL pointer or string obtained
+** from xFullPathname(). SQLite further guarantees that
+** the string will be valid and unchanged until xClose() is
+** called. {END} Because of the previous sentense,
+** the [sqlite3_file] can safely store a pointer to the
** filename if it needs to remember the filename for some reason.
+** If the zFilename parameter is xOpen is a NULL pointer then xOpen
+** must invite its own temporary name for the file. Whenever the
+** xFilename parameter is NULL it will also be the case that the
+** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
**
-** {F11142} The flags argument to xOpen() includes all bits set in
+** {H11142} The flags argument to xOpen() includes all bits set in
** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
** or [sqlite3_open16()] is used, then flags includes at least
** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END}
** If xOpen() opens a file read-only then it sets *pOutFlags to
-** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be
-** set.
-**
-** {F11143} SQLite will also add one of the following flags to the xOpen()
+** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
+**
+** {H11143} SQLite will also add one of the following flags to the xOpen()
** call, depending on the object being opened:
-**
+**
** <ul>
** <li> [SQLITE_OPEN_MAIN_DB]
** <li> [SQLITE_OPEN_MAIN_JOURNAL]
** </ul> {END}
**
** The file I/O implementation can use the object type flags to
-** changes the way it deals with files. For example, an application
+** change the way it deals with files. For example, an application
** that does not care about crash recovery or rollback might make
** the open of a journal file a no-op. Writes to this journal would
-** also be no-ops, and any attempt to read the journal would return
-** SQLITE_IOERR. Or the implementation might recognize that a database
-** file will be doing page-aligned sector reads and writes in a random
+** also be no-ops, and any attempt to read the journal would return
+** SQLITE_IOERR. Or the implementation might recognize that a database
+** file will be doing page-aligned sector reads and writes in a random
** order and set up its I/O subsystem accordingly.
-**
-** SQLite might also add one of the following flags to the xOpen
-** method:
-**
+**
+** SQLite might also add one of the following flags to the xOpen method:
+**
** <ul>
** <li> [SQLITE_OPEN_DELETEONCLOSE]
** <li> [SQLITE_OPEN_EXCLUSIVE]
** </ul>
-**
-** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
-** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE]
-** will be set for TEMP databases, journals and for subjournals.
-** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
+**
+** {H11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
+** deleted when it is closed. {H11146} The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases, journals and for subjournals.
+**
+** {H11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
** for exclusive access. This flag is set for all files except
-** for the main database file. {END}
-**
-** {F11148} At least szOsFile bytes of memory are allocated by SQLite
-** to hold the [sqlite3_file] structure passed as the third
-** argument to xOpen. {END} The xOpen method does not have to
+** for the main database file.
+**
+** {H11148} At least szOsFile bytes of memory are allocated by SQLite
+** to hold the [sqlite3_file] structure passed as the third
+** argument to xOpen. {END} The xOpen method does not have to
** allocate the structure; it should just fill it in.
-**
-** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
-** to test for the existance of a file,
-** or [SQLITE_ACCESS_READWRITE] to test to see
-** if a file is readable and writable, or [SQLITE_ACCESS_READ]
-** to test to see if a file is at least readable. {END} The file can be a
+**
+** {H11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
+** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
+** to test whether a file is at least readable. {END} The file can be a
** directory.
-**
-** {F11150} SQLite will always allocate at least mxPathname+1 bytes for
-** the output buffers for xGetTempname and xFullPathname. {F11151} The exact
-** size of the output buffer is also passed as a parameter to both
-** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN
-** should be returned. As this is handled as a fatal error by SQLite,
-** vfs implementations should endeavor to prevent this by setting
-** mxPathname to a sufficiently large value.
-**
+**
+** {H11150} SQLite will always allocate at least mxPathname+1 bytes for the
+** output buffer xFullPathname. {H11151} The exact size of the output buffer
+** is also passed as a parameter to both methods. {END} If the output buffer
+** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
+** handled as a fatal error by SQLite, vfs implementations should endeavor
+** to prevent this by setting mxPathname to a sufficiently large value.
+**
** The xRandomness(), xSleep(), and xCurrentTime() interfaces
** are not strictly a part of the filesystem, but they are
** included in the VFS structure for completeness.
** The xRandomness() function attempts to return nBytes bytes
** of good-quality randomness into zOut. The return value is
-** the actual number of bytes of randomness obtained. The
-** xSleep() method causes the calling thread to sleep for at
+** the actual number of bytes of randomness obtained.
+** The xSleep() method causes the calling thread to sleep for at
** least the number of microseconds given. The xCurrentTime()
-** method returns a Julian Day Number for the current date and
-** time.
+** method returns a Julian Day Number for the current date and time.
*/
typedef struct sqlite3_vfs sqlite3_vfs;
struct sqlite3_vfs {
int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
int flags, int *pOutFlags);
int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
- int (*xAccess)(sqlite3_vfs*, const char *zName, int flags);
- int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut);
+ int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
int (*xSleep)(sqlite3_vfs*, int microseconds);
int (*xCurrentTime)(sqlite3_vfs*, double*);
+ int (*xGetLastError)(sqlite3_vfs*, int, char *);
/* New fields may be appended in figure versions. The iVersion
** value will increment whenever this happens. */
};
/*
-** CAPI3REF: Flags for the xAccess VFS method {F11190}
+** CAPI3REF: Flags for the xAccess VFS method {H11190} <H11140>
**
-** {F11191} These integer constants can be used as the third parameter to
+** {H11191} These integer constants can be used as the third parameter to
** the xAccess method of an [sqlite3_vfs] object. {END} They determine
-** what kind of permissions the xAccess method is
-** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method
-** simply checks to see if the file exists. {F11193} With
-** SQLITE_ACCESS_READWRITE, the xAccess method checks to see
-** if the file is both readable and writable. {F11194} With
-** SQLITE_ACCESS_READ the xAccess method
-** checks to see if the file is readable.
+** what kind of permissions the xAccess method is looking for.
+** {H11192} With SQLITE_ACCESS_EXISTS, the xAccess method
+** simply checks whether the file exists.
+** {H11193} With SQLITE_ACCESS_READWRITE, the xAccess method
+** checks whether the file is both readable and writable.
+** {H11194} With SQLITE_ACCESS_READ, the xAccess method
+** checks whether the file is readable.
*/
#define SQLITE_ACCESS_EXISTS 0
#define SQLITE_ACCESS_READWRITE 1
#define SQLITE_ACCESS_READ 2
/*
-** CAPI3REF: Enable Or Disable Extended Result Codes {F12200}
+** CAPI3REF: Initialize The SQLite Library {H10130} <S20000><S30100>
+**
+** The sqlite3_initialize() routine initializes the
+** SQLite library. The sqlite3_shutdown() routine
+** deallocates any resources that were allocated by sqlite3_initialize().
+**
+** A call to sqlite3_initialize() is an "effective" call if it is
+** the first time sqlite3_initialize() is invoked during the lifetime of
+** the process, or if it is the first time sqlite3_initialize() is invoked
+** following a call to sqlite3_shutdown(). Only an effective call
+** of sqlite3_initialize() does any initialization. All other calls
+** are harmless no-ops.
+**
+** Among other things, sqlite3_initialize() shall invoke
+** sqlite3_os_init(). Similarly, sqlite3_shutdown()
+** shall invoke sqlite3_os_end().
+**
+** The sqlite3_initialize() routine returns SQLITE_OK on success.
+** If for some reason, sqlite3_initialize() is unable to initialize
+** the library (perhaps it is unable to allocate a needed resource such
+** as a mutex) it returns an [error code] other than SQLITE_OK.
+**
+** The sqlite3_initialize() routine is called internally by many other
+** SQLite interfaces so that an application usually does not need to
+** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
+** calls sqlite3_initialize() so the SQLite library will be automatically
+** initialized when [sqlite3_open()] is called if it has not be initialized
+** already. However, if SQLite is compiled with the SQLITE_OMIT_AUTOINIT
+** compile-time option, then the automatic calls to sqlite3_initialize()
+** are omitted and the application must call sqlite3_initialize() directly
+** prior to using any other SQLite interface. For maximum portability,
+** it is recommended that applications always invoke sqlite3_initialize()
+** directly prior to using any other SQLite interface. Future releases
+** of SQLite may require this. In other words, the behavior exhibited
+** when SQLite is compiled with SQLITE_OMIT_AUTOINIT might become the
+** default behavior in some future release of SQLite.
+**
+** The sqlite3_os_init() routine does operating-system specific
+** initialization of the SQLite library. The sqlite3_os_end()
+** routine undoes the effect of sqlite3_os_init(). Typical tasks
+** performed by these routines include allocation or deallocation
+** of static resources, initialization of global variables,
+** setting up a default [sqlite3_vfs] module, or setting up
+** a default configuration using [sqlite3_config()].
+**
+** The application should never invoke either sqlite3_os_init()
+** or sqlite3_os_end() directly. The application should only invoke
+** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
+** interface is called automatically by sqlite3_initialize() and
+** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
+** implementations for sqlite3_os_init() and sqlite3_os_end()
+** are built into SQLite when it is compiled for unix, windows, or os/2.
+** When built for other platforms (using the SQLITE_OS_OTHER=1 compile-time
+** option) the application must supply a suitable implementation for
+** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
+** implementation of sqlite3_os_init() or sqlite3_os_end()
+** must return SQLITE_OK on success and some other [error code] upon
+** failure.
+*/
+SQLITE_API int sqlite3_initialize(void);
+SQLITE_API int sqlite3_shutdown(void);
+SQLITE_API int sqlite3_os_init(void);
+SQLITE_API int sqlite3_os_end(void);
+
+/*
+** CAPI3REF: Configuring The SQLite Library {H10145} <S20000><S30200>
+** EXPERIMENTAL
+**
+** The sqlite3_config() interface is used to make global configuration
+** changes to SQLite in order to tune SQLite to the specific needs of
+** the application. The default configuration is recommended for most
+** applications and so this routine is usually not necessary. It is
+** provided to support rare applications with unusual needs.
+**
+** The sqlite3_config() interface is not threadsafe. The application
+** must insure that no other SQLite interfaces are invoked by other
+** threads while sqlite3_config() is running. Furthermore, sqlite3_config()
+** may only be invoked prior to library initialization using
+** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
+** Note, however, that sqlite3_config() can be called as part of the
+** implementation of an application-defined [sqlite3_os_init()].
+**
+** The first argument to sqlite3_config() is an integer
+** [SQLITE_CONFIG_SINGLETHREAD | configuration option] that determines
+** what property of SQLite is to be configured. Subsequent arguments
+** vary depending on the [SQLITE_CONFIG_SINGLETHREAD | configuration option]
+** in the first argument.
+**
+** When a configuration option is set, sqlite3_config() returns SQLITE_OK.
+** If the option is unknown or SQLite is unable to set the option
+** then this routine returns a non-zero [error code].
+*/
+SQLITE_API int sqlite3_config(int, ...);
+
+/*
+** CAPI3REF: Configure database connections {H10180} <S20000>
+** EXPERIMENTAL
+**
+** The sqlite3_db_config() interface is used to make configuration
+** changes to a [database connection]. The interface is similar to
+** [sqlite3_config()] except that the changes apply to a single
+** [database connection] (specified in the first argument). The
+** sqlite3_db_config() interface can only be used immediately after
+** the database connection is created using [sqlite3_open()],
+** [sqlite3_open16()], or [sqlite3_open_v2()].
+**
+** The second argument to sqlite3_db_config(D,V,...) is the
+** configuration verb - an integer code that indicates what
+** aspect of the [database connection] is being configured.
+** The only choice for this value is [SQLITE_DBCONFIG_LOOKASIDE].
+** New verbs are likely to be added in future releases of SQLite.
+** Additional arguments depend on the verb.
+*/
+SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Memory Allocation Routines {H10155} <S20120>
+** EXPERIMENTAL
+**
+** An instance of this object defines the interface between SQLite
+** and low-level memory allocation routines.
+**
+** This object is used in only one place in the SQLite interface.
+** A pointer to an instance of this object is the argument to
+** [sqlite3_config()] when the configuration option is
+** [SQLITE_CONFIG_MALLOC]. By creating an instance of this object
+** and passing it to [sqlite3_config()] during configuration, an
+** application can specify an alternative memory allocation subsystem
+** for SQLite to use for all of its dynamic memory needs.
+**
+** Note that SQLite comes with a built-in memory allocator that is
+** perfectly adequate for the overwhelming majority of applications
+** and that this object is only useful to a tiny minority of applications
+** with specialized memory allocation requirements. This object is
+** also used during testing of SQLite in order to specify an alternative
+** memory allocator that simulates memory out-of-memory conditions in
+** order to verify that SQLite recovers gracefully from such
+** conditions.
+**
+** The xMalloc, xFree, and xRealloc methods must work like the
+** malloc(), free(), and realloc() functions from the standard library.
+**
+** xSize should return the allocated size of a memory allocation
+** previously obtained from xMalloc or xRealloc. The allocated size
+** is always at least as big as the requested size but may be larger.
+**
+** The xRoundup method returns what would be the allocated size of
+** a memory allocation given a particular requested size. Most memory
+** allocators round up memory allocations at least to the next multiple
+** of 8. Some allocators round up to a larger multiple or to a power of 2.
+**
+** The xInit method initializes the memory allocator. (For example,
+** it might allocate any require mutexes or initialize internal data
+** structures. The xShutdown method is invoked (indirectly) by
+** [sqlite3_shutdown()] and should deallocate any resources acquired
+** by xInit. The pAppData pointer is used as the only parameter to
+** xInit and xShutdown.
+*/
+typedef struct sqlite3_mem_methods sqlite3_mem_methods;
+struct sqlite3_mem_methods {
+ void *(*xMalloc)(int); /* Memory allocation function */
+ void (*xFree)(void*); /* Free a prior allocation */
+ void *(*xRealloc)(void*,int); /* Resize an allocation */
+ int (*xSize)(void*); /* Return the size of an allocation */
+ int (*xRoundup)(int); /* Round up request size to allocation size */
+ int (*xInit)(void*); /* Initialize the memory allocator */
+ void (*xShutdown)(void*); /* Deinitialize the memory allocator */
+ void *pAppData; /* Argument to xInit() and xShutdown() */
+};
+
+/*
+** CAPI3REF: Configuration Options {H10160} <S20000>
+** EXPERIMENTAL
+**
+** These constants are the available integer configuration options that
+** can be passed as the first argument to the [sqlite3_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_config()] to make sure that
+** the call worked. The [sqlite3_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
+** <dd>There are no arguments to this option. This option disables
+** all mutexing and puts SQLite into a mode where it can only be used
+** by a single thread.</dd>
+**
+** <dt>SQLITE_CONFIG_MULTITHREAD</dt>
+** <dd>There are no arguments to this option. This option disables
+** mutexing on [database connection] and [prepared statement] objects.
+** The application is responsible for serializing access to
+** [database connections] and [prepared statements]. But other mutexes
+** are enabled so that SQLite will be safe to use in a multi-threaded
+** environment.</dd>
+**
+** <dt>SQLITE_CONFIG_SERIALIZED</dt>
+** <dd>There are no arguments to this option. This option enables
+** all mutexes including the recursive
+** mutexes on [database connection] and [prepared statement] objects.
+** In this mode (which is the default when SQLite is compiled with
+** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
+** to [database connections] and [prepared statements] so that the
+** application is free to use the same [database connection] or the
+** same [prepared statement] in different threads at the same time.
+**
+** <p>This configuration option merely sets the default mutex
+** behavior to serialize access to [database connections]. Individual
+** [database connections] can override this setting
+** using the [SQLITE_OPEN_NOMUTEX] flag to [sqlite3_open_v2()].</p></dd>
+**
+** <dt>SQLITE_CONFIG_MALLOC</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mem_methods] structure. The argument specifies
+** alternative low-level memory allocation routines to be used in place of
+** the memory allocation routines built into SQLite.</dd>
+**
+** <dt>SQLITE_CONFIG_GETMALLOC</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods]
+** structure is filled with the currently defined memory allocation routines.
+** This option can be used to overload the default memory allocation
+** routines with a wrapper that simulations memory allocation failure or
+** tracks memory usage, for example.</dd>
+**
+** <dt>SQLITE_CONFIG_MEMSTATUS</dt>
+** <dd>This option takes single argument of type int, interpreted as a
+** boolean, which enables or disables the collection of memory allocation
+** statistics. When disabled, the following SQLite interfaces become
+** non-operational:
+** <ul>
+** <li> [sqlite3_memory_used()]
+** <li> [sqlite3_memory_highwater()]
+** <li> [sqlite3_soft_heap_limit()]
+** <li> [sqlite3_status()]
+** </ul>
+** </dd>
+**
+** <dt>SQLITE_CONFIG_SCRATCH</dt>
+** <dd>This option specifies a static memory buffer that SQLite can use for
+** scratch memory. There are three arguments: A pointer to the memory, the
+** size of each scratch buffer (sz), and the number of buffers (N). The sz
+** argument must be a multiple of 16. The sz parameter should be a few bytes
+** larger than the actual scratch space required due internal overhead.
+** The first
+** argument should point to an allocation of at least sz*N bytes of memory.
+** SQLite will use no more than one scratch buffer at once per thread, so
+** N should be set to the expected maximum number of threads. The sz
+** parameter should be 6 times the size of the largest database page size.
+** Scratch buffers are used as part of the btree balance operation. If
+** The btree balancer needs additional memory beyond what is provided by
+** scratch buffers or if no scratch buffer space is specified, then SQLite
+** goes to [sqlite3_malloc()] to obtain the memory it needs.</dd>
+**
+** <dt>SQLITE_CONFIG_PAGECACHE</dt>
+** <dd>This option specifies a static memory buffer that SQLite can use for
+** the database page cache. There are three arguments: A pointer to the
+** memory, the size of each page buffer (sz), and the number of pages (N).
+** The sz argument must be a power of two between 512 and 32768. The first
+** argument should point to an allocation of at least sz*N bytes of memory.
+** SQLite will use the memory provided by the first argument to satisfy its
+** memory needs for the first N pages that it adds to cache. If additional
+** page cache memory is needed beyond what is provided by this option, then
+** SQLite goes to [sqlite3_malloc()] for the additional storage space.
+** The implementation might use one or more of the N buffers to hold
+** memory accounting information. </dd>
+**
+** <dt>SQLITE_CONFIG_HEAP</dt>
+** <dd>This option specifies a static memory buffer that SQLite will use
+** for all of its dynamic memory allocation needs beyond those provided
+** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
+** There are three arguments: A pointer to the memory, the number of
+** bytes in the memory buffer, and the minimum allocation size. If
+** the first pointer (the memory pointer) is NULL, then SQLite reverts
+** to using its default memory allocator (the system malloc() implementation),
+** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. If the
+** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
+** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
+** allocator is engaged to handle all of SQLites memory allocation needs.</dd>
+**
+** <dt>SQLITE_CONFIG_MUTEX</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mutex_methods] structure. The argument specifies
+** alternative low-level mutex routines to be used in place
+** the mutex routines built into SQLite.</dd>
+**
+** <dt>SQLITE_CONFIG_GETMUTEX</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mutex_methods] structure. The
+** [sqlite3_mutex_methods]
+** structure is filled with the currently defined mutex routines.
+** This option can be used to overload the default mutex allocation
+** routines with a wrapper used to track mutex usage for performance
+** profiling or testing, for example.</dd>
+**
+** <dt>SQLITE_CONFIG_LOOKASIDE</dt>
+** <dd>This option takes two arguments that determine the default
+** memory allcation lookaside optimization. The first argument is the
+** size of each lookaside buffer slot and the second is the number of
+** slots allocated to each database connection.</dd>
+**
+** </dl>
+*/
+#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */
+#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */
+#define SQLITE_CONFIG_SERIALIZED 3 /* nil */
+#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */
+#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */
+#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */
+#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */
+#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */
+#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */
+#define SQLITE_CONFIG_CHUNKALLOC 12 /* int threshold */
+#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */
+
+/*
+** CAPI3REF: Configuration Options {H10170} <S20000>
+** EXPERIMENTAL
+**
+** These constants are the available integer configuration options that
+** can be passed as the second argument to the [sqlite3_db_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_db_config()] to make sure that
+** the call worked. The [sqlite3_db_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
+** <dd>This option takes three additional arguments that determine the
+** [lookaside memory allocator] configuration for the [database connection].
+** The first argument (the third parameter to [sqlite3_db_config()] is a
+** pointer to a memory buffer to use for lookaside memory. The first
+** argument may be NULL in which case SQLite will allocate the lookaside
+** buffer itself using [sqlite3_malloc()]. The second argument is the
+** size of each lookaside buffer slot and the third argument is the number of
+** slots. The size of the buffer in the first argument must be greater than
+** or equal to the product of the second and third arguments.</dd>
+**
+** </dl>
+*/
+#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */
+
+
+/*
+** CAPI3REF: Enable Or Disable Extended Result Codes {H12200} <S10700>
**
** The sqlite3_extended_result_codes() routine enables or disables the
-** [SQLITE_IOERR_READ | extended result codes] feature of SQLite.
-** The extended result codes are disabled by default for historical
-** compatibility.
+** [extended result codes] feature of SQLite. The extended result
+** codes are disabled by default for historical compatibility considerations.
**
** INVARIANTS:
**
-** {F12201} Each new [database connection] has the
-** [extended result codes] feature
-** disabled by default.
+** {H12201} Each new [database connection] shall have the
+** [extended result codes] feature disabled by default.
**
-** {F12202} The [sqlite3_extended_result_codes(D,F)] interface will enable
-** [extended result codes] for the
-** [database connection] D if the F parameter
-** is true, or disable them if F is false.
+** {H12202} The [sqlite3_extended_result_codes(D,F)] interface shall enable
+** [extended result codes] for the [database connection] D
+** if the F parameter is true, or disable them if F is false.
*/
SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
/*
-** CAPI3REF: Last Insert Rowid {F12220}
+** CAPI3REF: Last Insert Rowid {H12220} <S10700>
**
** Each entry in an SQLite table has a unique 64-bit signed
** integer key called the "rowid". The rowid is always available
** is another alias for the rowid.
**
** This routine returns the rowid of the most recent
-** successful INSERT into the database from the database connection
-** shown in the first argument. If no successful inserts
-** have ever occurred on this database connection, zero is returned.
+** successful INSERT into the database from the [database connection]
+** in the first argument. If no successful INSERTs
+** have ever occurred on that database connection, zero is returned.
**
-** If an INSERT occurs within a trigger, then the rowid of the
-** inserted row is returned by this routine as long as the trigger
-** is running. But once the trigger terminates, the value returned
-** by this routine reverts to the last value inserted before the
-** trigger fired.
+** If an INSERT occurs within a trigger, then the rowid of the inserted
+** row is returned by this routine as long as the trigger is running.
+** But once the trigger terminates, the value returned by this routine
+** reverts to the last value inserted before the trigger fired.
**
** An INSERT that fails due to a constraint violation is not a
-** successful insert and does not change the value returned by this
+** successful INSERT and does not change the value returned by this
** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
** and INSERT OR ABORT make no changes to the return value of this
-** routine when their insertion fails. When INSERT OR REPLACE
+** routine when their insertion fails. When INSERT OR REPLACE
** encounters a constraint violation, it does not fail. The
** INSERT continues to completion after deleting rows that caused
** the constraint problem so INSERT OR REPLACE will always change
-** the return value of this interface.
+** the return value of this interface.
**
-** For the purposes of this routine, an insert is considered to
+** For the purposes of this routine, an INSERT is considered to
** be successful even if it is subsequently rolled back.
**
** INVARIANTS:
**
-** {F12221} The [sqlite3_last_insert_rowid()] function returns the
-** rowid of the most recent successful insert done
-** on the same database connection and within the same
-** trigger context, or zero if there have
-** been no qualifying inserts on that connection.
+** {H12221} The [sqlite3_last_insert_rowid()] function returns the rowid
+** of the most recent successful INSERT performed on the same
+** [database connection] and within the same or higher level
+** trigger context, or zero if there have been no qualifying inserts.
**
-** {F12223} The [sqlite3_last_insert_rowid()] function returns
+** {H12223} The [sqlite3_last_insert_rowid()] function returns the
** same value when called from the same trigger context
** immediately before and after a ROLLBACK.
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U12232} If a separate thread does a new insert on the same
+** {A12232} If a separate thread performs a new INSERT on the same
** database connection while the [sqlite3_last_insert_rowid()]
** function is running and thus changes the last insert rowid,
** then the value returned by [sqlite3_last_insert_rowid()] is
SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
/*
-** CAPI3REF: Count The Number Of Rows Modified {F12240}
+** CAPI3REF: Count The Number Of Rows Modified {H12240} <S10600>
**
** This function returns the number of database rows that were changed
** or inserted or deleted by the most recently completed SQL statement
-** on the connection specified by the first parameter. Only
-** changes that are directly specified by the INSERT, UPDATE, or
-** DELETE statement are counted. Auxiliary changes caused by
+** on the [database connection] specified by the first parameter.
+** Only changes that are directly specified by the INSERT, UPDATE,
+** or DELETE statement are counted. Auxiliary changes caused by
** triggers are not counted. Use the [sqlite3_total_changes()] function
** to find the total number of changes including changes caused by triggers.
**
** most recent INSERT, UPDATE, or DELETE statement within the same
** trigger context.
**
-** So when called from the top level, this function returns the
+** Thus, when called from the top level, this function returns the
** number of changes in the most recent INSERT, UPDATE, or DELETE
-** that also occurred at the top level.
-** Within the body of a trigger, the sqlite3_changes() interface
-** can be called to find the number of
+** that also occurred at the top level. Within the body of a trigger,
+** the sqlite3_changes() interface can be called to find the number of
** changes in the most recently completed INSERT, UPDATE, or DELETE
** statement within the body of the same trigger.
-** However, the number returned does not include in changes
-** caused by subtriggers since they have their own context.
-**
-** SQLite implements the command "DELETE FROM table" without
-** a WHERE clause by dropping and recreating the table. (This is much
-** faster than going through and deleting individual elements from the
-** table.) Because of this optimization, the deletions in
-** "DELETE FROM table" are not row changes and will not be counted
-** by the sqlite3_changes() or [sqlite3_total_changes()] functions.
-** To get an accurate count of the number of rows deleted, use
+** However, the number returned does not include changes
+** caused by subtriggers since those have their own context.
+**
+** SQLite implements the command "DELETE FROM table" without a WHERE clause
+** by dropping and recreating the table. (This is much faster than going
+** through and deleting individual elements from the table.) Because of this
+** optimization, the deletions in "DELETE FROM table" are not row changes and
+** will not be counted by the sqlite3_changes() or [sqlite3_total_changes()]
+** functions, regardless of the number of elements that were originally
+** in the table. To get an accurate count of the number of rows deleted, use
** "DELETE FROM table WHERE 1" instead.
**
** INVARIANTS:
**
-** {F12241} The [sqlite3_changes()] function returns the number of
+** {H12241} The [sqlite3_changes()] function shall return the number of
** row changes caused by the most recent INSERT, UPDATE,
** or DELETE statement on the same database connection and
-** within the same trigger context, or zero if there have
+** within the same or higher trigger context, or zero if there have
** not been any qualifying row changes.
**
-** LIMITATIONS:
+** {H12243} Statements of the form "DELETE FROM tablename" with no
+** WHERE clause shall cause subsequent calls to
+** [sqlite3_changes()] to return zero, regardless of the
+** number of rows originally in the table.
**
-** {U12252} If a separate thread makes changes on the same database connection
+** ASSUMPTIONS:
+**
+** {A12252} If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
-** is unpredictable and unmeaningful.
+** is unpredictable and not meaningful.
*/
SQLITE_API int sqlite3_changes(sqlite3*);
/*
-** CAPI3REF: Total Number Of Rows Modified {F12260}
-***
-** This function returns the number of row changes caused
-** by INSERT, UPDATE or DELETE statements since the database handle
-** was opened. The count includes all changes from all trigger
-** contexts. But the count does not include changes used to
-** implement REPLACE constraints, do rollbacks or ABORT processing,
-** or DROP table processing.
-** The changes
-** are counted as soon as the statement that makes them is completed
-** (when the statement handle is passed to [sqlite3_reset()] or
+** CAPI3REF: Total Number Of Rows Modified {H12260} <S10600>
+**
+** This function returns the number of row changes caused by INSERT,
+** UPDATE or DELETE statements since the [database connection] was opened.
+** The count includes all changes from all trigger contexts. However,
+** the count does not include changes used to implement REPLACE constraints,
+** do rollbacks or ABORT processing, or DROP table processing.
+** The changes are counted as soon as the statement that makes them is
+** completed (when the statement handle is passed to [sqlite3_reset()] or
** [sqlite3_finalize()]).
**
-** SQLite implements the command "DELETE FROM table" without
-** a WHERE clause by dropping and recreating the table. (This is much
-** faster than going
-** through and deleting individual elements from the table.) Because of
-** this optimization, the change count for "DELETE FROM table" will be
-** zero regardless of the number of elements that were originally in the
-** table. To get an accurate count of the number of rows deleted, use
+** SQLite implements the command "DELETE FROM table" without a WHERE clause
+** by dropping and recreating the table. (This is much faster than going
+** through and deleting individual elements from the table.) Because of this
+** optimization, the deletions in "DELETE FROM table" are not row changes and
+** will not be counted by the sqlite3_changes() or [sqlite3_total_changes()]
+** functions, regardless of the number of elements that were originally
+** in the table. To get an accurate count of the number of rows deleted, use
** "DELETE FROM table WHERE 1" instead.
**
** See also the [sqlite3_changes()] interface.
**
** INVARIANTS:
-**
-** {F12261} The [sqlite3_total_changes()] returns the total number
+**
+** {H12261} The [sqlite3_total_changes()] returns the total number
** of row changes caused by INSERT, UPDATE, and/or DELETE
** statements on the same [database connection], in any
-** trigger context, since the database connection was
-** created.
+** trigger context, since the database connection was created.
**
-** LIMITATIONS:
+** {H12263} Statements of the form "DELETE FROM tablename" with no
+** WHERE clause shall not change the value returned
+** by [sqlite3_total_changes()].
**
-** {U12264} If a separate thread makes changes on the same database connection
-** while [sqlite3_total_changes()] is running then the value
-** returned is unpredictable and unmeaningful.
+** ASSUMPTIONS:
+**
+** {A12264} If a separate thread makes changes on the same database connection
+** while [sqlite3_total_changes()] is running then the value
+** returned is unpredictable and not meaningful.
*/
SQLITE_API int sqlite3_total_changes(sqlite3*);
/*
-** CAPI3REF: Interrupt A Long-Running Query {F12270}
+** CAPI3REF: Interrupt A Long-Running Query {H12270} <S30500>
**
** This function causes any pending database operation to abort and
** return at its earliest opportunity. This routine is typically
**
** It is safe to call this routine from a thread different from the
** thread that is currently running the database operation. But it
-** is not safe to call this routine with a database connection that
+** is not safe to call this routine with a [database connection] that
** is closed or might close before sqlite3_interrupt() returns.
**
-** If an SQL is very nearly finished at the time when sqlite3_interrupt()
-** is called, then it might not have an opportunity to be interrupted.
-** It might continue to completion.
-** An SQL operation that is interrupted will return
-** [SQLITE_INTERRUPT]. If the interrupted SQL operation is an
-** INSERT, UPDATE, or DELETE that is inside an explicit transaction,
-** then the entire transaction will be rolled back automatically.
+** If an SQL operation is very nearly finished at the time when
+** sqlite3_interrupt() is called, then it might not have an opportunity
+** to be interrupted and might continue to completion.
+**
+** An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
+** If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
+** that is inside an explicit transaction, then the entire transaction
+** will be rolled back automatically.
+**
** A call to sqlite3_interrupt() has no effect on SQL statements
** that are started after sqlite3_interrupt() returns.
**
** INVARIANTS:
**
-** {F12271} The [sqlite3_interrupt()] interface will force all running
+** {H12271} The [sqlite3_interrupt()] interface will force all running
** SQL statements associated with the same database connection
-** to halt after processing at most one additional row of
-** data.
+** to halt after processing at most one additional row of data.
**
-** {F12272} Any SQL statement that is interrupted by [sqlite3_interrupt()]
+** {H12272} Any SQL statement that is interrupted by [sqlite3_interrupt()]
** will return [SQLITE_INTERRUPT].
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U12279} If the database connection closes while [sqlite3_interrupt()]
+** {A12279} If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
SQLITE_API void sqlite3_interrupt(sqlite3*);
/*
-** CAPI3REF: Determine If An SQL Statement Is Complete {F10510}
+** CAPI3REF: Determine If An SQL Statement Is Complete {H10510} <S70200>
**
** These routines are useful for command-line input to determine if the
** currently entered text seems to form complete a SQL statement or
** independent tokens (they are part of the token in which they are
** embedded) and thus do not count as a statement terminator.
**
-** These routines do not parse the SQL and
-** so will not detect syntactically incorrect SQL.
+** These routines do not parse the SQL statements thus
+** will not detect syntactically incorrect SQL.
**
** INVARIANTS:
**
-** {F10511} The sqlite3_complete() and sqlite3_complete16() functions
-** return true (non-zero) if and only if the last
-** non-whitespace token in their input is a semicolon that
-** is not in between the BEGIN and END of a CREATE TRIGGER
-** statement.
+** {H10511} A successful evaluation of [sqlite3_complete()] or
+** [sqlite3_complete16()] functions shall
+** return a numeric 1 if and only if the last non-whitespace
+** token in their input is a semicolon that is not in between
+** the BEGIN and END of a CREATE TRIGGER statement.
**
-** LIMITATIONS:
+** {H10512} If a memory allocation error occurs during an invocation
+** of [sqlite3_complete()] or [sqlite3_complete16()] then the
+** routine shall return [SQLITE_NOMEM].
**
-** {U10512} The input to sqlite3_complete() must be a zero-terminated
+** ASSUMPTIONS:
+**
+** {A10512} The input to [sqlite3_complete()] must be a zero-terminated
** UTF-8 string.
**
-** {U10513} The input to sqlite3_complete16() must be a zero-terminated
+** {A10513} The input to [sqlite3_complete16()] must be a zero-terminated
** UTF-16 string in native byte order.
*/
SQLITE_API int sqlite3_complete(const char *sql);
SQLITE_API int sqlite3_complete16(const void *sql);
/*
-** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310}
-**
-** This routine identifies a callback function that might be
-** invoked whenever an attempt is made to open a database table
-** that another thread or process has locked.
-** If the busy callback is NULL, then [SQLITE_BUSY]
-** or [SQLITE_IOERR_BLOCKED]
-** is returned immediately upon encountering the lock.
-** If the busy callback is not NULL, then the
-** callback will be invoked with two arguments. The
-** first argument to the handler is a copy of the void* pointer which
-** is the third argument to this routine. The second argument to
-** the handler is the number of times that the busy handler has
-** been invoked for this locking event. If the
+** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {H12310} <S40400>
+**
+** This routine sets a callback function that might be invoked whenever
+** an attempt is made to open a database table that another thread
+** or process has locked.
+**
+** If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]
+** is returned immediately upon encountering the lock. If the busy callback
+** is not NULL, then the callback will be invoked with two arguments.
+**
+** The first argument to the handler is a copy of the void* pointer which
+** is the third argument to sqlite3_busy_handler(). The second argument to
+** the handler callback is the number of times that the busy handler has
+** been invoked for this locking event. If the
** busy callback returns 0, then no additional attempts are made to
** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
** If the callback returns non-zero, then another attempt
** is made to open the database for reading and the cycle repeats.
**
-** The presence of a busy handler does not guarantee that
-** it will be invoked when there is lock contention.
-** If SQLite determines that invoking the busy handler could result in
-** a deadlock, it will go ahead and return [SQLITE_BUSY] or
-** [SQLITE_IOERR_BLOCKED] instead of invoking the
-** busy handler.
+** The presence of a busy handler does not guarantee that it will be invoked
+** when there is lock contention. If SQLite determines that invoking the busy
+** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
+** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler.
** Consider a scenario where one process is holding a read lock that
** it is trying to promote to a reserved lock and
** a second process is holding a reserved lock that it is trying
** code is promoted from the relatively benign [SQLITE_BUSY] to
** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion
** forces an automatic rollback of the changes. See the
-** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError">
+** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError">
** CorruptionFollowingBusyError</a> wiki page for a discussion of why
** this is important.
-**
-** There can only be a single busy handler defined for each database
-** connection. Setting a new busy handler clears any previous one.
-** Note that calling [sqlite3_busy_timeout()] will also set or clear
-** the busy handler.
+**
+** There can only be a single busy handler defined for each
+** [database connection]. Setting a new busy handler clears any
+** previously set handler. Note that calling [sqlite3_busy_timeout()]
+** will also set or clear the busy handler.
**
** INVARIANTS:
**
-** {F12311} The [sqlite3_busy_handler()] function replaces the busy handler
-** callback in the database connection identified by the 1st
-** parameter with a new busy handler identified by the 2nd and 3rd
-** parameters.
+** {H12311} The [sqlite3_busy_handler(D,C,A)] function shall replace
+** busy callback in the [database connection] D with a new
+** a new busy handler C and application data pointer A.
**
-** {F12312} The default busy handler for new database connections is NULL.
+** {H12312} Newly created [database connections] shall have a busy
+** handler of NULL.
**
-** {F12314} When two or more database connection share a common cache,
+** {H12314} When two or more [database connections] share a
+** [sqlite3_enable_shared_cache | common cache],
** the busy handler for the database connection currently using
-** the cache is invoked when the cache encounters a lock.
+** the cache shall be invoked when the cache encounters a lock.
**
-** {F12316} If a busy handler callback returns zero, then the SQLite
-** interface that provoked the locking event will return
-** [SQLITE_BUSY].
+** {H12316} If a busy handler callback returns zero, then the SQLite interface
+** that provoked the locking event shall return [SQLITE_BUSY].
**
-** {F12318} SQLite will invokes the busy handler with two argument which
+** {H12318} SQLite shall invokes the busy handler with two arguments which
** are a copy of the pointer supplied by the 3rd parameter to
** [sqlite3_busy_handler()] and a count of the number of prior
** invocations of the busy handler for the same locking event.
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U12319} A busy handler should not call close the database connection
-** or prepared statement that invoked the busy handler.
+** {A12319} A busy handler must not close the database connection
+** or [prepared statement] that invoked the busy handler.
*/
SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
/*
-** CAPI3REF: Set A Busy Timeout {F12340}
+** CAPI3REF: Set A Busy Timeout {H12340} <S40410>
**
-** This routine sets a [sqlite3_busy_handler | busy handler]
-** that sleeps for a while when a
-** table is locked. The handler will sleep multiple times until
-** at least "ms" milliseconds of sleeping have been done. {F12343} After
-** "ms" milliseconds of sleeping, the handler returns 0 which
-** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
+** This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
+** for a specified amount of time when a table is locked. The handler
+** will sleep multiple times until at least "ms" milliseconds of sleeping
+** have accumulated. {H12343} After "ms" milliseconds of sleeping,
+** the handler returns 0 which causes [sqlite3_step()] to return
+** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
**
** Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
**
-** There can only be a single busy handler for a particular database
-** connection. If another busy handler was defined
-** (using [sqlite3_busy_handler()]) prior to calling
+** There can only be a single busy handler for a particular
+** [database connection] any any given moment. If another busy handler
+** was defined (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.
**
** INVARIANTS:
**
-** {F12341} The [sqlite3_busy_timeout()] function overrides any prior
+** {H12341} The [sqlite3_busy_timeout()] function shall override any prior
** [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting
-** on the same database connection.
+** on the same [database connection].
**
-** {F12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than
-** or equal to zero, then the busy handler is cleared so that
+** {H12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than
+** or equal to zero, then the busy handler shall be cleared so that
** all subsequent locking events immediately return [SQLITE_BUSY].
**
-** {F12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive
-** number N, then a busy handler is set that repeatedly calls
-** the xSleep() method in the VFS interface until either the
-** lock clears or until the cumulative sleep time reported back
-** by xSleep() exceeds N milliseconds.
+** {H12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive
+** number N, then a busy handler shall be set that repeatedly calls
+** the xSleep() method in the [sqlite3_vfs | VFS interface] until
+** either the lock clears or until the cumulative sleep time
+** reported back by xSleep() exceeds N milliseconds.
*/
SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
/*
-** CAPI3REF: Convenience Routines For Running Queries {F12370}
+** CAPI3REF: Convenience Routines For Running Queries {H12370} <S10000>
**
** Definition: A <b>result table</b> is memory data structure created by the
** [sqlite3_get_table()] interface. A result table records the
** numbers are obtained separately. Let N be the number of rows
** and M be the number of columns.
**
-** A result table is an array of pointers to zero-terminated
-** UTF-8 strings. There are (N+1)*M elements in the array.
-** The first M pointers point to zero-terminated strings that
-** contain the names of the columns.
-** The remaining entries all point to query results. NULL
-** values are give a NULL pointer. All other values are in
-** their UTF-8 zero-terminated string representation as returned by
-** [sqlite3_column_text()].
+** A result table is an array of pointers to zero-terminated UTF-8 strings.
+** There are (N+1)*M elements in the array. The first M pointers point
+** to zero-terminated strings that contain the names of the columns.
+** The remaining entries all point to query results. NULL values result
+** in NULL pointers. All other values are in their UTF-8 zero-terminated
+** string representation as returned by [sqlite3_column_text()].
**
-** A result table might consists of one or more memory allocations.
+** A result table might consist of one or more memory allocations.
** It is not safe to pass a result table directly to [sqlite3_free()].
** A result table should be deallocated using [sqlite3_free_table()].
**
** string of its 2nd parameter. It returns a result table to the
** pointer given in its 3rd parameter.
**
-** After the calling function has finished using the result, it should
-** pass the pointer to the result table to sqlite3_free_table() in order to
-** release the memory that was malloc-ed. Because of the way the
+** After the calling function has finished using the result, it should
+** pass the pointer to the result table to sqlite3_free_table() in order to
+** release the memory that was malloced. Because of the way the
** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
-** function must not try to call [sqlite3_free()] directly. Only
+** function must not try to call [sqlite3_free()] directly. Only
** [sqlite3_free_table()] is able to release the memory properly and safely.
**
** The sqlite3_get_table() interface is implemented as a wrapper around
** to any internal data structures of SQLite. It uses only the public
** interface defined here. As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
-** reflected in subsequent calls to [sqlite3_errcode()] or
-** [sqlite3_errmsg()].
+** reflected in subsequent calls to [sqlite3_errcode()] or [sqlite3_errmsg()].
**
** INVARIANTS:
**
-** {F12371} If a [sqlite3_get_table()] fails a memory allocation, then
-** it frees the result table under construction, aborts the
-** query in process, skips any subsequent queries, sets the
-** *resultp output pointer to NULL and returns [SQLITE_NOMEM].
-**
-** {F12373} If the ncolumn parameter to [sqlite3_get_table()] is not NULL
-** then [sqlite3_get_table()] write the number of columns in the
-** result set of the query into *ncolumn if the query is
-** successful (if the function returns SQLITE_OK).
+** {H12371} If a [sqlite3_get_table()] fails a memory allocation, then
+** it shall free the result table under construction, abort the
+** query in process, skip any subsequent queries, set the
+** *pazResult output pointer to NULL and return [SQLITE_NOMEM].
+**
+** {H12373} If the pnColumn parameter to [sqlite3_get_table()] is not NULL
+** then a successful invocation of [sqlite3_get_table()] shall
+** write the number of columns in the
+** result set of the query into *pnColumn.
+**
+** {H12374} If the pnRow parameter to [sqlite3_get_table()] is not NULL
+** then a successful invocation of [sqlite3_get_table()] shall
+** writes the number of rows in the
+** result set of the query into *pnRow.
+**
+** {H12376} A successful invocation of [sqlite3_get_table()] that computes
+** N rows of result with C columns per row shall make *pazResult
+** point to an array of pointers to (N+1)*C strings where the first
+** C strings are column names as obtained from
+** [sqlite3_column_name()] and the rest are column result values
+** obtained from [sqlite3_column_text()].
**
-** {F12374} If the nrow parameter to [sqlite3_get_table()] is not NULL
-** then [sqlite3_get_table()] write the number of rows in the
-** result set of the query into *nrow if the query is
-** successful (if the function returns SQLITE_OK).
+** {H12379} The values in the pazResult array returned by [sqlite3_get_table()]
+** shall remain valid until cleared by [sqlite3_free_table()].
**
-** {F12376} The [sqlite3_get_table()] function sets its *ncolumn value
-** to the number of columns in the result set of the query in the
-** sql parameter, or to zero if the query in sql has an empty
-** result set.
+** {H12382} When an error occurs during evaluation of [sqlite3_get_table()]
+** the function shall set *pazResult to NULL, write an error message
+** into memory obtained from [sqlite3_malloc()], make
+** **pzErrmsg point to that error message, and return a
+** appropriate [error code].
*/
SQLITE_API int sqlite3_get_table(
- sqlite3*, /* An open database */
- const char *sql, /* SQL to be evaluated */
- char ***pResult, /* Results of the query */
- int *nrow, /* Number of result rows written here */
- int *ncolumn, /* Number of result columns written here */
- char **errmsg /* Error msg written here */
+ sqlite3 *db, /* An open database */
+ const char *zSql, /* SQL to be evaluated */
+ char ***pazResult, /* Results of the query */
+ int *pnRow, /* Number of result rows written here */
+ int *pnColumn, /* Number of result columns written here */
+ char **pzErrmsg /* Error msg written here */
);
SQLITE_API void sqlite3_free_table(char **result);
/*
-** CAPI3REF: Formatted String Printing Functions {F17400}
+** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000>
**
** These routines are workalikes of the "printf()" family of functions
** from the standard C library.
** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
-** released by [sqlite3_free()]. Both routines return a
+** released by [sqlite3_free()]. Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
** memory to hold the resulting string.
**
**
** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
-** All of the usual printf formatting options apply. In addition, there
+** All of the usual printf() formatting options apply. In addition, there
** is are "%q", "%Q", and "%z" options.
**
** The %q option works like %s in that it substitutes a null-terminated
** character it escapes that character and allows it to be inserted into
** the string.
**
-** For example, so some string variable contains text as follows:
+** For example, assume the string variable zText contains text as follows:
**
** <blockquote><pre>
** char *zText = "It's a happy day!";
** INSERT INTO table1 VALUES('It's a happy day!');
** </pre></blockquote>
**
-** This second example is an SQL syntax error. As a general rule you
-** should always use %q instead of %s when inserting text into a string
-** literal.
+** This second example is an SQL syntax error. As a general rule you should
+** always use %q instead of %s when inserting text into a string literal.
**
** The %Q option works like %q except it also adds single quotes around
-** the outside of the total string. Or if the parameter in the argument
-** list is a NULL pointer, %Q substitutes the text "NULL" (without single
-** quotes) in place of the %Q option. {END} So, for example, one could say:
+** the outside of the total string. Additionally, if the parameter in the
+** argument list is a NULL pointer, %Q substitutes the text "NULL" (without
+** single quotes) in place of the %Q option. So, for example, one could say:
**
** <blockquote><pre>
** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
**
** INVARIANTS:
**
-** {F17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
+** {H17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
** return either pointers to zero-terminated UTF-8 strings held in
** memory obtained from [sqlite3_malloc()] or NULL pointers if
** a call to [sqlite3_malloc()] fails.
**
-** {F17406} The [sqlite3_snprintf()] interface writes a zero-terminated
+** {H17406} The [sqlite3_snprintf()] interface writes a zero-terminated
** UTF-8 string into the buffer pointed to by the second parameter
** provided that the first parameter is greater than zero.
**
-** {F17407} The [sqlite3_snprintf()] interface does not writes slots of
+** {H17407} The [sqlite3_snprintf()] interface does not write slots of
** its output buffer (the second parameter) outside the range
** of 0 through N-1 (where N is the first parameter)
** regardless of the length of the string
** requested by the format specification.
-**
*/
SQLITE_API char *sqlite3_mprintf(const char*,...);
SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
/*
-** CAPI3REF: Memory Allocation Subsystem {F17300}
+** CAPI3REF: Memory Allocation Subsystem {H17300} <S20000>
**
** The SQLite core uses these three routines for all of its own
** internal memory allocation needs. "Core" in the previous sentence
** does not include operating-system specific VFS implementation. The
-** windows VFS uses native malloc and free for some operations.
+** Windows VFS uses native malloc() and free() for some operations.
**
** The sqlite3_malloc() routine returns a pointer to a block
** of memory at least N bytes in length, where N is the parameter.
** If the second parameter to sqlite3_realloc() is zero or
** negative then the behavior is exactly the same as calling
** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
-** Sqlite3_realloc() returns a pointer to a memory allocation
+** sqlite3_realloc() returns a pointer to a memory allocation
** of at least N bytes in size or NULL if sufficient memory is unavailable.
** If M is the size of the prior allocation, then min(N,M) bytes
** of the prior allocation are copied into the beginning of buffer returned
** The memory returned by sqlite3_malloc() and sqlite3_realloc()
** is always aligned to at least an 8 byte boundary. {END}
**
-** The default implementation
-** of the memory allocation subsystem uses the malloc(), realloc()
-** and free() provided by the standard C library. {F17382} However, if
-** SQLite is compiled with the following C preprocessor macro
-**
-** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote>
-**
-** where <i>NNN</i> is an integer, then SQLite create a static
-** array of at least <i>NNN</i> bytes in size and use that array
-** for all of its dynamic memory allocation needs. {END} Additional
-** memory allocator options may be added in future releases.
+** The default implementation of the memory allocation subsystem uses
+** the malloc(), realloc() and free() provided by the standard C library.
+** {H17382} However, if SQLite is compiled with the
+** SQLITE_MEMORY_SIZE=<i>NNN</i> C preprocessor macro (where <i>NNN</i>
+** is an integer), then SQLite create a static array of at least
+** <i>NNN</i> bytes in size and uses that array for all of its dynamic
+** memory allocation needs. {END} Additional memory allocator options
+** may be added in future releases.
**
** In SQLite version 3.5.0 and 3.5.1, it was possible to define
** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
** implementation of these routines to be omitted. That capability
-** is no longer provided. Only built-in memory allocators can be
-** used.
+** is no longer provided. Only built-in memory allocators can be used.
**
-** The windows OS interface layer calls
+** The Windows OS interface layer calls
** the system malloc() and free() directly when converting
** filenames between the UTF-8 encoding used by SQLite
-** and whatever filename encoding is used by the particular windows
+** and whatever filename encoding is used by the particular Windows
** installation. Memory allocation errors are detected, but
** they are reported back as [SQLITE_CANTOPEN] or
** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
**
** INVARIANTS:
**
-** {F17303} The [sqlite3_malloc(N)] interface returns either a pointer to
-** newly checked-out block of at least N bytes of memory
-** that is 8-byte aligned,
-** or it returns NULL if it is unable to fulfill the request.
+** {H17303} The [sqlite3_malloc(N)] interface returns either a pointer to
+** a newly checked-out block of at least N bytes of memory
+** that is 8-byte aligned, or it returns NULL if it is unable
+** to fulfill the request.
**
-** {F17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if
+** {H17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if
** N is less than or equal to zero.
**
-** {F17305} The [sqlite3_free(P)] interface releases memory previously
+** {H17305} The [sqlite3_free(P)] interface releases memory previously
** returned from [sqlite3_malloc()] or [sqlite3_realloc()],
** making it available for reuse.
**
-** {F17306} A call to [sqlite3_free(NULL)] is a harmless no-op.
+** {H17306} A call to [sqlite3_free(NULL)] is a harmless no-op.
**
-** {F17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call
+** {H17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call
** to [sqlite3_malloc(N)].
**
-** {F17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call
+** {H17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call
** to [sqlite3_free(P)].
**
-** {F17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()],
+** {H17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()],
** and [sqlite3_free()] for all of its memory allocation and
** deallocation needs.
**
-** {F17318} The [sqlite3_realloc(P,N)] interface returns either a pointer
+** {H17318} The [sqlite3_realloc(P,N)] interface returns either a pointer
** to a block of checked-out memory of at least N bytes in size
** that is 8-byte aligned, or a NULL pointer.
**
-** {F17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
-** copies the first K bytes of content from P into the newly allocated
-** where K is the lessor of N and the size of the buffer P.
+** {H17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
+** copies the first K bytes of content from P into the newly
+** allocated block, where K is the lesser of N and the size of
+** the buffer P.
**
-** {F17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
+** {H17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
** releases the buffer P.
**
-** {F17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is
+** {H17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is
** not modified or released.
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
-** must be either NULL or else a pointer obtained from a prior
-** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that has
-** not been released.
+** {A17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
+** must be either NULL or else pointers obtained from a prior
+** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
+** not yet been released.
**
-** {U17351} The application must not read or write any part of
+** {A17351} The application must not read or write any part of
** a block of memory after it has been released using
** [sqlite3_free()] or [sqlite3_realloc()].
-**
*/
SQLITE_API void *sqlite3_malloc(int);
SQLITE_API void *sqlite3_realloc(void*, int);
SQLITE_API void sqlite3_free(void*);
/*
-** CAPI3REF: Memory Allocator Statistics {F17370}
+** CAPI3REF: Memory Allocator Statistics {H17370} <S30210>
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
-** the memory allocation subsystem included within the SQLite.
+** routines, which form the built-in memory allocation subsystem.
**
** INVARIANTS:
**
-** {F17371} The [sqlite3_memory_used()] routine returns the
-** number of bytes of memory currently outstanding
-** (malloced but not freed).
+** {H17371} The [sqlite3_memory_used()] routine returns the number of bytes
+** of memory currently outstanding (malloced but not freed).
**
-** {F17373} The [sqlite3_memory_highwater()] routine returns the maximum
-** value of [sqlite3_memory_used()]
-** since the highwater mark was last reset.
+** {H17373} The [sqlite3_memory_highwater()] routine returns the maximum
+** value of [sqlite3_memory_used()] since the high-water mark
+** was last reset.
**
-** {F17374} The values returned by [sqlite3_memory_used()] and
+** {H17374} The values returned by [sqlite3_memory_used()] and
** [sqlite3_memory_highwater()] include any overhead
** added by SQLite in its implementation of [sqlite3_malloc()],
** but not overhead added by the any underlying system library
** routines that [sqlite3_malloc()] may call.
-**
-** {F17375} The memory highwater mark is reset to the current value of
+**
+** {H17375} The memory high-water mark is reset to the current value of
** [sqlite3_memory_used()] if and only if the parameter to
** [sqlite3_memory_highwater()] is true. The value returned
-** by [sqlite3_memory_highwater(1)] is the highwater mark
+** by [sqlite3_memory_highwater(1)] is the high-water mark
** prior to the reset.
*/
SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
/*
-** CAPI3REF: Pseudo-Random Number Generator {F17390}
+** CAPI3REF: Pseudo-Random Number Generator {H17390} <S20000>
**
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random ROWIDs when inserting new records into a table that
** already uses the largest possible ROWID. The PRNG is also used for
** the build-in random() and randomblob() SQL functions. This interface allows
-** appliations to access the same PRNG for other purposes.
+** applications to access the same PRNG for other purposes.
**
** A call to this routine stores N bytes of randomness into buffer P.
**
**
** INVARIANTS:
**
-** {F17392} The [sqlite3_randomness(N,P)] interface writes N bytes of
+** {H17392} The [sqlite3_randomness(N,P)] interface writes N bytes of
** high-quality pseudo-randomness into buffer P.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);
/*
-** CAPI3REF: Compile-Time Authorization Callbacks {F12500}
+** CAPI3REF: Compile-Time Authorization Callbacks {H12500} <S70100>
**
** This routine registers a authorizer callback with a particular
** [database connection], supplied in the first argument.
** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
** specific action but allow the SQL statement to continue to be
** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
-** rejected with an error. If the authorizer callback returns
+** rejected with an error. If the authorizer callback returns
** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
-** then [sqlite3_prepare_v2()] or equivalent call that triggered
+** then the [sqlite3_prepare_v2()] or equivalent call that triggered
** the authorizer will fail with an error message.
**
** When the callback returns [SQLITE_OK], that means the operation
** return can be used to deny an untrusted user access to individual
** columns of a table.
**
-** The first parameter to the authorizer callback is a copy of
-** the third parameter to the sqlite3_set_authorizer() interface.
-** The second parameter to the callback is an integer
-** [SQLITE_COPY | action code] that specifies the particular action
-** to be authorized. The third through sixth
-** parameters to the callback are zero-terminated strings that contain
-** additional details about the action to be authorized.
+** The first parameter to the authorizer callback is a copy of the third
+** parameter to the sqlite3_set_authorizer() interface. The second parameter
+** to the callback is an integer [SQLITE_COPY | action code] that specifies
+** the particular action to be authorized. The third through sixth parameters
+** to the callback are zero-terminated strings that contain additional
+** details about the action to be authorized.
**
** An authorizer is used when [sqlite3_prepare | preparing]
-** SQL statements from an untrusted
-** source, to ensure that the SQL statements do not try to access data
-** that they are not allowed to see, or that they do not try to
-** execute malicious statements that damage the database. For
+** SQL statements from an untrusted source, to ensure that the SQL statements
+** do not try to access data they are not allowed to see, or that they do not
+** try to execute malicious statements that damage the database. For
** example, an application may allow a user to enter arbitrary
** SQL queries for evaluation by a database. But the application does
** not want the user to be able to make arbitrary changes to the
** previous call. Disable the authorizer by installing a NULL callback.
** The authorizer is disabled by default.
**
-** Note that the authorizer callback is invoked only during
+** Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants. Authorization is not
** performed during statement evaluation in [sqlite3_step()].
**
** INVARIANTS:
**
-** {F12501} The [sqlite3_set_authorizer(D,...)] interface registers a
+** {H12501} The [sqlite3_set_authorizer(D,...)] interface registers a
** authorizer callback with database connection D.
**
-** {F12502} The authorizer callback is invoked as SQL statements are
-** being compiled
+** {H12502} The authorizer callback is invoked as SQL statements are
+** being compiled.
**
-** {F12503} If the authorizer callback returns any value other than
-** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] then
+** {H12503} If the authorizer callback returns any value other than
+** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY], then
** the [sqlite3_prepare_v2()] or equivalent call that caused
** the authorizer callback to run shall fail with an
** [SQLITE_ERROR] error code and an appropriate error message.
**
-** {F12504} When the authorizer callback returns [SQLITE_OK], the operation
-** described is coded normally.
+** {H12504} When the authorizer callback returns [SQLITE_OK], the operation
+** described is processed normally.
**
-** {F12505} When the authorizer callback returns [SQLITE_DENY], the
+** {H12505} When the authorizer callback returns [SQLITE_DENY], the
** [sqlite3_prepare_v2()] or equivalent call that caused the
** authorizer callback to run shall fail
** with an [SQLITE_ERROR] error code and an error message
** explaining that access is denied.
**
-** {F12506} If the authorizer code (the 2nd parameter to the authorizer
+** {H12506} If the authorizer code (the 2nd parameter to the authorizer
** callback) is [SQLITE_READ] and the authorizer callback returns
-** [SQLITE_IGNORE] then the prepared statement is constructed to
+** [SQLITE_IGNORE], then the prepared statement is constructed to
** insert a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.
**
-** {F12507} If the authorizer code (the 2nd parameter to the authorizer
+** {H12507} If the authorizer code (the 2nd parameter to the authorizer
** callback) is anything other than [SQLITE_READ], then
-** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY].
+** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY].
**
-** {F12510} The first parameter to the authorizer callback is a copy of
+** {H12510} The first parameter to the authorizer callback is a copy of
** the third parameter to the [sqlite3_set_authorizer()] interface.
**
-** {F12511} The second parameter to the callback is an integer
+** {H12511} The second parameter to the callback is an integer
** [SQLITE_COPY | action code] that specifies the particular action
** to be authorized.
**
-** {F12512} The third through sixth parameters to the callback are
-** zero-terminated strings that contain
+** {H12512} The third through sixth parameters to the callback are
+** zero-terminated strings that contain
** additional details about the action to be authorized.
**
-** {F12520} Each call to [sqlite3_set_authorizer()] overrides the
+** {H12520} Each call to [sqlite3_set_authorizer()] overrides
** any previously installed authorizer.
**
-** {F12521} A NULL authorizer means that no authorization
+** {H12521} A NULL authorizer means that no authorization
** callback is invoked.
**
-** {F12522} The default authorizer is NULL.
+** {H12522} The default authorizer is NULL.
*/
SQLITE_API int sqlite3_set_authorizer(
sqlite3*,
);
/*
-** CAPI3REF: Authorizer Return Codes {F12590}
+** CAPI3REF: Authorizer Return Codes {H12590} <H12500>
**
** The [sqlite3_set_authorizer | authorizer callback function] must
** return either [SQLITE_OK] or one of these two constants in order
#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
/*
-** CAPI3REF: Authorizer Action Codes {F12550}
+** CAPI3REF: Authorizer Action Codes {H12550} <H12500>
**
** The [sqlite3_set_authorizer()] interface registers a callback function
-** that is invoked to authorizer certain SQL statement actions. The
+** that is invoked to authorize certain SQL statement actions. The
** second parameter to the callback is an integer code that specifies
** what action is being authorized. These are the integer action codes that
** the authorizer callback may be passed.
**
-** These action code values signify what kind of operation is to be
+** These action code values signify what kind of operation is to be
** authorized. The 3rd and 4th parameters to the authorization
** callback function will be parameters or NULL depending on which of these
** codes is used as the second parameter. The 5th parameter to the
-** authorizer callback is the name of the database ("main", "temp",
+** authorizer callback is the name of the database ("main", "temp",
** etc.) if applicable. The 6th parameter to the authorizer callback
** is the name of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from
+** the access attempt or NULL if this access attempt is directly from
** top-level SQL code.
**
** INVARIANTS:
**
-** {F12551} The second parameter to an
-** [sqlite3_set_authorizer | authorizer callback is always an integer
+** {H12551} The second parameter to an
+** [sqlite3_set_authorizer | authorizer callback] is always an integer
** [SQLITE_COPY | authorizer code] that specifies what action
** is being authorized.
**
-** {F12552} The 3rd and 4th parameters to the
-** [sqlite3_set_authorizer | authorization callback function]
-** will be parameters or NULL depending on which
+** {H12552} The 3rd and 4th parameters to the
+** [sqlite3_set_authorizer | authorization callback]
+** will be parameters or NULL depending on which
** [SQLITE_COPY | authorizer code] is used as the second parameter.
**
-** {F12553} The 5th parameter to the
+** {H12553} The 5th parameter to the
** [sqlite3_set_authorizer | authorizer callback] is the name
** of the database (example: "main", "temp", etc.) if applicable.
**
-** {F12554} The 6th parameter to the
+** {H12554} The 6th parameter to the
** [sqlite3_set_authorizer | authorizer callback] is the name
** of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from
+** the access attempt or NULL if this access attempt is directly from
** top-level SQL code.
*/
/******************************************* 3rd ************ 4th ***********/
#define SQLITE_COPY 0 /* No longer used */
/*
-** CAPI3REF: Tracing And Profiling Functions {F12280}
+** CAPI3REF: Tracing And Profiling Functions {H12280} <S60400>
+** EXPERIMENTAL
**
** These routines register callback functions that can be used for
** tracing and profiling the execution of SQL statements.
** various times when an SQL statement is being run by [sqlite3_step()].
** The callback returns a UTF-8 rendering of the SQL statement text
** as the statement first begins executing. Additional callbacks occur
-** as each triggersubprogram is entered. The callbacks for triggers
+** as each triggered subprogram is entered. The callbacks for triggers
** contain a UTF-8 SQL comment that identifies the trigger.
-**
+**
** The callback function registered by sqlite3_profile() is invoked
** as each SQL statement finishes. The profile callback contains
** the original statement text and an estimate of wall-clock time
** of how long that statement took to run.
**
-** The sqlite3_profile() API is currently considered experimental and
-** is subject to change or removal in a future release.
-**
-** The trigger reporting feature of the trace callback is considered
-** experimental and is subject to change or removal in future releases.
-** Future versions of SQLite might also add new trace callback
-** invocations.
-**
** INVARIANTS:
**
-** {F12281} The callback function registered by [sqlite3_trace()] is
+** {H12281} The callback function registered by [sqlite3_trace()] is
** whenever an SQL statement first begins to execute and
** whenever a trigger subprogram first begins to run.
**
-** {F12282} Each call to [sqlite3_trace()] overrides the previously
+** {H12282} Each call to [sqlite3_trace()] overrides the previously
** registered trace callback.
**
-** {F12283} A NULL trace callback disables tracing.
+** {H12283} A NULL trace callback disables tracing.
**
-** {F12284} The first argument to the trace callback is a copy of
+** {H12284} The first argument to the trace callback is a copy of
** the pointer which was the 3rd argument to [sqlite3_trace()].
**
-** {F12285} The second argument to the trace callback is a
-** zero-terminated UTF8 string containing the original text
+** {H12285} The second argument to the trace callback is a
+** zero-terminated UTF-8 string containing the original text
** of the SQL statement as it was passed into [sqlite3_prepare_v2()]
** or the equivalent, or an SQL comment indicating the beginning
** of a trigger subprogram.
**
-** {F12287} The callback function registered by [sqlite3_profile()] is invoked
+** {H12287} The callback function registered by [sqlite3_profile()] is invoked
** as each SQL statement finishes.
**
-** {F12288} The first parameter to the profile callback is a copy of
+** {H12288} The first parameter to the profile callback is a copy of
** the 3rd parameter to [sqlite3_profile()].
**
-** {F12289} The second parameter to the profile callback is a
+** {H12289} The second parameter to the profile callback is a
** zero-terminated UTF-8 string that contains the complete text of
** the SQL statement as it was processed by [sqlite3_prepare_v2()]
** or the equivalent.
**
-** {F12290} The third parameter to the profile callback is an estimate
+** {H12290} The third parameter to the profile callback is an estimate
** of the number of nanoseconds of wall-clock time required to
** run the SQL statement from start to finish.
*/
void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
/*
-** CAPI3REF: Query Progress Callbacks {F12910}
+** CAPI3REF: Query Progress Callbacks {H12910} <S60400>
**
** This routine configures a callback function - the
** progress callback - that is invoked periodically during long
** running calls to [sqlite3_exec()], [sqlite3_step()] and
-** [sqlite3_get_table()]. An example use for this
+** [sqlite3_get_table()]. An example use for this
** interface is to keep a GUI updated during a large query.
**
-** If the progress callback returns non-zero, the opertion is
+** If the progress callback returns non-zero, the operation is
** interrupted. This feature can be used to implement a
** "Cancel" button on a GUI dialog box.
**
** INVARIANTS:
**
-** {F12911} The callback function registered by [sqlite3_progress_handler()]
+** {H12911} The callback function registered by sqlite3_progress_handler()
** is invoked periodically during long running calls to
** [sqlite3_step()].
**
-** {F12912} The progress callback is invoked once for every N virtual
-** machine opcodes, where N is the second argument to
+** {H12912} The progress callback is invoked once for every N virtual
+** machine opcodes, where N is the second argument to
** the [sqlite3_progress_handler()] call that registered
-** the callback. <todo>What if N is less than 1?</todo>
+** the callback. If N is less than 1, sqlite3_progress_handler()
+** acts as if a NULL progress handler had been specified.
**
-** {F12913} The progress callback itself is identified by the third
-** argument to [sqlite3_progress_handler()].
+** {H12913} The progress callback itself is identified by the third
+** argument to sqlite3_progress_handler().
**
-** {F12914} The fourth argument [sqlite3_progress_handler()] is a
-*** void pointer passed to the progress callback
+** {H12914} The fourth argument to sqlite3_progress_handler() is a
+** void pointer passed to the progress callback
** function each time it is invoked.
**
-** {F12915} If a call to [sqlite3_step()] results in fewer than
-** N opcodes being executed,
-** then the progress callback is never invoked. {END}
-**
-** {F12916} Every call to [sqlite3_progress_handler()]
-** overwrites any previously registere progress handler.
+** {H12915} If a call to [sqlite3_step()] results in fewer than N opcodes
+** being executed, then the progress callback is never invoked.
**
-** {F12917} If the progress handler callback is NULL then no progress
+** {H12916} Every call to [sqlite3_progress_handler()]
+** overwrites any previously registered progress handler.
+**
+** {H12917} If the progress handler callback is NULL then no progress
** handler is invoked.
**
-** {F12918} If the progress callback returns a result other than 0, then
+** {H12918} If the progress callback returns a result other than 0, then
** the behavior is a if [sqlite3_interrupt()] had been called.
+** <S30500>
*/
SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
/*
-** CAPI3REF: Opening A New Database Connection {F12700}
-**
-** These routines open an SQLite database file whose name
-** is given by the filename argument.
-** The filename argument is interpreted as UTF-8
-** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
-** in the native byte order for [sqlite3_open16()].
-** An [sqlite3*] handle is usually returned in *ppDb, even
-** if an error occurs. The only exception is if SQLite is unable
-** to allocate memory to hold the [sqlite3] object, a NULL will
-** be written into *ppDb instead of a pointer to the [sqlite3] object.
-** If the database is opened (and/or created)
-** successfully, then [SQLITE_OK] is returned. Otherwise an
-** error code is returned. The
-** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
+** CAPI3REF: Opening A New Database Connection {H12700} <S40200>
+**
+** These routines open an SQLite database file whose name is given by the
+** filename argument. The filename argument is interpreted as UTF-8 for
+** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
+** order for sqlite3_open16(). A [database connection] handle is usually
+** returned in *ppDb, even if an error occurs. The only exception is that
+** if SQLite is unable to allocate memory to hold the [sqlite3] object,
+** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
+** object. If the database is opened (and/or created) successfully, then
+** [SQLITE_OK] is returned. Otherwise an [error code] is returned. The
+** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
** an English language description of the error.
**
** The default encoding for the database will be UTF-8 if
-** [sqlite3_open()] or [sqlite3_open_v2()] is called and
-** UTF-16 in the native byte order if [sqlite3_open16()] is used.
+** sqlite3_open() or sqlite3_open_v2() is called and
+** UTF-16 in the native byte order if sqlite3_open16() is used.
**
** Whether or not an error occurs when it is opened, resources
-** associated with the [sqlite3*] handle should be released by passing it
-** to [sqlite3_close()] when it is no longer required.
+** associated with the [database connection] handle should be released by
+** passing it to [sqlite3_close()] when it is no longer required.
**
-** The [sqlite3_open_v2()] interface works like [sqlite3_open()]
-** except that it acccepts two additional parameters for additional control
-** over the new database connection. The flags parameter can be
-** one of:
+** The sqlite3_open_v2() interface works like sqlite3_open()
+** except that it accepts two additional parameters for additional control
+** over the new database connection. The flags parameter can take one of
+** the following three values, optionally combined with the
+** [SQLITE_OPEN_NOMUTEX] flag:
**
-** <ol>
-** <li> [SQLITE_OPEN_READONLY]
-** <li> [SQLITE_OPEN_READWRITE]
-** <li> [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
-** </ol>
+** <dl>
+** <dt>[SQLITE_OPEN_READONLY]</dt>
+** <dd>The database is opened in read-only mode. If the database does not
+** already exist, an error is returned.</dd>
+**
+** <dt>[SQLITE_OPEN_READWRITE]</dt>
+** <dd>The database is opened for reading and writing if possible, or reading
+** only if the file is write protected by the operating system. In either
+** case the database must already exist, otherwise an error is returned.</dd>
+**
+** <dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
+** <dd>The database is opened for reading and writing, and is creates it if
+** it does not already exist. This is the behavior that is always used for
+** sqlite3_open() and sqlite3_open16().</dd>
+** </dl>
**
-** The first value opens the database read-only.
-** If the database does not previously exist, an error is returned.
-** The second option opens
-** the database for reading and writing if possible, or reading only if
-** if the file is write protected. In either case the database
-** must already exist or an error is returned. The third option
-** opens the database for reading and writing and creates it if it does
-** not already exist.
-** The third options is behavior that is always used for [sqlite3_open()]
-** and [sqlite3_open16()].
-**
-** If the 3rd parameter to [sqlite3_open_v2()] is not one of the
-** combinations shown above then the behavior is undefined.
-**
-** If the filename is ":memory:", then an private
-** in-memory database is created for the connection. This in-memory
-** database will vanish when the database connection is closed. Future
-** version of SQLite might make use of additional special filenames
-** that begin with the ":" character. It is recommended that
-** when a database filename really does begin with
-** ":" that you prefix the filename with a pathname like "./" to
-** avoid ambiguity.
-**
-** If the filename is an empty string, then a private temporary
+** If the 3rd parameter to sqlite3_open_v2() is not one of the
+** combinations shown above or one of the combinations shown above combined
+** with the [SQLITE_OPEN_NOMUTEX] flag, then the behavior is undefined.
+**
+** If the [SQLITE_OPEN_NOMUTEX] flag is set, then mutexes on the
+** opened [database connection] are disabled and the appliation must
+** insure that access to the [database connection] and its associated
+** [prepared statements] is serialized. The [SQLITE_OPEN_NOMUTEX] flag
+** is the default behavior is SQLite is configured using the
+** [SQLITE_CONFIG_MULTITHREAD] or [SQLITE_CONFIG_SINGLETHREAD] options
+** to [sqlite3_config()]. The [SQLITE_OPEN_NOMUTEX] flag only makes a
+** difference when SQLite is in its default [SQLITE_CONFIG_SERIALIZED] mode.
+**
+** If the filename is ":memory:", then a private, temporary in-memory database
+** is created for the connection. This in-memory database will vanish when
+** the database connection is closed. Future versions of SQLite might
+** make use of additional special filenames that begin with the ":" character.
+** It is recommended that when a database filename actually does begin with
+** a ":" character you should prefix the filename with a pathname such as
+** "./" to avoid ambiguity.
+**
+** If the filename is an empty string, then a private, temporary
** on-disk database will be created. This private database will be
** automatically deleted as soon as the database connection is closed.
**
** The fourth parameter to sqlite3_open_v2() is the name of the
-** [sqlite3_vfs] object that defines the operating system
-** interface that the new database connection should use. If the
-** fourth parameter is a NULL pointer then the default [sqlite3_vfs]
-** object is used.
+** [sqlite3_vfs] object that defines the operating system interface that
+** the new database connection should use. If the fourth parameter is
+** a NULL pointer then the default [sqlite3_vfs] object is used.
**
-** <b>Note to windows users:</b> The encoding used for the filename argument
-** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever
+** <b>Note to Windows users:</b> The encoding used for the filename argument
+** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
** codepage is currently defined. Filenames containing international
** characters must be converted to UTF-8 prior to passing them into
-** [sqlite3_open()] or [sqlite3_open_v2()].
+** sqlite3_open() or sqlite3_open_v2().
**
** INVARIANTS:
**
-** {F12701} The [sqlite3_open()], [sqlite3_open16()], and
+** {H12701} The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces create a new
** [database connection] associated with
** the database file given in their first parameter.
**
-** {F12702} The filename argument is interpreted as UTF-8
+** {H12702} The filename argument is interpreted as UTF-8
** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
** in the native byte order for [sqlite3_open16()].
**
-** {F12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()],
+** {H12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()],
** or [sqlite3_open_v2()] writes a pointer to a new
** [database connection] into *ppDb.
**
-** {F12704} The [sqlite3_open()], [sqlite3_open16()], and
+** {H12704} The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success,
** or an appropriate [error code] on failure.
**
-** {F12706} The default text encoding for a new database created using
+** {H12706} The default text encoding for a new database created using
** [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8.
**
-** {F12707} The default text encoding for a new database created using
+** {H12707} The default text encoding for a new database created using
** [sqlite3_open16()] will be UTF-16.
**
-** {F12709} The [sqlite3_open(F,D)] interface is equivalent to
+** {H12709} The [sqlite3_open(F,D)] interface is equivalent to
** [sqlite3_open_v2(F,D,G,0)] where the G parameter is
** [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE].
**
-** {F12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
+** {H12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
** bit value [SQLITE_OPEN_READONLY] then the database is opened
** for reading only.
**
-** {F12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
+** {H12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
** bit value [SQLITE_OPEN_READWRITE] then the database is opened
** reading and writing if possible, or for reading only if the
** file is write protected by the operating system.
**
-** {F12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the
+** {H12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the
** bit value [SQLITE_OPEN_CREATE] and the database does not
** previously exist, an error is returned.
**
-** {F12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the
+** {H12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the
** bit value [SQLITE_OPEN_CREATE] and the database does not
** previously exist, then an attempt is made to create and
** initialize the database.
**
-** {F12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()],
+** {H12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()],
** or [sqlite3_open_v2()] is ":memory:", then an private,
** ephemeral, in-memory database is created for the connection.
** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
** in sqlite3_open_v2()?</todo>
**
-** {F12719} If the filename is NULL or an empty string, then a private,
-** ephermeral on-disk database will be created.
+** {H12719} If the filename is NULL or an empty string, then a private,
+** ephemeral on-disk database will be created.
** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
** in sqlite3_open_v2()?</todo>
**
-** {F12721} The [database connection] created by
-** [sqlite3_open_v2(F,D,G,V)] will use the
-** [sqlite3_vfs] object identified by the V parameter, or
-** the default [sqlite3_vfs] object is V is a NULL pointer.
+** {H12721} The [database connection] created by [sqlite3_open_v2(F,D,G,V)]
+** will use the [sqlite3_vfs] object identified by the V parameter,
+** or the default [sqlite3_vfs] object if V is a NULL pointer.
+**
+** {H12723} Two [database connections] will share a common cache if both were
+** opened with the same VFS while [shared cache mode] was enabled and
+** if both filenames compare equal using memcmp() after having been
+** processed by the [sqlite3_vfs | xFullPathname] method of the VFS.
*/
SQLITE_API int sqlite3_open(
const char *filename, /* Database filename (UTF-8) */
);
/*
-** CAPI3REF: Error Codes And Messages {F12800}
+** CAPI3REF: Error Codes And Messages {H12800} <S60200>
**
-** The sqlite3_errcode() interface returns the numeric
-** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code]
-** for the most recent failed sqlite3_* API call associated
-** with [sqlite3] handle 'db'. If a prior API call failed but the
-** most recent API call succeeded, the return value from sqlite3_errcode()
-** is undefined.
+** The sqlite3_errcode() interface returns the numeric [result code] or
+** [extended result code] for the most recent failed sqlite3_* API call
+** associated with a [database connection]. If a prior API call failed
+** but the most recent API call succeeded, the return value from
+** sqlite3_errcode() is undefined.
**
** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
-** text that describes the error, as either UTF8 or UTF16 respectively.
+** text that describes the error, as either UTF-8 or UTF-16 respectively.
** Memory to hold the error message string is managed internally.
-** The application does not need to worry with freeing the result.
+** The application does not need to worry about freeing the result.
** However, the error string might be overwritten or deallocated by
** subsequent calls to other SQLite interface functions.
**
+** If an interface fails with SQLITE_MISUSE, that means the interface
+** was invoked incorrectly by the application. In that case, the
+** error code and message may or may not be set.
+**
** INVARIANTS:
**
-** {F12801} The [sqlite3_errcode(D)] interface returns the numeric
-** [SQLITE_OK | result code] or
-** [SQLITE_IOERR_READ | extended result code]
-** for the most recently failed interface call associated
-** with [database connection] D.
+** {H12801} The [sqlite3_errcode(D)] interface returns the numeric
+** [result code] or [extended result code] for the most recently
+** failed interface call associated with the [database connection] D.
**
-** {F12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)]
+** {H12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)]
** interfaces return English-language text that describes
** the error in the mostly recently failed interface call,
-** encoded as either UTF8 or UTF16 respectively.
+** encoded as either UTF-8 or UTF-16 respectively.
**
-** {F12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]
+** {H12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]
** are valid until the next SQLite interface call.
**
-** {F12808} Calls to API routines that do not return an error code
+** {H12808} Calls to API routines that do not return an error code
** (example: [sqlite3_data_count()]) do not
** change the error code or message returned by
** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
**
-** {F12809} Interfaces that are not associated with a specific
+** {H12809} Interfaces that are not associated with a specific
** [database connection] (examples:
** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()]
** do not change the values returned by
SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
/*
-** CAPI3REF: SQL Statement Object {F13000}
+** CAPI3REF: SQL Statement Object {H13000} <H13010>
** KEYWORDS: {prepared statement} {prepared statements}
**
-** An instance of this object represent single SQL statements. This
-** object is variously known as a "prepared statement" or a
+** An instance of this object represents a single SQL statement.
+** This object is variously known as a "prepared statement" or a
** "compiled SQL statement" or simply as a "statement".
-**
+**
** The life of a statement object goes something like this:
**
** <ol>
** <li> Create the object using [sqlite3_prepare_v2()] or a related
** function.
-** <li> Bind values to host parameters using
-** [sqlite3_bind_blob | sqlite3_bind_* interfaces].
+** <li> Bind values to [host parameters] using the sqlite3_bind_*()
+** interfaces.
** <li> Run the SQL by calling [sqlite3_step()] one or more times.
** <li> Reset the statement using [sqlite3_reset()] then go back
** to step 2. Do this zero or more times.
typedef struct sqlite3_stmt sqlite3_stmt;
/*
-** CAPI3REF: Run-time Limits {F12760}
+** CAPI3REF: Run-time Limits {H12760} <S20600>
**
** This interface allows the size of various constructs to be limited
** on a connection by connection basis. The first parameter is the
**
** If the new limit is a negative number, the limit is unchanged.
** For the limit category of SQLITE_LIMIT_XYZ there is a hard upper
-** bound set by a compile-time C-preprocess macro named SQLITE_MAX_XYZ.
+** bound set by a compile-time C preprocessor macro named SQLITE_MAX_XYZ.
** (The "_LIMIT_" in the name is changed to "_MAX_".)
** Attempts to increase a limit above its hard upper bound are
** silently truncated to the hard upper limit.
** both their own internal database and also databases that are controlled
** by untrusted external sources. An example application might be a
** webbrowser that has its own databases for storing history and
-** separate databases controlled by javascript applications downloaded
-** off the internet. The internal databases can be given the
+** separate databases controlled by JavaScript applications downloaded
+** off the Internet. The internal databases can be given the
** large, default limits. Databases managed by external sources can
** be given much smaller limits designed to prevent a denial of service
-** attach. Developers might also want to use the [sqlite3_set_authorizer()]
+** attack. Developers might also want to use the [sqlite3_set_authorizer()]
** interface to further control untrusted SQL. The size of the database
** created by an untrusted script can be contained using the
** [max_page_count] [PRAGMA].
**
-** This interface is currently considered experimental and is subject
-** to change or removal without prior notice.
+** New run-time limit categories may be added in future releases.
**
** INVARIANTS:
**
-** {F12762} A successful call to [sqlite3_limit(D,C,V)] where V is
-** positive changes the
-** limit on the size of construct C in [database connection] D
-** to the lessor of V and the hard upper bound on the size
-** of C that is set at compile-time.
+** {H12762} A successful call to [sqlite3_limit(D,C,V)] where V is
+** positive changes the limit on the size of construct C in the
+** [database connection] D to the lesser of V and the hard upper
+** bound on the size of C that is set at compile-time.
**
-** {F12766} A successful call to [sqlite3_limit(D,C,V)] where V is negative
-** leaves the state of [database connection] D unchanged.
+** {H12766} A successful call to [sqlite3_limit(D,C,V)] where V is negative
+** leaves the state of the [database connection] D unchanged.
**
-** {F12769} A successful call to [sqlite3_limit(D,C,V)] returns the
-** value of the limit on the size of construct C in
-** in [database connection] D as it was prior to the call.
+** {H12769} A successful call to [sqlite3_limit(D,C,V)] returns the
+** value of the limit on the size of construct C in the
+** [database connection] D as it was prior to the call.
*/
SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
/*
-** CAPI3REF: Run-Time Limit Categories {F12790}
+** CAPI3REF: Run-Time Limit Categories {H12790} <H12760>
** KEYWORDS: {limit category} {limit categories}
-**
+**
** These constants define various aspects of a [database connection]
** that can be limited in size by calls to [sqlite3_limit()].
** The meanings of the various limits are as follows:
**
** <dl>
** <dt>SQLITE_LIMIT_LENGTH</dt>
-** <dd>The maximum size of any
-** string or blob or table row.<dd>
+** <dd>The maximum size of any string or BLOB or table row.<dd>
**
** <dt>SQLITE_LIMIT_SQL_LENGTH</dt>
** <dd>The maximum length of an SQL statement.</dd>
#define SQLITE_LIMIT_VARIABLE_NUMBER 9
/*
-** CAPI3REF: Compiling An SQL Statement {F13010}
+** CAPI3REF: Compiling An SQL Statement {H13010} <S10000>
+** KEYWORDS: {SQL statement compiler}
**
** To execute an SQL query, it must first be compiled into a byte-code
-** program using one of these routines.
+** program using one of these routines.
**
-** The first argument "db" is an [database connection]
-** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()]
-** or [sqlite3_open16()].
-** The second argument "zSql" is the statement to be compiled, encoded
+** The first argument, "db", is a [database connection] obtained from a
+** prior call to [sqlite3_open()], [sqlite3_open_v2()] or [sqlite3_open16()].
+**
+** The second argument, "zSql", is the statement to be compiled, encoded
** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
-** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2()
-** use UTF-16. {END}
-**
-** If the nByte argument is less
-** than zero, then zSql is read up to the first zero terminator.
-** If nByte is non-negative, then it is the maximum number of
-** bytes read from zSql. When nByte is non-negative, the
-** zSql string ends at either the first '\000' or '\u0000' character or
+** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
+** use UTF-16.
+**
+** If the nByte argument is less than zero, then zSql is read up to the
+** first zero terminator. If nByte is non-negative, then it is the maximum
+** number of bytes read from zSql. When nByte is non-negative, the
+** zSql string ends at either the first '\000' or '\u0000' character or
** the nByte-th byte, whichever comes first. If the caller knows
** that the supplied string is nul-terminated, then there is a small
-** performance advantage to be had by passing an nByte parameter that
-** is equal to the number of bytes in the input string <i>including</i>
-** the nul-terminator bytes.{END}
+** performance advantage to be gained by passing an nByte parameter that
+** is equal to the number of bytes in the input string <i>including</i>
+** the nul-terminator bytes.
**
** *pzTail is made to point to the first byte past the end of the
-** first SQL statement in zSql. These routines only compiles the first
+** first SQL statement in zSql. These routines only compile the first
** statement in zSql, so *pzTail is left pointing to what remains
** uncompiled.
**
** *ppStmt is left pointing to a compiled [prepared statement] that can be
-** executed using [sqlite3_step()]. Or if there is an error, *ppStmt is
-** set to NULL. If the input text contains no SQL (if the input
-** is and empty string or a comment) then *ppStmt is set to NULL.
-** {U13018} The calling procedure is responsible for deleting the
-** compiled SQL statement
-** using [sqlite3_finalize()] after it has finished with it.
+** executed using [sqlite3_step()]. If there is an error, *ppStmt is set
+** to NULL. If the input text contains no SQL (if the input is an empty
+** string or a comment) then *ppStmt is set to NULL.
+** {A13018} The calling procedure is responsible for deleting the compiled
+** SQL statement using [sqlite3_finalize()] after it has finished with it.
**
-** On success, [SQLITE_OK] is returned. Otherwise an
-** [error code] is returned.
+** On success, [SQLITE_OK] is returned, otherwise an [error code] is returned.
**
** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
** recommended for all new programs. The two older interfaces are retained
** for backwards compatibility, but their use is discouraged.
** In the "v2" interfaces, the prepared statement
-** that is returned (the [sqlite3_stmt] object) contains a copy of the
-** original SQL text. {END} This causes the [sqlite3_step()] interface to
+** that is returned (the [sqlite3_stmt] object) contains a copy of the
+** original SQL text. This causes the [sqlite3_step()] interface to
** behave a differently in two ways:
**
** <ol>
** always used to do, [sqlite3_step()] will automatically recompile the SQL
** statement and try to run it again. If the schema has changed in
** a way that makes the statement no longer valid, [sqlite3_step()] will still
-** return [SQLITE_SCHEMA]. But unlike the legacy behavior,
-** [SQLITE_SCHEMA] is now a fatal error. Calling
-** [sqlite3_prepare_v2()] again will not make the
+** return [SQLITE_SCHEMA]. But unlike the legacy behavior, [SQLITE_SCHEMA] is
+** now a fatal error. Calling [sqlite3_prepare_v2()] again will not make the
** error go away. Note: use [sqlite3_errmsg()] to find the text
-** of the parsing error that results in an [SQLITE_SCHEMA] return. {END}
+** of the parsing error that results in an [SQLITE_SCHEMA] return.
** </li>
**
** <li>
-** When an error occurs,
-** [sqlite3_step()] will return one of the detailed
-** [error codes] or [extended error codes].
-** The legacy behavior was that [sqlite3_step()] would only return a generic
-** [SQLITE_ERROR] result code and you would have to make a second call to
-** [sqlite3_reset()] in order to find the underlying cause of the problem.
-** With the "v2" prepare interfaces, the underlying reason for the error is
-** returned immediately.
+** When an error occurs, [sqlite3_step()] will return one of the detailed
+** [error codes] or [extended error codes]. The legacy behavior was that
+** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
+** and you would have to make a second call to [sqlite3_reset()] in order
+** to find the underlying cause of the problem. With the "v2" prepare
+** interfaces, the underlying reason for the error is returned immediately.
** </li>
** </ol>
**
** INVARIANTS:
**
-** {F13011} The [sqlite3_prepare(db,zSql,...)] and
+** {H13011} The [sqlite3_prepare(db,zSql,...)] and
** [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the
** text in their zSql parameter as UTF-8.
**
-** {F13012} The [sqlite3_prepare16(db,zSql,...)] and
+** {H13012} The [sqlite3_prepare16(db,zSql,...)] and
** [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the
** text in their zSql parameter as UTF-16 in the native byte order.
**
-** {F13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
-** and its variants is less than zero, then SQL text is
+** {H13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
+** and its variants is less than zero, the SQL text is
** read from zSql is read up to the first zero terminator.
**
-** {F13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
-** and its variants is non-negative, then at most nBytes bytes
+** {H13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
+** and its variants is non-negative, then at most nBytes bytes of
** SQL text is read from zSql.
**
-** {F13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants
+** {H13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants
** if the zSql input text contains more than one SQL statement
** and pzTail is not NULL, then *pzTail is made to point to the
** first byte past the end of the first SQL statement in zSql.
** <todo>What does *pzTail point to if there is one statement?</todo>
**
-** {F13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)]
+** {H13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)]
** or one of its variants writes into *ppStmt a pointer to a new
-** [prepared statement] or a pointer to NULL
-** if zSql contains nothing other than whitespace or comments.
+** [prepared statement] or a pointer to NULL if zSql contains
+** nothing other than whitespace or comments.
**
-** {F13019} The [sqlite3_prepare_v2()] interface and its variants return
+** {H13019} The [sqlite3_prepare_v2()] interface and its variants return
** [SQLITE_OK] or an appropriate [error code] upon failure.
**
-** {F13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its
-** variants returns an error (any value other than [SQLITE_OK])
-** it first sets *ppStmt to NULL.
+** {H13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its
+** variants returns an error (any value other than [SQLITE_OK]),
+** they first set *ppStmt to NULL.
*/
SQLITE_API int sqlite3_prepare(
sqlite3 *db, /* Database handle */
);
/*
-** CAPIREF: Retrieving Statement SQL {F13100}
+** CAPIREF: Retrieving Statement SQL {H13100} <H13000>
**
-** This intereface can be used to retrieve a saved copy of the original
-** SQL text used to create a [prepared statement].
+** This interface can be used to retrieve a saved copy of the original
+** SQL text used to create a [prepared statement] if that statement was
+** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
**
** INVARIANTS:
**
-** {F13101} If the [prepared statement] passed as
-** the an argument to [sqlite3_sql()] was compiled
-** compiled using either [sqlite3_prepare_v2()] or
-** [sqlite3_prepare16_v2()],
-** then [sqlite3_sql()] function returns a pointer to a
-** zero-terminated string containing a UTF-8 rendering
+** {H13101} If the [prepared statement] passed as the argument to
+** [sqlite3_sql()] was compiled using either [sqlite3_prepare_v2()] or
+** [sqlite3_prepare16_v2()], then [sqlite3_sql()] returns
+** a pointer to a zero-terminated string containing a UTF-8 rendering
** of the original SQL statement.
**
-** {F13102} If the [prepared statement] passed as
-** the an argument to [sqlite3_sql()] was compiled
-** compiled using either [sqlite3_prepare()] or
-** [sqlite3_prepare16()],
-** then [sqlite3_sql()] function returns a NULL pointer.
+** {H13102} If the [prepared statement] passed as the argument to
+** [sqlite3_sql()] was compiled using either [sqlite3_prepare()] or
+** [sqlite3_prepare16()], then [sqlite3_sql()] returns a NULL pointer.
**
-** {F13103} The string returned by [sqlite3_sql(S)] is valid until the
+** {H13103} The string returned by [sqlite3_sql(S)] is valid until the
** [prepared statement] S is deleted using [sqlite3_finalize(S)].
*/
SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Dynamically Typed Value Object {F15000}
+** CAPI3REF: Dynamically Typed Value Object {H15000} <S20200>
** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
**
** SQLite uses the sqlite3_value object to represent all values
-** that can be stored in a database table.
-** SQLite uses dynamic typing for the values it stores.
-** Values stored in sqlite3_value objects can be
-** be integers, floating point values, strings, BLOBs, or NULL.
+** that can be stored in a database table. SQLite uses dynamic typing
+** for the values it stores. Values stored in sqlite3_value objects
+** can be integers, floating point values, strings, BLOBs, or NULL.
**
** An sqlite3_value object may be either "protected" or "unprotected".
** Some interfaces require a protected sqlite3_value. Other interfaces
** will accept either a protected or an unprotected sqlite3_value.
-** Every interface that accepts sqlite3_value arguments specifies
+** Every interface that accepts sqlite3_value arguments specifies
** whether or not it requires a protected sqlite3_value.
**
** The terms "protected" and "unprotected" refer to whether or not
** a mutex is held. A internal mutex is held for a protected
** sqlite3_value object but no mutex is held for an unprotected
** sqlite3_value object. If SQLite is compiled to be single-threaded
-** (with SQLITE_THREADSAFE=0 and with [sqlite3_threadsafe()] returning 0)
-** then there is no distinction between
-** protected and unprotected sqlite3_value objects and they can be
-** used interchangable. However, for maximum code portability it
-** is recommended that applications make the distinction between
-** between protected and unprotected sqlite3_value objects even if
-** they are single threaded.
+** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
+** or if SQLite is run in one of reduced mutex modes
+** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
+** then there is no distinction between protected and unprotected
+** sqlite3_value objects and they can be used interchangeably. However,
+** for maximum code portability it is recommended that applications
+** still make the distinction between between protected and unprotected
+** sqlite3_value objects even when not strictly required.
**
** The sqlite3_value objects that are passed as parameters into the
-** implementation of application-defined SQL functions are protected.
+** implementation of [application-defined SQL functions] are protected.
** The sqlite3_value object returned by
** [sqlite3_column_value()] is unprotected.
** Unprotected sqlite3_value objects may only be used with
-** [sqlite3_result_value()] and [sqlite3_bind_value()]. All other
-** interfaces that use sqlite3_value require protected sqlite3_value objects.
+** [sqlite3_result_value()] and [sqlite3_bind_value()].
+** The [sqlite3_value_blob | sqlite3_value_type()] family of
+** interfaces require protected sqlite3_value objects.
*/
typedef struct Mem sqlite3_value;
/*
-** CAPI3REF: SQL Function Context Object {F16001}
+** CAPI3REF: SQL Function Context Object {H16001} <S20200>
**
** The context in which an SQL function executes is stored in an
-** sqlite3_context object. A pointer to an sqlite3_context
-** object is always first parameter to application-defined SQL functions.
+** sqlite3_context object. A pointer to an sqlite3_context object
+** is always first parameter to [application-defined SQL functions].
+** The application-defined SQL function implementation will pass this
+** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
+** [sqlite3_aggregate_context()], [sqlite3_user_data()],
+** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
+** and/or [sqlite3_set_auxdata()].
*/
typedef struct sqlite3_context sqlite3_context;
/*
-** CAPI3REF: Binding Values To Prepared Statements {F13500}
+** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300>
+** KEYWORDS: {host parameter} {host parameters} {host parameter name}
+** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
**
-** In the SQL strings input to [sqlite3_prepare_v2()] and its
-** variants, literals may be replace by a parameter in one
-** of these forms:
+** In the SQL strings input to [sqlite3_prepare_v2()] and its variants,
+** literals may be replaced by a parameter in one of these forms:
**
** <ul>
** <li> ?
** </ul>
**
** In the parameter forms shown above NNN is an integer literal,
-** VVV alpha-numeric parameter name.
-** The values of these parameters (also called "host parameter names"
-** or "SQL parameters")
+** and VVV is an alpha-numeric parameter name. The values of these
+** parameters (also called "host parameter names" or "SQL parameters")
** can be set using the sqlite3_bind_*() routines defined here.
**
-** The first argument to the sqlite3_bind_*() routines always
-** is a pointer to the [sqlite3_stmt] object returned from
-** [sqlite3_prepare_v2()] or its variants. The second
-** argument is the index of the parameter to be set. The
-** first parameter has an index of 1. When the same named
-** parameter is used more than once, second and subsequent
-** occurrences have the same index as the first occurrence.
+** The first argument to the sqlite3_bind_*() routines is always
+** a pointer to the [sqlite3_stmt] object returned from
+** [sqlite3_prepare_v2()] or its variants.
+**
+** The second argument is the index of the SQL parameter to be set.
+** The leftmost SQL parameter has an index of 1. When the same named
+** SQL parameter is used more than once, second and subsequent
+** occurrences have the same index as the first occurrence.
** The index for named parameters can be looked up using the
-** [sqlite3_bind_parameter_name()] API if desired. The index
+** [sqlite3_bind_parameter_index()] API if desired. The index
** for "?NNN" parameters is the value of NNN.
-** The NNN value must be between 1 and the compile-time
-** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999).
+** The NNN value must be between 1 and the [sqlite3_limit()]
+** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
**
** The third argument is the value to bind to the parameter.
**
-** In those
-** routines that have a fourth argument, its value is the number of bytes
-** in the parameter. To be clear: the value is the number of <u>bytes</u>
-** in the value, not the number of characters.
+** In those routines that have a fourth argument, its value is the
+** number of bytes in the parameter. To be clear: the value is the
+** number of <u>bytes</u> in the value, not the number of characters.
** If the fourth parameter is negative, the length of the string is
-** number of bytes up to the first zero terminator.
+** the number of bytes up to the first zero terminator.
**
** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
** the sqlite3_bind_*() routine returns.
**
** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
-** is filled with zeros. A zeroblob uses a fixed amount of memory
-** (just an integer to hold it size) while it is being processed.
-** Zeroblobs are intended to serve as place-holders for BLOBs whose
-** content is later written using
-** [sqlite3_blob_open | increment BLOB I/O] routines. A negative
-** value for the zeroblob results in a zero-length BLOB.
+** is filled with zeroes. A zeroblob uses a fixed amount of memory
+** (just an integer to hold its size) while it is being processed.
+** Zeroblobs are intended to serve as placeholders for BLOBs whose
+** content is later written using
+** [sqlite3_blob_open | incremental BLOB I/O] routines.
+** A negative value for the zeroblob results in a zero-length BLOB.
**
** The sqlite3_bind_*() routines must be called after
** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
**
** These routines return [SQLITE_OK] on success or an error code if
** anything goes wrong. [SQLITE_RANGE] is returned if the parameter
-** index is out of range. [SQLITE_NOMEM] is returned if malloc fails.
+** index is out of range. [SQLITE_NOMEM] is returned if malloc() fails.
** [SQLITE_MISUSE] might be returned if these routines are called on a
** virtual machine that is the wrong state or which has already been finalized.
** Detection of misuse is unreliable. Applications should not depend
** panic rather than return SQLITE_MISUSE.
**
** See also: [sqlite3_bind_parameter_count()],
-** [sqlite3_bind_parameter_name()], and
-** [sqlite3_bind_parameter_index()].
+** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
**
** INVARIANTS:
**
-** {F13506} The [sqlite3_prepare | SQL statement compiler] recognizes
-** tokens of the forms "?", "?NNN", "$VVV", ":VVV", and "@VVV"
-** as SQL parameters, where NNN is any sequence of one or more
-** digits and where VVV is any sequence of one or more
-** alphanumeric characters or "::" optionally followed by
-** a string containing no spaces and contained within parentheses.
+** {H13506} The [SQL statement compiler] recognizes tokens of the forms
+** "?", "?NNN", "$VVV", ":VVV", and "@VVV" as SQL parameters,
+** where NNN is any sequence of one or more digits
+** and where VVV is any sequence of one or more alphanumeric
+** characters or "::" optionally followed by a string containing
+** no spaces and contained within parentheses.
**
-** {F13509} The initial value of an SQL parameter is NULL.
+** {H13509} The initial value of an SQL parameter is NULL.
**
-** {F13512} The index of an "?" SQL parameter is one larger than the
+** {H13512} The index of an "?" SQL parameter is one larger than the
** largest index of SQL parameter to the left, or 1 if
** the "?" is the leftmost SQL parameter.
**
-** {F13515} The index of an "?NNN" SQL parameter is the integer NNN.
+** {H13515} The index of an "?NNN" SQL parameter is the integer NNN.
**
-** {F13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is
-** the same as the index of leftmost occurances of the same
+** {H13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is
+** the same as the index of leftmost occurrences of the same
** parameter, or one more than the largest index over all
-** parameters to the left if this is the first occurrance
+** parameters to the left if this is the first occurrence
** of this parameter, or 1 if this is the leftmost parameter.
**
-** {F13521} The [sqlite3_prepare | SQL statement compiler] fail with
-** an [SQLITE_RANGE] error if the index of an SQL parameter
-** is less than 1 or greater than SQLITE_MAX_VARIABLE_NUMBER.
+** {H13521} The [SQL statement compiler] fails with an [SQLITE_RANGE]
+** error if the index of an SQL parameter is less than 1
+** or greater than the compile-time SQLITE_MAX_VARIABLE_NUMBER
+** parameter.
**
-** {F13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)]
+** {H13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)]
** associate the value V with all SQL parameters having an
** index of N in the [prepared statement] S.
**
-** {F13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)]
+** {H13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)]
** override prior calls with the same values of S and N.
**
-** {F13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)]
+** {H13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)]
** persist across calls to [sqlite3_reset(S)].
**
-** {F13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** {H13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L
-** bytes of the blob or string pointed to by V, when L
+** bytes of the BLOB or string pointed to by V, when L
** is non-negative.
**
-** {F13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or
+** {H13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or
** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters
** from V through the first zero character when L is negative.
**
-** {F13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** {H13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
** constant [SQLITE_STATIC], SQLite assumes that the value V
** is held in static unmanaged space that will not change
** during the lifetime of the binding.
**
-** {F13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** {H13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
-** constant [SQLITE_TRANSIENT], the routine makes a
-** private copy of V value before it returns.
+** constant [SQLITE_TRANSIENT], the routine makes a
+** private copy of the value V before it returns.
**
-** {F13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** {H13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to
** a function, SQLite invokes that function to destroy the
-** V value after it has finished using the V value.
+** value V after it has finished using the value V.
**
-** {F13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound
-** is a blob of L bytes, or a zero-length blob if L is negative.
+** {H13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound
+** is a BLOB of L bytes, or a zero-length BLOB if L is negative.
**
-** {F13551} In calls to [sqlite3_bind_value(S,N,V)] the V argument may
+** {H13551} In calls to [sqlite3_bind_value(S,N,V)] the V argument may
** be either a [protected sqlite3_value] object or an
** [unprotected sqlite3_value] object.
*/
SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
/*
-** CAPI3REF: Number Of SQL Parameters {F13600}
+** CAPI3REF: Number Of SQL Parameters {H13600} <S70300>
**
-** This routine can be used to find the number of SQL parameters
-** in a prepared statement. SQL parameters are tokens of the
+** This routine can be used to find the number of [SQL parameters]
+** in a [prepared statement]. SQL parameters are tokens of the
** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
-** place-holders for values that are [sqlite3_bind_blob | bound]
+** placeholders for values that are [sqlite3_bind_blob | bound]
** to the parameters at a later time.
**
-** This routine actually returns the index of the largest parameter.
-** For all forms except ?NNN, this will correspond to the number of
-** unique parameters. If parameters of the ?NNN are used, there may
-** be gaps in the list.
+** This routine actually returns the index of the largest (rightmost)
+** parameter. For all forms except ?NNN, this will correspond to the
+** number of unique parameters. If parameters of the ?NNN are used,
+** there may be gaps in the list.
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_name()], and
**
** INVARIANTS:
**
-** {F13601} The [sqlite3_bind_parameter_count(S)] interface returns
+** {H13601} The [sqlite3_bind_parameter_count(S)] interface returns
** the largest index of all SQL parameters in the
-** [prepared statement] S, or 0 if S
-** contains no SQL parameters.
+** [prepared statement] S, or 0 if S contains no SQL parameters.
*/
SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
/*
-** CAPI3REF: Name Of A Host Parameter {F13620}
+** CAPI3REF: Name Of A Host Parameter {H13620} <S70300>
**
** This routine returns a pointer to the name of the n-th
-** SQL parameter in a [prepared statement].
+** [SQL parameter] in a [prepared statement].
** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
** respectively.
** In other words, the initial ":" or "$" or "@" or "?"
** is included as part of the name.
-** Parameters of the form "?" without a following integer have no name.
+** Parameters of the form "?" without a following integer have no name
+** and are also referred to as "anonymous parameters".
**
** The first host parameter has an index of 1, not 0.
**
** If the value n is out of range or if the n-th parameter is
** nameless, then NULL is returned. The returned string is
-** always in the UTF-8 encoding even if the named parameter was
+** always in UTF-8 encoding even if the named parameter was
** originally specified as UTF-16 in [sqlite3_prepare16()] or
** [sqlite3_prepare16_v2()].
**
**
** INVARIANTS:
**
-** {F13621} The [sqlite3_bind_parameter_name(S,N)] interface returns
+** {H13621} The [sqlite3_bind_parameter_name(S,N)] interface returns
** a UTF-8 rendering of the name of the SQL parameter in
-** [prepared statement] S having index N, or
+** the [prepared statement] S having index N, or
** NULL if there is no SQL parameter with index N or if the
** parameter with index N is an anonymous parameter "?".
*/
SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
/*
-** CAPI3REF: Index Of A Parameter With A Given Name {F13640}
+** CAPI3REF: Index Of A Parameter With A Given Name {H13640} <S70300>
**
** Return the index of an SQL parameter given its name. The
** index value returned is suitable for use as the second
**
** INVARIANTS:
**
-** {F13641} The [sqlite3_bind_parameter_index(S,N)] interface returns
-** the index of SQL parameter in [prepared statement]
+** {H13641} The [sqlite3_bind_parameter_index(S,N)] interface returns
+** the index of SQL parameter in the [prepared statement]
** S whose name matches the UTF-8 string N, or 0 if there is
** no match.
*/
SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
/*
-** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660}
+** CAPI3REF: Reset All Bindings On A Prepared Statement {H13660} <S70300>
**
-** Contrary to the intuition of many, [sqlite3_reset()] does not
-** reset the [sqlite3_bind_blob | bindings] on a
-** [prepared statement]. Use this routine to
-** reset all host parameters to NULL.
+** Contrary to the intuition of many, [sqlite3_reset()] does not reset
+** the [sqlite3_bind_blob | bindings] on a [prepared statement].
+** Use this routine to reset all host parameters to NULL.
**
** INVARIANTS:
**
-** {F13661} The [sqlite3_clear_bindings(S)] interface resets all
-** SQL parameter bindings in [prepared statement] S
-** back to NULL.
+** {H13661} The [sqlite3_clear_bindings(S)] interface resets all SQL
+** parameter bindings in the [prepared statement] S back to NULL.
*/
SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
/*
-** CAPI3REF: Number Of Columns In A Result Set {F13710}
+** CAPI3REF: Number Of Columns In A Result Set {H13710} <S10700>
**
-** Return the number of columns in the result set returned by the
-** [prepared statement]. This routine returns 0
-** if pStmt is an SQL statement that does not return data (for
-** example an UPDATE).
+** Return the number of columns in the result set returned by the
+** [prepared statement]. This routine returns 0 if pStmt is an SQL
+** statement that does not return data (for example an [UPDATE]).
**
** INVARIANTS:
**
-** {F13711} The [sqlite3_column_count(S)] interface returns the number of
-** columns in the result set generated by the
-** [prepared statement] S, or 0 if S does not generate
-** a result set.
+** {H13711} The [sqlite3_column_count(S)] interface returns the number of
+** columns in the result set generated by the [prepared statement] S,
+** or 0 if S does not generate a result set.
*/
SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Column Names In A Result Set {F13720}
+** CAPI3REF: Column Names In A Result Set {H13720} <S10700>
**
** These routines return the name assigned to a particular column
-** in the result set of a SELECT statement. The sqlite3_column_name()
-** interface returns a pointer to a zero-terminated UTF8 string
+** in the result set of a [SELECT] statement. The sqlite3_column_name()
+** interface returns a pointer to a zero-terminated UTF-8 string
** and sqlite3_column_name16() returns a pointer to a zero-terminated
-** UTF16 string. The first parameter is the
-** [prepared statement] that implements the SELECT statement.
-** The second parameter is the column number. The left-most column is
-** number 0.
+** UTF-16 string. The first parameter is the [prepared statement]
+** that implements the [SELECT] statement. The second parameter is the
+** column number. The leftmost column is number 0.
**
-** The returned string pointer is valid until either the
-** [prepared statement] is destroyed by [sqlite3_finalize()]
-** or until the next call sqlite3_column_name() or sqlite3_column_name16()
-** on the same column.
+** The returned string pointer is valid until either the [prepared statement]
+** is destroyed by [sqlite3_finalize()] or until the next call to
+** sqlite3_column_name() or sqlite3_column_name16() on the same column.
**
** If sqlite3_malloc() fails during the processing of either routine
** (for example during a conversion from UTF-8 to UTF-16) then a
**
** INVARIANTS:
**
-** {F13721} A successful invocation of the [sqlite3_column_name(S,N)]
-** interface returns the name
-** of the Nth column (where 0 is the left-most column) for the
-** result set of [prepared statement] S as a
-** zero-terminated UTF-8 string.
+** {H13721} A successful invocation of the [sqlite3_column_name(S,N)]
+** interface returns the name of the Nth column (where 0 is
+** the leftmost column) for the result set of the
+** [prepared statement] S as a zero-terminated UTF-8 string.
**
-** {F13723} A successful invocation of the [sqlite3_column_name16(S,N)]
-** interface returns the name
-** of the Nth column (where 0 is the left-most column) for the
-** result set of [prepared statement] S as a
-** zero-terminated UTF-16 string in the native byte order.
+** {H13723} A successful invocation of the [sqlite3_column_name16(S,N)]
+** interface returns the name of the Nth column (where 0 is
+** the leftmost column) for the result set of the
+** [prepared statement] S as a zero-terminated UTF-16 string
+** in the native byte order.
**
-** {F13724} The [sqlite3_column_name()] and [sqlite3_column_name16()]
+** {H13724} The [sqlite3_column_name()] and [sqlite3_column_name16()]
** interfaces return a NULL pointer if they are unable to
-** allocate memory memory to hold there normal return strings.
+** allocate memory to hold their normal return strings.
**
-** {F13725} If the N parameter to [sqlite3_column_name(S,N)] or
+** {H13725} If the N parameter to [sqlite3_column_name(S,N)] or
** [sqlite3_column_name16(S,N)] is out of range, then the
-** interfaces returns a NULL pointer.
-**
-** {F13726} The strings returned by [sqlite3_column_name(S,N)] and
+** interfaces return a NULL pointer.
+**
+** {H13726} The strings returned by [sqlite3_column_name(S,N)] and
** [sqlite3_column_name16(S,N)] are valid until the next
** call to either routine with the same S and N parameters
** or until [sqlite3_finalize(S)] is called.
**
-** {F13727} When a result column of a [SELECT] statement contains
-** an AS clause, the name of that column is the indentifier
+** {H13727} When a result column of a [SELECT] statement contains
+** an AS clause, the name of that column is the identifier
** to the right of the AS keyword.
*/
SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
/*
-** CAPI3REF: Source Of Data In A Query Result {F13740}
+** CAPI3REF: Source Of Data In A Query Result {H13740} <S10700>
**
** These routines provide a means to determine what column of what
-** table in which database a result of a SELECT statement comes from.
+** table in which database a result of a [SELECT] statement comes from.
** The name of the database or table or column can be returned as
-** either a UTF8 or UTF16 string. The _database_ routines return
+** either a UTF-8 or UTF-16 string. The _database_ routines return
** the database name, the _table_ routines return the table name, and
** the origin_ routines return the column name.
-** The returned string is valid until
-** the [prepared statement] is destroyed using
-** [sqlite3_finalize()] or until the same information is requested
+** The returned string is valid until the [prepared statement] is destroyed
+** using [sqlite3_finalize()] or until the same information is requested
** again in a different encoding.
**
** The names returned are the original un-aliased names of the
** database, table, and column.
**
** The first argument to the following calls is a [prepared statement].
-** These functions return information about the Nth column returned by
+** These functions return information about the Nth column returned by
** the statement, where N is the second function argument.
**
-** If the Nth column returned by the statement is an expression
-** or subquery and is not a column value, then all of these functions
-** return NULL. These routine might also return NULL if a memory
-** allocation error occurs. Otherwise, they return the
-** name of the attached database, table and column that query result
-** column was extracted from.
+** If the Nth column returned by the statement is an expression or
+** subquery and is not a column value, then all of these functions return
+** NULL. These routine might also return NULL if a memory allocation error
+** occurs. Otherwise, they return the name of the attached database, table
+** and column that query result column was extracted from.
**
** As with all other SQLite APIs, those postfixed with "16" return
** UTF-16 encoded strings, the other functions return UTF-8. {END}
**
-** These APIs are only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
+** These APIs are only available if the library was compiled with the
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
**
-** {U13751}
+** {A13751}
** If two or more threads call one or more of these routines against the same
** prepared statement and column at the same time then the results are
** undefined.
**
** INVARIANTS:
**
-** {F13741} The [sqlite3_column_database_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the database from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13742} The [sqlite3_column_database_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the database from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13743} The [sqlite3_column_table_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the table from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13744} The [sqlite3_column_table_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the table from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
+** {H13741} The [sqlite3_column_database_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the database from which the
+** Nth result column of the [prepared statement] S is extracted,
+** or NULL if the Nth column of S is a general expression
+** or if unable to allocate memory to store the name.
+**
+** {H13742} The [sqlite3_column_database_name16(S,N)] interface returns either
+** the UTF-16 native byte order zero-terminated name of the database
+** from which the Nth result column of the [prepared statement] S is
+** extracted, or NULL if the Nth column of S is a general expression
+** or if unable to allocate memory to store the name.
+**
+** {H13743} The [sqlite3_column_table_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the table from which the
+** Nth result column of the [prepared statement] S is extracted,
+** or NULL if the Nth column of S is a general expression
+** or if unable to allocate memory to store the name.
+**
+** {H13744} The [sqlite3_column_table_name16(S,N)] interface returns either
+** the UTF-16 native byte order zero-terminated name of the table
+** from which the Nth result column of the [prepared statement] S is
+** extracted, or NULL if the Nth column of S is a general expression
+** or if unable to allocate memory to store the name.
+**
+** {H13745} The [sqlite3_column_origin_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the table column from which the
+** Nth result column of the [prepared statement] S is extracted,
+** or NULL if the Nth column of S is a general expression
+** or if unable to allocate memory to store the name.
+**
+** {H13746} The [sqlite3_column_origin_name16(S,N)] interface returns either
+** the UTF-16 native byte order zero-terminated name of the table
+** column from which the Nth result column of the
+** [prepared statement] S is extracted, or NULL if the Nth column
+** of S is a general expression or if unable to allocate memory
** to store the name.
-**
-** {F13745} The [sqlite3_column_origin_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the table column from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13746} The [sqlite3_column_origin_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the table column from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13748} The return values from
-** [sqlite3_column_database_name|column metadata interfaces]
-** are valid
-** for the lifetime of the [prepared statement]
+**
+** {H13748} The return values from
+** [sqlite3_column_database_name | column metadata interfaces]
+** are valid for the lifetime of the [prepared statement]
** or until the encoding is changed by another metadata
** interface call for the same prepared statement and column.
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U13751} If two or more threads call one or more
-** [sqlite3_column_database_name|column metadata interfaces]
-** the same [prepared statement] and result column
+** {A13751} If two or more threads call one or more
+** [sqlite3_column_database_name | column metadata interfaces]
+** for the same [prepared statement] and result column
** at the same time then the results are undefined.
*/
SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
/*
-** CAPI3REF: Declared Datatype Of A Query Result {F13760}
+** CAPI3REF: Declared Datatype Of A Query Result {H13760} <S10700>
**
-** The first parameter is a [prepared statement].
-** If this statement is a SELECT statement and the Nth column of the
-** returned result set of that SELECT is a table column (not an
+** The first parameter is a [prepared statement].
+** If this statement is a [SELECT] statement and the Nth column of the
+** returned result set of that [SELECT] is a table column (not an
** expression or subquery) then the declared type of the table
** column is returned. If the Nth column of the result set is an
** expression or subquery, then a NULL pointer is returned.
-** The returned string is always UTF-8 encoded. {END}
-** For example, in the database schema:
+** The returned string is always UTF-8 encoded. {END}
+**
+** For example, given the database schema:
**
** CREATE TABLE t1(c1 VARIANT);
**
-** And the following statement compiled:
+** and the following statement to be compiled:
**
** SELECT c1 + 1, c1 FROM t1;
**
-** Then this routine would return the string "VARIANT" for the second
-** result column (i==1), and a NULL pointer for the first result column
-** (i==0).
+** this routine would return the string "VARIANT" for the second result
+** column (i==1), and a NULL pointer for the first result column (i==0).
**
** SQLite uses dynamic run-time typing. So just because a column
** is declared to contain a particular type does not mean that the
**
** INVARIANTS:
**
-** {F13761} A successful call to [sqlite3_column_decltype(S,N)]
-** returns a zero-terminated UTF-8 string containing the
-** the declared datatype of the table column that appears
-** as the Nth column (numbered from 0) of the result set to the
-** [prepared statement] S.
+** {H13761} A successful call to [sqlite3_column_decltype(S,N)] returns a
+** zero-terminated UTF-8 string containing the declared datatype
+** of the table column that appears as the Nth column (numbered
+** from 0) of the result set to the [prepared statement] S.
**
-** {F13762} A successful call to [sqlite3_column_decltype16(S,N)]
+** {H13762} A successful call to [sqlite3_column_decltype16(S,N)]
** returns a zero-terminated UTF-16 native byte order string
** containing the declared datatype of the table column that appears
** as the Nth column (numbered from 0) of the result set to the
** [prepared statement] S.
**
-** {F13763} If N is less than 0 or N is greater than or equal to
-** the number of columns in [prepared statement] S
+** {H13763} If N is less than 0 or N is greater than or equal to
+** the number of columns in the [prepared statement] S,
** or if the Nth column of S is an expression or subquery rather
-** than a table column or if a memory allocation failure
+** than a table column, or if a memory allocation failure
** occurs during encoding conversions, then
** calls to [sqlite3_column_decltype(S,N)] or
** [sqlite3_column_decltype16(S,N)] return NULL.
SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
-/*
-** CAPI3REF: Evaluate An SQL Statement {F13200}
+/*
+** CAPI3REF: Evaluate An SQL Statement {H13200} <S10000>
**
-** After an [prepared statement] has been prepared with a call
-** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of
-** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()],
-** then this function must be called one or more times to evaluate the
-** statement.
+** After a [prepared statement] has been prepared using either
+** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
+** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
+** must be called one or more times to evaluate the statement.
**
-** The details of the behavior of this sqlite3_step() interface depend
+** The details of the behavior of the sqlite3_step() interface depend
** on whether the statement was prepared using the newer "v2" interface
** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
** new "v2" interface is recommended for new applications but the legacy
** interface will continue to be supported.
**
-** In the legacy interface, the return value will be either [SQLITE_BUSY],
+** In the legacy interface, the return value will be either [SQLITE_BUSY],
** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
-** With the "v2" interface, any of the other [SQLITE_OK | result code]
-** or [SQLITE_IOERR_READ | extended result code] might be returned as
-** well.
+** With the "v2" interface, any of the other [result codes] or
+** [extended result codes] might be returned as well.
**
** [SQLITE_BUSY] means that the database engine was unable to acquire the
-** database locks it needs to do its job. If the statement is a COMMIT
+** database locks it needs to do its job. If the statement is a [COMMIT]
** or occurs outside of an explicit transaction, then you can retry the
-** statement. If the statement is not a COMMIT and occurs within a
+** statement. If the statement is not a [COMMIT] and occurs within a
** explicit transaction then you should rollback the transaction before
** continuing.
**
** machine without first calling [sqlite3_reset()] to reset the virtual
** machine back to its initial state.
**
-** If the SQL statement being executed returns any data, then
-** [SQLITE_ROW] is returned each time a new row of data is ready
-** for processing by the caller. The values may be accessed using
-** the [sqlite3_column_int | column access functions].
+** If the SQL statement being executed returns any data, then [SQLITE_ROW]
+** is returned each time a new row of data is ready for processing by the
+** caller. The values may be accessed using the [column access functions].
** sqlite3_step() is called again to retrieve the next row of data.
-**
+**
** [SQLITE_ERROR] means that a run-time error (such as a constraint
** violation) has occurred. sqlite3_step() should not be called again on
** the VM. More information may be found by calling [sqlite3_errmsg()].
-** With the legacy interface, a more specific error code (example:
+** With the legacy interface, a more specific error code (for example,
** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
** can be obtained by calling [sqlite3_reset()] on the
** [prepared statement]. In the "v2" interface,
**
** [SQLITE_MISUSE] means that the this routine was called inappropriately.
** Perhaps it was called on a [prepared statement] that has
-** already been [sqlite3_finalize | finalized] or on one that had
+** already been [sqlite3_finalize | finalized] or on one that had
** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
** be the case that the same database connection is being used by two or
** more threads at the same moment in time.
**
-** <b>Goofy Interface Alert:</b>
-** In the legacy interface,
-** the sqlite3_step() API always returns a generic error code,
-** [SQLITE_ERROR], following any error other than [SQLITE_BUSY]
-** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or
-** [sqlite3_finalize()] in order to find one of the specific
-** [error codes] that better describes the error.
+** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
+** API always returns a generic error code, [SQLITE_ERROR], following any
+** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
+** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
+** specific [error codes] that better describes the error.
** We admit that this is a goofy design. The problem has been fixed
** with the "v2" interface. If you prepare all of your SQL statements
** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
-** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the
-** more specific [error codes] are returned directly
+** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
+** then the more specific [error codes] are returned directly
** by sqlite3_step(). The use of the "v2" interface is recommended.
**
** INVARIANTS:
**
-** {F13202} If [prepared statement] S is ready to be
-** run, then [sqlite3_step(S)] advances that prepared statement
-** until to completion or until it is ready to return another
-** row of the result set or an interrupt or run-time error occurs.
+** {H13202} If the [prepared statement] S is ready to be run, then
+** [sqlite3_step(S)] advances that prepared statement until
+** completion or until it is ready to return another row of the
+** result set, or until an [sqlite3_interrupt | interrupt]
+** or a run-time error occurs.
**
-** {F15304} When a call to [sqlite3_step(S)] causes the
-** [prepared statement] S to run to completion,
-** the function returns [SQLITE_DONE].
+** {H15304} When a call to [sqlite3_step(S)] causes the [prepared statement]
+** S to run to completion, the function returns [SQLITE_DONE].
**
-** {F15306} When a call to [sqlite3_step(S)] stops because it is ready
-** to return another row of the result set, it returns
-** [SQLITE_ROW].
+** {H15306} When a call to [sqlite3_step(S)] stops because it is ready to
+** return another row of the result set, it returns [SQLITE_ROW].
**
-** {F15308} If a call to [sqlite3_step(S)] encounters an
-** [sqlite3_interrupt|interrupt] or a run-time error,
-** it returns an appropraite error code that is not one of
+** {H15308} If a call to [sqlite3_step(S)] encounters an
+** [sqlite3_interrupt | interrupt] or a run-time error,
+** it returns an appropriate error code that is not one of
** [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE].
**
-** {F15310} If an [sqlite3_interrupt|interrupt] or run-time error
+** {H15310} If an [sqlite3_interrupt | interrupt] or a run-time error
** occurs during a call to [sqlite3_step(S)]
** for a [prepared statement] S created using
** legacy interfaces [sqlite3_prepare()] or
-** [sqlite3_prepare16()] then the function returns either
+** [sqlite3_prepare16()], then the function returns either
** [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE].
*/
SQLITE_API int sqlite3_step(sqlite3_stmt*);
/*
-** CAPI3REF: Number of columns in a result set {F13770}
+** CAPI3REF: Number of columns in a result set {H13770} <S10700>
**
-** Return the number of values in the current row of the result set.
+** Returns the number of values in the current row of the result set.
**
** INVARIANTS:
**
-** {F13771} After a call to [sqlite3_step(S)] that returns
-** [SQLITE_ROW], the [sqlite3_data_count(S)] routine
-** will return the same value as the
-** [sqlite3_column_count(S)] function.
+** {H13771} After a call to [sqlite3_step(S)] that returns [SQLITE_ROW],
+** the [sqlite3_data_count(S)] routine will return the same value
+** as the [sqlite3_column_count(S)] function.
**
-** {F13772} After [sqlite3_step(S)] has returned any value other than
-** [SQLITE_ROW] or before [sqlite3_step(S)] has been
-** called on the [prepared statement] for
-** the first time since it was [sqlite3_prepare|prepared]
-** or [sqlite3_reset|reset], the [sqlite3_data_count(S)]
-** routine returns zero.
+** {H13772} After [sqlite3_step(S)] has returned any value other than
+** [SQLITE_ROW] or before [sqlite3_step(S)] has been called on the
+** [prepared statement] for the first time since it was
+** [sqlite3_prepare | prepared] or [sqlite3_reset | reset],
+** the [sqlite3_data_count(S)] routine returns zero.
*/
SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Fundamental Datatypes {F10265}
+** CAPI3REF: Fundamental Datatypes {H10265} <S10110><S10120>
** KEYWORDS: SQLITE_TEXT
**
-** {F10266}Every value in SQLite has one of five fundamental datatypes:
+** {H10266} Every value in SQLite has one of five fundamental datatypes:
**
** <ul>
** <li> 64-bit signed integer
**
** Note that the SQLITE_TEXT constant was also used in SQLite version 2
** for a completely different meaning. Software that links against both
-** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not
+** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
** SQLITE_TEXT.
*/
#define SQLITE_INTEGER 1
#define SQLITE3_TEXT 3
/*
-** CAPI3REF: Results Values From A Query {F13800}
+** CAPI3REF: Result Values From A Query {H13800} <S10700>
+** KEYWORDS: {column access functions}
**
** These routines form the "result set query" interface.
**
-** These routines return information about
-** a single column of the current result row of a query. In every
-** case the first argument is a pointer to the
-** [prepared statement] that is being
-** evaluated (the [sqlite3_stmt*] that was returned from
-** [sqlite3_prepare_v2()] or one of its variants) and
-** the second argument is the index of the column for which information
-** should be returned. The left-most column of the result set
-** has an index of 0.
-**
-** If the SQL statement is not currently point to a valid row, or if the
-** the column index is out of range, the result is undefined.
+** These routines return information about a single column of the current
+** result row of a query. In every case the first argument is a pointer
+** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
+** that was returned from [sqlite3_prepare_v2()] or one of its variants)
+** and the second argument is the index of the column for which information
+** should be returned. The leftmost column of the result set has the index 0.
+**
+** If the SQL statement does not currently point to a valid row, or if the
+** column index is out of range, the result is undefined.
** These routines may only be called when the most recent call to
** [sqlite3_step()] has returned [SQLITE_ROW] and neither
-** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently.
+** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
** If any of these routines are called after [sqlite3_reset()] or
** [sqlite3_finalize()] or after [sqlite3_step()] has returned
** something other than [SQLITE_ROW], the results are undefined.
** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
** are called from a different thread while any of these routines
-** are pending, then the results are undefined.
+** are pending, then the results are undefined.
**
-** The sqlite3_column_type() routine returns
+** The sqlite3_column_type() routine returns the
** [SQLITE_INTEGER | datatype code] for the initial data type
** of the result column. The returned value is one of [SQLITE_INTEGER],
** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
** versions of SQLite may change the behavior of sqlite3_column_type()
** following a type conversion.
**
-** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
+** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
** routine returns the number of bytes in that BLOB or string.
** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
** the string to UTF-8 and then returns the number of bytes.
**
** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
** even empty strings, are always zero terminated. The return
-** value from sqlite3_column_blob() for a zero-length blob is an arbitrary
+** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary
** pointer, possibly even a NULL pointer.
**
** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
-** but leaves the result in UTF-16 in native byte order instead of UTF-8.
+** but leaves the result in UTF-16 in native byte order instead of UTF-8.
** The zero terminator is not included in this count.
**
** The object returned by [sqlite3_column_value()] is an
** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
** If the [unprotected sqlite3_value] object returned by
** [sqlite3_column_value()] is used in any other way, including calls
-** to routines like
-** [sqlite3_value_int()], [sqlite3_value_text()], or [sqlite3_value_bytes()],
-** then the behavior is undefined.
+** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
+** or [sqlite3_value_bytes()], then the behavior is undefined.
**
** These routines attempt to convert the value where appropriate. For
** example, if the internal representation is FLOAT and a text result
-** is requested, [sqlite3_snprintf()] is used internally to do the conversion
-** automatically. The following table details the conversions that
-** are applied:
+** is requested, [sqlite3_snprintf()] is used internally to perform the
+** conversion automatically. The following table details the conversions
+** that are applied:
**
** <blockquote>
** <table border="1">
** <tr><td> NULL <td> BLOB <td> Result is NULL pointer
** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
-** <tr><td> INTEGER <td> BLOB <td> Same as for INTEGER->TEXT
+** <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT
** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer
** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT
**
** The table above makes reference to standard C library functions atoi()
** and atof(). SQLite does not really use these functions. It has its
-** on equavalent internal routines. The atoi() and atof() names are
+** own equivalent internal routines. The atoi() and atof() names are
** used in the table for brevity and because they are familiar to most
** C programmers.
**
** Note that when type conversions occur, pointers returned by prior
** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
-** sqlite3_column_text16() may be invalidated.
+** sqlite3_column_text16() may be invalidated.
** Type conversions and pointer invalidations might occur
** in the following cases:
**
** <ul>
-** <li><p> The initial content is a BLOB and sqlite3_column_text()
-** or sqlite3_column_text16() is called. A zero-terminator might
-** need to be added to the string.</p></li>
-**
-** <li><p> The initial content is UTF-8 text and sqlite3_column_bytes16() or
-** sqlite3_column_text16() is called. The content must be converted
-** to UTF-16.</p></li>
-**
-** <li><p> The initial content is UTF-16 text and sqlite3_column_bytes() or
-** sqlite3_column_text() is called. The content must be converted
-** to UTF-8.</p></li>
+** <li> The initial content is a BLOB and sqlite3_column_text() or
+** sqlite3_column_text16() is called. A zero-terminator might
+** need to be added to the string.</li>
+** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
+** sqlite3_column_text16() is called. The content must be converted
+** to UTF-16.</li>
+** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
+** sqlite3_column_text() is called. The content must be converted
+** to UTF-8.</li>
** </ul>
**
** Conversions between UTF-16be and UTF-16le are always done in place and do
** not invalidate a prior pointer, though of course the content of the buffer
** that the prior pointer points to will have been modified. Other kinds
-** of conversion are done in place when it is possible, but sometime it is
-** not possible and in those cases prior pointers are invalidated.
+** of conversion are done in place when it is possible, but sometimes they
+** are not possible and in those cases prior pointers are invalidated.
**
** The safest and easiest to remember policy is to invoke these routines
** in one of the following ways:
**
-** <ul>
+** <ul>
** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
-** </ul>
+** </ul>
**
-** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(),
-** or sqlite3_column_text16() first to force the result into the desired
-** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to
-** find the size of the result. Do not mix call to sqlite3_column_text() or
-** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not
-** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes().
+** In other words, you should call sqlite3_column_text(),
+** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
+** into the desired format, then invoke sqlite3_column_bytes() or
+** sqlite3_column_bytes16() to find the size of the result. Do not mix calls
+** to sqlite3_column_text() or sqlite3_column_blob() with calls to
+** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
+** with calls to sqlite3_column_bytes().
**
** The pointers returned are valid until a type conversion occurs as
** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
** [sqlite3_finalize()] is called. The memory space used to hold strings
-** and blobs is freed automatically. Do <b>not</b> pass the pointers returned
-** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
+** and BLOBs is freed automatically. Do <b>not</b> pass the pointers returned
+** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
** [sqlite3_free()].
**
** If a memory allocation error occurs during the evaluation of any
**
** INVARIANTS:
**
-** {F13803} The [sqlite3_column_blob(S,N)] interface converts the
+** {H13803} The [sqlite3_column_blob(S,N)] interface converts the
** Nth column in the current row of the result set for
-** [prepared statement] S into a blob and then returns a
+** the [prepared statement] S into a BLOB and then returns a
** pointer to the converted value.
**
-** {F13806} The [sqlite3_column_bytes(S,N)] interface returns the
-** number of bytes in the blob or string (exclusive of the
+** {H13806} The [sqlite3_column_bytes(S,N)] interface returns the
+** number of bytes in the BLOB or string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_column_blob(S,N)] or
** [sqlite3_column_text(S,N)].
**
-** {F13809} The [sqlite3_column_bytes16(S,N)] interface returns the
+** {H13809} The [sqlite3_column_bytes16(S,N)] interface returns the
** number of bytes in the string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_column_text16(S,N)].
**
-** {F13812} The [sqlite3_column_double(S,N)] interface converts the
-** Nth column in the current row of the result set for
+** {H13812} The [sqlite3_column_double(S,N)] interface converts the
+** Nth column in the current row of the result set for the
** [prepared statement] S into a floating point value and
** returns a copy of that value.
**
-** {F13815} The [sqlite3_column_int(S,N)] interface converts the
-** Nth column in the current row of the result set for
+** {H13815} The [sqlite3_column_int(S,N)] interface converts the
+** Nth column in the current row of the result set for the
** [prepared statement] S into a 64-bit signed integer and
** returns the lower 32 bits of that integer.
**
-** {F13818} The [sqlite3_column_int64(S,N)] interface converts the
-** Nth column in the current row of the result set for
+** {H13818} The [sqlite3_column_int64(S,N)] interface converts the
+** Nth column in the current row of the result set for the
** [prepared statement] S into a 64-bit signed integer and
** returns a copy of that integer.
**
-** {F13821} The [sqlite3_column_text(S,N)] interface converts the
+** {H13821} The [sqlite3_column_text(S,N)] interface converts the
** Nth column in the current row of the result set for
-** [prepared statement] S into a zero-terminated UTF-8
+** the [prepared statement] S into a zero-terminated UTF-8
** string and returns a pointer to that string.
**
-** {F13824} The [sqlite3_column_text16(S,N)] interface converts the
-** Nth column in the current row of the result set for
+** {H13824} The [sqlite3_column_text16(S,N)] interface converts the
+** Nth column in the current row of the result set for the
** [prepared statement] S into a zero-terminated 2-byte
-** aligned UTF-16 native byte order
-** string and returns a pointer to that string.
+** aligned UTF-16 native byte order string and returns
+** a pointer to that string.
**
-** {F13827} The [sqlite3_column_type(S,N)] interface returns
+** {H13827} The [sqlite3_column_type(S,N)] interface returns
** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
** the Nth column in the current row of the result set for
-** [prepared statement] S.
+** the [prepared statement] S.
**
-** {F13830} The [sqlite3_column_value(S,N)] interface returns a
+** {H13830} The [sqlite3_column_value(S,N)] interface returns a
** pointer to an [unprotected sqlite3_value] object for the
** Nth column in the current row of the result set for
-** [prepared statement] S.
+** the [prepared statement] S.
*/
SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
/*
-** CAPI3REF: Destroy A Prepared Statement Object {F13300}
+** CAPI3REF: Destroy A Prepared Statement Object {H13300} <S70300><S30100>
**
-** The sqlite3_finalize() function is called to delete a
-** [prepared statement]. If the statement was
-** executed successfully, or not executed at all, then SQLITE_OK is returned.
-** If execution of the statement failed then an
-** [error code] or [extended error code]
-** is returned.
+** The sqlite3_finalize() function is called to delete a [prepared statement].
+** If the statement was executed successfully or not executed at all, then
+** SQLITE_OK is returned. If execution of the statement failed then an
+** [error code] or [extended error code] is returned.
**
** This routine can be called at any point during the execution of the
-** [prepared statement]. If the virtual machine has not
+** [prepared statement]. If the virtual machine has not
** completed execution when this routine is called, that is like
-** encountering an error or an interrupt. (See [sqlite3_interrupt()].)
-** Incomplete updates may be rolled back and transactions cancelled,
-** depending on the circumstances, and the
+** encountering an error or an [sqlite3_interrupt | interrupt].
+** Incomplete updates may be rolled back and transactions canceled,
+** depending on the circumstances, and the
** [error code] returned will be [SQLITE_ABORT].
**
** INVARIANTS:
**
-** {F11302} The [sqlite3_finalize(S)] interface destroys the
+** {H11302} The [sqlite3_finalize(S)] interface destroys the
** [prepared statement] S and releases all
** memory and file resources held by that object.
**
-** {F11304} If the most recent call to [sqlite3_step(S)] for the
+** {H11304} If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S returned an error,
** then [sqlite3_finalize(S)] returns that same error.
*/
SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Reset A Prepared Statement Object {F13330}
+** CAPI3REF: Reset A Prepared Statement Object {H13330} <S70300>
**
-** The sqlite3_reset() function is called to reset a
-** [prepared statement] object.
-** back to its initial state, ready to be re-executed.
+** The sqlite3_reset() function is called to reset a [prepared statement]
+** object back to its initial state, ready to be re-executed.
** Any SQL statement variables that had values bound to them using
** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
** Use [sqlite3_clear_bindings()] to reset the bindings.
**
-** {F11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
+** {H11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
** back to the beginning of its program.
**
-** {F11334} If the most recent call to [sqlite3_step(S)] for
+** {H11334} If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
** or if [sqlite3_step(S)] has never before been called on S,
** then [sqlite3_reset(S)] returns [SQLITE_OK].
**
-** {F11336} If the most recent call to [sqlite3_step(S)] for
+** {H11336} If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S indicated an error, then
** [sqlite3_reset(S)] returns an appropriate [error code].
**
-** {F11338} The [sqlite3_reset(S)] interface does not change the values
-** of any [sqlite3_bind_blob|bindings] on [prepared statement] S.
+** {H11338} The [sqlite3_reset(S)] interface does not change the values
+** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
*/
SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Create Or Redefine SQL Functions {F16100}
-** KEYWORDS: {function creation routines}
+** CAPI3REF: Create Or Redefine SQL Functions {H16100} <S20200>
+** KEYWORDS: {function creation routines}
+** KEYWORDS: {application-defined SQL function}
+** KEYWORDS: {application-defined SQL functions}
**
-** These two functions (collectively known as
-** "function creation routines") are used to add SQL functions or aggregates
-** or to redefine the behavior of existing SQL functions or aggregates. The
-** difference only between the two is that the second parameter, the
-** name of the (scalar) function or aggregate, is encoded in UTF-8 for
-** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
+** These two functions (collectively known as "function creation routines")
+** are used to add SQL functions or aggregates or to redefine the behavior
+** of existing SQL functions or aggregates. The only difference between the
+** two is that the second parameter, the name of the (scalar) function or
+** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16
+** for sqlite3_create_function16().
**
** The first parameter is the [database connection] to which the SQL
-** function is to be added. If a single
-** program uses more than one [database connection] internally, then SQL
-** functions must be added individually to each [database connection].
-**
-** The second parameter is the name of the SQL function to be created
-** or redefined.
-** The length of the name is limited to 255 bytes, exclusive of the
-** zero-terminator. Note that the name length limit is in bytes, not
+** function is to be added. If a single program uses more than one database
+** connection internally, then SQL functions must be added individually to
+** each database connection.
+**
+** The second parameter is the name of the SQL function to be created or
+** redefined. The length of the name is limited to 255 bytes, exclusive of
+** the zero-terminator. Note that the name length limit is in bytes, not
** characters. Any attempt to create a function with a longer name
-** will result in an SQLITE_ERROR error.
+** will result in [SQLITE_ERROR] being returned.
**
** The third parameter is the number of arguments that the SQL function or
** aggregate takes. If this parameter is negative, then the SQL function or
** aggregate may take any number of arguments.
**
-** The fourth parameter, eTextRep, specifies what
+** The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
** its parameters. Any SQL function implementation should be able to work
** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
** times with the same function but with different values of eTextRep.
** When multiple implementations of the same function are available, SQLite
** will pick the one that involves the least amount of data conversion.
-** If there is only a single implementation which does not care what
-** text encoding is used, then the fourth argument should be
-** [SQLITE_ANY].
+** If there is only a single implementation which does not care what text
+** encoding is used, then the fourth argument should be [SQLITE_ANY].
**
-** The fifth parameter is an arbitrary pointer. The implementation
-** of the function can gain access to this pointer using
-** [sqlite3_user_data()].
+** The fifth parameter is an arbitrary pointer. The implementation of the
+** function can gain access to this pointer using [sqlite3_user_data()].
**
** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
-** pointers to C-language functions that implement the SQL
-** function or aggregate. A scalar SQL function requires an implementation of
-** the xFunc callback only, NULL pointers should be passed as the xStep
-** and xFinal parameters. An aggregate SQL function requires an implementation
-** of xStep and xFinal and NULL should be passed for xFunc. To delete an
-** existing SQL function or aggregate, pass NULL for all three function
-** callback.
+** pointers to C-language functions that implement the SQL function or
+** aggregate. A scalar SQL function requires an implementation of the xFunc
+** callback only, NULL pointers should be passed as the xStep and xFinal
+** parameters. An aggregate SQL function requires an implementation of xStep
+** and xFinal and NULL should be passed for xFunc. To delete an existing
+** SQL function or aggregate, pass NULL for all three function callbacks.
**
** It is permitted to register multiple implementations of the same
** functions with the same name but with either differing numbers of
-** arguments or differing perferred text encodings. SQLite will use
+** arguments or differing preferred text encodings. SQLite will use
** the implementation most closely matches the way in which the
** SQL function is used.
**
** INVARIANTS:
**
-** {F16103} The [sqlite3_create_function16()] interface behaves exactly
+** {H16103} The [sqlite3_create_function16()] interface behaves exactly
** like [sqlite3_create_function()] in every way except that it
-** interprets the zFunctionName argument as
-** zero-terminated UTF-16 native byte order instead of as a
-** zero-terminated UTF-8.
+** interprets the zFunctionName argument as zero-terminated UTF-16
+** native byte order instead of as zero-terminated UTF-8.
**
-** {F16106} A successful invocation of
+** {H16106} A successful invocation of
** the [sqlite3_create_function(D,X,N,E,...)] interface registers
-** or replaces callback functions in [database connection] D
+** or replaces callback functions in the [database connection] D
** used to implement the SQL function named X with N parameters
-** and having a perferred text encoding of E.
+** and having a preferred text encoding of E.
**
-** {F16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)]
+** {H16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)]
** replaces the P, F, S, and L values from any prior calls with
** the same D, X, N, and E values.
**
-** {F16112} The [sqlite3_create_function(D,X,...)] interface fails with
+** {H16112} The [sqlite3_create_function(D,X,...)] interface fails with
** a return code of [SQLITE_ERROR] if the SQL function name X is
** longer than 255 bytes exclusive of the zero terminator.
**
-** {F16118} Either F must be NULL and S and L are non-NULL or else F
+** {H16118} Either F must be NULL and S and L are non-NULL or else F
** is non-NULL and S and L are NULL, otherwise
** [sqlite3_create_function(D,X,N,E,P,F,S,L)] returns [SQLITE_ERROR].
**
-** {F16121} The [sqlite3_create_function(D,...)] interface fails with an
+** {H16121} The [sqlite3_create_function(D,...)] interface fails with an
** error code of [SQLITE_BUSY] if there exist [prepared statements]
** associated with the [database connection] D.
**
-** {F16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an
+** {H16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an
** error code of [SQLITE_ERROR] if parameter N (specifying the number
** of arguments to the SQL function being registered) is less
** than -1 or greater than 127.
**
-** {F16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)]
+** {H16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)]
** interface causes callbacks to be invoked for the SQL function
** named X when the number of arguments to the SQL function is
** exactly N.
**
-** {F16130} When N is -1, the [sqlite3_create_function(D,X,N,...)]
+** {H16130} When N is -1, the [sqlite3_create_function(D,X,N,...)]
** interface causes callbacks to be invoked for the SQL function
** named X with any number of arguments.
**
-** {F16133} When calls to [sqlite3_create_function(D,X,N,...)]
+** {H16133} When calls to [sqlite3_create_function(D,X,N,...)]
** specify multiple implementations of the same function X
** and when one implementation has N>=0 and the other has N=(-1)
** the implementation with a non-zero N is preferred.
**
-** {F16136} When calls to [sqlite3_create_function(D,X,N,E,...)]
+** {H16136} When calls to [sqlite3_create_function(D,X,N,E,...)]
** specify multiple implementations of the same function X with
** the same number of arguments N but with different
** encodings E, then the implementation where E matches the
** database encoding is preferred.
**
-** {F16139} For an aggregate SQL function created using
-** [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finializer
+** {H16139} For an aggregate SQL function created using
+** [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finalizer
** function L will always be invoked exactly once if the
** step function S is called one or more times.
**
-** {F16142} When SQLite invokes either the xFunc or xStep function of
+** {H16142} When SQLite invokes either the xFunc or xStep function of
** an application-defined SQL function or aggregate created
** by [sqlite3_create_function()] or [sqlite3_create_function16()],
** then the array of [sqlite3_value] objects passed as the
);
/*
-** CAPI3REF: Text Encodings {F10267}
+** CAPI3REF: Text Encodings {H10267} <S50200> <H16100>
**
** These constant define integer codes that represent the various
** text encodings supported by SQLite.
#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
/*
-** CAPI3REF: Obsolete Functions
+** CAPI3REF: Deprecated Functions
+** DEPRECATED
**
-** These functions are all now obsolete. In order to maintain
-** backwards compatibility with older code, we continue to support
-** these functions. However, new development projects should avoid
+** These functions are [deprecated]. In order to maintain
+** backwards compatibility with older code, these functions continue
+** to be supported. However, new applications should avoid
** the use of these functions. To help encourage people to avoid
** using these functions, we are not going to tell you want they do.
*/
SQLITE_API int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
/*
-** CAPI3REF: Obtaining SQL Function Parameter Values {F15100}
+** CAPI3REF: Obtaining SQL Function Parameter Values {H15100} <S20200>
**
** The C-language implementation of SQL functions and aggregates uses
** this set of interface routines to access the parameter values on
** Any attempt to use these routines on an [unprotected sqlite3_value]
** object results in undefined behavior.
**
-** These routines work just like the corresponding
-** [sqlite3_column_blob | sqlite3_column_* routines] except that
-** these routines take a single [protected sqlite3_value] object pointer
-** instead of an [sqlite3_stmt*] pointer and an integer column number.
+** These routines work just like the corresponding [column access functions]
+** except that these routines take a single [protected sqlite3_value] object
+** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
**
-** The sqlite3_value_text16() interface extracts a UTF16 string
+** The sqlite3_value_text16() interface extracts a UTF-16 string
** in the native byte-order of the host machine. The
** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
-** extract UTF16 strings as big-endian and little-endian respectively.
+** extract UTF-16 strings as big-endian and little-endian respectively.
**
** The sqlite3_value_numeric_type() interface attempts to apply
** numeric affinity to the value. This means that an attempt is
** made to convert the value to an integer or floating point. If
** such a conversion is possible without loss of information (in other
-** words if the value is a string that looks like a number)
-** then the conversion is done. Otherwise no conversion occurs. The
-** [SQLITE_INTEGER | datatype] after conversion is returned.
+** words, if the value is a string that looks like a number)
+** then the conversion is performed. Otherwise no conversion occurs.
+** The [SQLITE_INTEGER | datatype] after conversion is returned.
**
-** Please pay particular attention to the fact that the pointer that
-** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or
+** Please pay particular attention to the fact that the pointer returned
+** from [sqlite3_value_blob()], [sqlite3_value_text()], or
** [sqlite3_value_text16()] can be invalidated by a subsequent call to
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
-** or [sqlite3_value_text16()].
+** or [sqlite3_value_text16()].
**
** These routines must be called from the same thread as
** the SQL function that supplied the [sqlite3_value*] parameters.
**
-**
** INVARIANTS:
**
-** {F15103} The [sqlite3_value_blob(V)] interface converts the
-** [protected sqlite3_value] object V into a blob and then returns a
-** pointer to the converted value.
+** {H15103} The [sqlite3_value_blob(V)] interface converts the
+** [protected sqlite3_value] object V into a BLOB and then
+** returns a pointer to the converted value.
**
-** {F15106} The [sqlite3_value_bytes(V)] interface returns the
-** number of bytes in the blob or string (exclusive of the
+** {H15106} The [sqlite3_value_bytes(V)] interface returns the
+** number of bytes in the BLOB or string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_value_blob(V)] or
** [sqlite3_value_text(V)].
**
-** {F15109} The [sqlite3_value_bytes16(V)] interface returns the
+** {H15109} The [sqlite3_value_bytes16(V)] interface returns the
** number of bytes in the string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_value_text16(V)],
** [sqlite3_value_text16be(V)], or [sqlite3_value_text16le(V)].
**
-** {F15112} The [sqlite3_value_double(V)] interface converts the
+** {H15112} The [sqlite3_value_double(V)] interface converts the
** [protected sqlite3_value] object V into a floating point value and
** returns a copy of that value.
**
-** {F15115} The [sqlite3_value_int(V)] interface converts the
+** {H15115} The [sqlite3_value_int(V)] interface converts the
** [protected sqlite3_value] object V into a 64-bit signed integer and
** returns the lower 32 bits of that integer.
**
-** {F15118} The [sqlite3_value_int64(V)] interface converts the
+** {H15118} The [sqlite3_value_int64(V)] interface converts the
** [protected sqlite3_value] object V into a 64-bit signed integer and
** returns a copy of that integer.
**
-** {F15121} The [sqlite3_value_text(V)] interface converts the
-** [protected sqlite3_value] object V into a zero-terminated UTF-8
+** {H15121} The [sqlite3_value_text(V)] interface converts the
+** [protected sqlite3_value] object V into a zero-terminated UTF-8
** string and returns a pointer to that string.
**
-** {F15124} The [sqlite3_value_text16(V)] interface converts the
+** {H15124} The [sqlite3_value_text16(V)] interface converts the
** [protected sqlite3_value] object V into a zero-terminated 2-byte
** aligned UTF-16 native byte order
** string and returns a pointer to that string.
**
-** {F15127} The [sqlite3_value_text16be(V)] interface converts the
+** {H15127} The [sqlite3_value_text16be(V)] interface converts the
** [protected sqlite3_value] object V into a zero-terminated 2-byte
** aligned UTF-16 big-endian
** string and returns a pointer to that string.
**
-** {F15130} The [sqlite3_value_text16le(V)] interface converts the
+** {H15130} The [sqlite3_value_text16le(V)] interface converts the
** [protected sqlite3_value] object V into a zero-terminated 2-byte
** aligned UTF-16 little-endian
** string and returns a pointer to that string.
**
-** {F15133} The [sqlite3_value_type(V)] interface returns
+** {H15133} The [sqlite3_value_type(V)] interface returns
** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
** the [sqlite3_value] object V.
**
-** {F15136} The [sqlite3_value_numeric_type(V)] interface converts
+** {H15136} The [sqlite3_value_numeric_type(V)] interface converts
** the [protected sqlite3_value] object V into either an integer or
** a floating point value if it can do so without loss of
** information, and returns one of [SQLITE_NULL],
** [SQLITE_INTEGER], [SQLITE_FLOAT], [SQLITE_TEXT], or
-** [SQLITE_BLOB] as appropriate for
-** the [protected sqlite3_value] object V after the conversion attempt.
+** [SQLITE_BLOB] as appropriate for the
+** [protected sqlite3_value] object V after the conversion attempt.
*/
SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
/*
-** CAPI3REF: Obtain Aggregate Function Context {F16210}
+** CAPI3REF: Obtain Aggregate Function Context {H16210} <S20200>
**
** The implementation of aggregate SQL functions use this routine to allocate
-** a structure for storing their state.
-** The first time the sqlite3_aggregate_context() routine is
-** is called for a particular aggregate, SQLite allocates nBytes of memory
-** zeros that memory, and returns a pointer to it.
-** On second and subsequent calls to sqlite3_aggregate_context()
-** for the same aggregate function index, the same buffer is returned.
-** The implementation
-** of the aggregate can use the returned buffer to accumulate data.
+** a structure for storing their state.
+**
+** The first time the sqlite3_aggregate_context() routine is called for a
+** particular aggregate, SQLite allocates nBytes of memory, zeroes out that
+** memory, and returns a pointer to it. On second and subsequent calls to
+** sqlite3_aggregate_context() for the same aggregate function index,
+** the same buffer is returned. The implementation of the aggregate can use
+** the returned buffer to accumulate data.
**
** SQLite automatically frees the allocated buffer when the aggregate
** query concludes.
**
-** The first parameter should be a copy of the
-** [sqlite3_context | SQL function context] that is the first
-** parameter to the callback routine that implements the aggregate
-** function.
+** The first parameter should be a copy of the
+** [sqlite3_context | SQL function context] that is the first parameter
+** to the callback routine that implements the aggregate function.
**
** This routine must be called from the same thread in which
** the aggregate SQL function is running.
**
** INVARIANTS:
**
-** {F16211} The first invocation of [sqlite3_aggregate_context(C,N)] for
+** {H16211} The first invocation of [sqlite3_aggregate_context(C,N)] for
** a particular instance of an aggregate function (for a particular
-** context C) causes SQLite to allocation N bytes of memory,
-** zero that memory, and return a pointer to the allocationed
-** memory.
+** context C) causes SQLite to allocate N bytes of memory,
+** zero that memory, and return a pointer to the allocated memory.
**
-** {F16213} If a memory allocation error occurs during
+** {H16213} If a memory allocation error occurs during
** [sqlite3_aggregate_context(C,N)] then the function returns 0.
**
-** {F16215} Second and subsequent invocations of
+** {H16215} Second and subsequent invocations of
** [sqlite3_aggregate_context(C,N)] for the same context pointer C
** ignore the N parameter and return a pointer to the same
** block of memory returned by the first invocation.
**
-** {F16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is
+** {H16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is
** automatically freed on the next call to [sqlite3_reset()]
** or [sqlite3_finalize()] for the [prepared statement] containing
** the aggregate function associated with context C.
SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
/*
-** CAPI3REF: User Data For Functions {F16240}
+** CAPI3REF: User Data For Functions {H16240} <S20200>
**
** The sqlite3_user_data() interface returns a copy of
** the pointer that was the pUserData parameter (the 5th parameter)
-** of the the [sqlite3_create_function()]
+** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function. {END}
**
**
** INVARIANTS:
**
-** {F16243} The [sqlite3_user_data(C)] interface returns a copy of the
+** {H16243} The [sqlite3_user_data(C)] interface returns a copy of the
** P pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
-** registered the SQL function associated with
-** [sqlite3_context] C.
+** registered the SQL function associated with [sqlite3_context] C.
*/
SQLITE_API void *sqlite3_user_data(sqlite3_context*);
/*
-** CAPI3REF: Database Connection For Functions {F16250}
+** CAPI3REF: Database Connection For Functions {H16250} <S60600><S20200>
**
** The sqlite3_context_db_handle() interface returns a copy of
** the pointer to the [database connection] (the 1st parameter)
-** of the the [sqlite3_create_function()]
+** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
**
** INVARIANTS:
**
-** {F16253} The [sqlite3_context_db_handle(C)] interface returns a copy of the
+** {H16253} The [sqlite3_context_db_handle(C)] interface returns a copy of the
** D pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
-** registered the SQL function associated with
-** [sqlite3_context] C.
+** registered the SQL function associated with [sqlite3_context] C.
*/
SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
/*
-** CAPI3REF: Function Auxiliary Data {F16270}
+** CAPI3REF: Function Auxiliary Data {H16270} <S20200>
**
** The following two functions may be used by scalar SQL functions to
-** associate meta-data with argument values. If the same value is passed to
+** associate metadata with argument values. If the same value is passed to
** multiple invocations of the same SQL function during query execution, under
-** some circumstances the associated meta-data may be preserved. This may
+** some circumstances the associated metadata may be preserved. This may
** be used, for example, to add a regular-expression matching scalar
** function. The compiled version of the regular expression is stored as
-** meta-data associated with the SQL value passed as the regular expression
+** metadata associated with the SQL value passed as the regular expression
** pattern. The compiled regular expression can be reused on multiple
** invocations of the same function so that the original pattern string
** does not need to be recompiled on each invocation.
**
-** The sqlite3_get_auxdata() interface returns a pointer to the meta-data
+** The sqlite3_get_auxdata() interface returns a pointer to the metadata
** associated by the sqlite3_set_auxdata() function with the Nth argument
-** value to the application-defined function.
-** If no meta-data has been ever been set for the Nth
-** argument of the function, or if the cooresponding function parameter
-** has changed since the meta-data was set, then sqlite3_get_auxdata()
-** returns a NULL pointer.
-**
-** The sqlite3_set_auxdata() interface saves the meta-data
-** pointed to by its 3rd parameter as the meta-data for the N-th
+** value to the application-defined function. If no metadata has been ever
+** been set for the Nth argument of the function, or if the corresponding
+** function parameter has changed since the meta-data was set,
+** then sqlite3_get_auxdata() returns a NULL pointer.
+**
+** The sqlite3_set_auxdata() interface saves the metadata
+** pointed to by its 3rd parameter as the metadata for the N-th
** argument of the application-defined function. Subsequent
** calls to sqlite3_get_auxdata() might return this data, if it has
-** not been destroyed.
-** If it is not NULL, SQLite will invoke the destructor
+** not been destroyed.
+** If it is not NULL, SQLite will invoke the destructor
** function given by the 4th parameter to sqlite3_set_auxdata() on
-** the meta-data when the corresponding function parameter changes
+** the metadata when the corresponding function parameter changes
** or when the SQL statement completes, whichever comes first.
**
-** SQLite is free to call the destructor and drop meta-data on
-** any parameter of any function at any time. The only guarantee
-** is that the destructor will be called before the metadata is
-** dropped.
+** SQLite is free to call the destructor and drop metadata on any
+** parameter of any function at any time. The only guarantee is that
+** the destructor will be called before the metadata is dropped.
**
-** In practice, meta-data is preserved between function calls for
+** In practice, metadata is preserved between function calls for
** expressions that are constant at compile time. This includes literal
** values and SQL variables.
**
**
** INVARIANTS:
**
-** {F16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer
+** {H16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer
** to metadata associated with the Nth parameter of the SQL function
** whose context is C, or NULL if there is no metadata associated
** with that parameter.
**
-** {F16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata
-** pointer P to the Nth parameter of the SQL function with context
-** C.
+** {H16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata
+** pointer P to the Nth parameter of the SQL function with context C.
**
-** {F16276} SQLite will invoke the destructor D with a single argument
+** {H16276} SQLite will invoke the destructor D with a single argument
** which is the metadata pointer P following a call to
** [sqlite3_set_auxdata(C,N,P,D)] when SQLite ceases to hold
** the metadata.
**
-** {F16277} SQLite ceases to hold metadata for an SQL function parameter
+** {H16277} SQLite ceases to hold metadata for an SQL function parameter
** when the value of that parameter changes.
**
-** {F16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor
+** {H16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor
** is called for any prior metadata associated with the same function
** context C and parameter N.
**
-** {F16279} SQLite will call destructors for any metadata it is holding
+** {H16279} SQLite will call destructors for any metadata it is holding
** in a particular [prepared statement] S when either
** [sqlite3_reset(S)] or [sqlite3_finalize(S)] is called.
*/
/*
-** CAPI3REF: Constants Defining Special Destructor Behavior {F10280}
+** CAPI3REF: Constants Defining Special Destructor Behavior {H10280} <S30100>
**
-** These are special value for the destructor that is passed in as the
+** These are special values for the destructor that is passed in as the
** final argument to routines like [sqlite3_result_blob()]. If the destructor
** argument is SQLITE_STATIC, it means that the content pointer is constant
-** and will never change. It does not need to be destroyed. The
+** and will never change. It does not need to be destroyed. The
** SQLITE_TRANSIENT value means that the content will likely change in
** the near future and that SQLite should make its own private copy of
** the content before returning.
#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
/*
-** CAPI3REF: Setting The Result Of An SQL Function {F16400}
+** CAPI3REF: Setting The Result Of An SQL Function {H16400} <S20200>
**
** These routines are used by the xFunc or xFinal callbacks that
** implement SQL functions and aggregates. See
** [sqlite3_create_function()] and [sqlite3_create_function16()]
** for additional information.
**
-** These functions work very much like the
-** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used
-** to bind values to host parameters in prepared statements.
-** Refer to the
-** [sqlite3_bind_blob | sqlite3_bind_* documentation] for
-** additional information.
+** These functions work very much like the [parameter binding] family of
+** functions used to bind values to host parameters in prepared statements.
+** Refer to the [SQL parameter] documentation for additional information.
**
** The sqlite3_result_blob() interface sets the result from
-** an application defined function to be the BLOB whose content is pointed
+** an application-defined function to be the BLOB whose content is pointed
** to by the second parameter and which is N bytes long where N is the
-** third parameter.
-** The sqlite3_result_zeroblob() inerfaces set the result of
-** the application defined function to be a BLOB containing all zero
+** third parameter.
+**
+** The sqlite3_result_zeroblob() interfaces set the result of
+** the application-defined function to be a BLOB containing all zero
** bytes and N bytes in size, where N is the value of the 2nd parameter.
**
** The sqlite3_result_double() interface sets the result from
-** an application defined function to be a floating point value specified
+** an application-defined function to be a floating point value specified
** by its 2nd argument.
**
** The sqlite3_result_error() and sqlite3_result_error16() functions
** SQLite uses the string pointed to by the
** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
** as the text of an error message. SQLite interprets the error
-** message string from sqlite3_result_error() as UTF8. SQLite
-** interprets the string from sqlite3_result_error16() as UTF16 in native
+** message string from sqlite3_result_error() as UTF-8. SQLite
+** interprets the string from sqlite3_result_error16() as UTF-16 in native
** byte order. If the third parameter to sqlite3_result_error()
** or sqlite3_result_error16() is negative then SQLite takes as the error
** message all text up through the first zero character.
** sqlite3_result_error16() is non-negative then SQLite takes that many
** bytes (not characters) from the 2nd parameter as the error message.
** The sqlite3_result_error() and sqlite3_result_error16()
-** routines make a copy private copy of the error message text before
+** routines make a private copy of the error message text before
** they return. Hence, the calling function can deallocate or
** modify the text after they return without harm.
** The sqlite3_result_error_code() function changes the error code
** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error()
** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
**
-** The sqlite3_result_toobig() interface causes SQLite
-** to throw an error indicating that a string or BLOB is to long
-** to represent. The sqlite3_result_nomem() interface
-** causes SQLite to throw an exception indicating that the a
-** memory allocation failed.
+** The sqlite3_result_toobig() interface causes SQLite to throw an error
+** indicating that a string or BLOB is to long to represent.
+**
+** The sqlite3_result_nomem() interface causes SQLite to throw an error
+** indicating that a memory allocation failed.
**
** The sqlite3_result_int() interface sets the return value
** of the application-defined function to be the 32-bit signed integer
** The sqlite3_result_null() interface sets the return value
** of the application-defined function to be NULL.
**
-** The sqlite3_result_text(), sqlite3_result_text16(),
+** The sqlite3_result_text(), sqlite3_result_text16(),
** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
** set the return value of the application-defined function to be
** a text string which is represented as UTF-8, UTF-16 native byte order,
** SQLite takes the text result from the application from
** the 2nd parameter of the sqlite3_result_text* interfaces.
** If the 3rd parameter to the sqlite3_result_text* interfaces
-** is negative, then SQLite takes result text from the 2nd parameter
+** is negative, then SQLite takes result text from the 2nd parameter
** through the first zero character.
** If the 3rd parameter to the sqlite3_result_text* interfaces
** is non-negative, then as many bytes (not characters) of the text
** function result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
-** function as the destructor on the text or blob result when it has
-** finished using that result.
-** If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is the special constant SQLITE_STATIC, then
-** SQLite assumes that the text or blob result is constant space and
-** does not copy the space or call a destructor when it has
+** function as the destructor on the text or BLOB result when it has
** finished using that result.
+** If the 4th parameter to the sqlite3_result_text* interfaces or
+** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
+** assumes that the text or BLOB result is in constant space and does not
+** copy the it or call a destructor when it has finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
** then SQLite makes a copy of the result into space obtained from
** the application-defined function to be a copy the
** [unprotected sqlite3_value] object specified by the 2nd parameter. The
** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
-** so that [sqlite3_value] specified in the parameter may change or
+** so that the [sqlite3_value] specified in the parameter may change or
** be deallocated after sqlite3_result_value() returns without harm.
** A [protected sqlite3_value] object may always be used where an
** [unprotected sqlite3_value] object is required, so either
** kind of [sqlite3_value] object can be used with this interface.
**
-** If these routines are called from within the different thread
-** than the one containing the application-defined function that recieved
+** If these routines are called from within the different thread
+** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
**
** INVARIANTS:
**
-** {F16403} The default return value from any SQL function is NULL.
+** {H16403} The default return value from any SQL function is NULL.
**
-** {F16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the
-** return value of function C to be a blob that is N bytes
+** {H16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the
+** return value of function C to be a BLOB that is N bytes
** in length and with content pointed to by V.
**
-** {F16409} The [sqlite3_result_double(C,V)] interface changes the
+** {H16409} The [sqlite3_result_double(C,V)] interface changes the
** return value of function C to be the floating point value V.
**
-** {F16412} The [sqlite3_result_error(C,V,N)] interface changes the return
+** {H16412} The [sqlite3_result_error(C,V,N)] interface changes the return
** value of function C to be an exception with error code
-** [SQLITE_ERROR] and a UTF8 error message copied from V up to the
+** [SQLITE_ERROR] and a UTF-8 error message copied from V up to the
** first zero byte or until N bytes are read if N is positive.
**
-** {F16415} The [sqlite3_result_error16(C,V,N)] interface changes the return
+** {H16415} The [sqlite3_result_error16(C,V,N)] interface changes the return
** value of function C to be an exception with error code
-** [SQLITE_ERROR] and a UTF16 native byte order error message
+** [SQLITE_ERROR] and a UTF-16 native byte order error message
** copied from V up to the first zero terminator or until N bytes
** are read if N is positive.
**
-** {F16418} The [sqlite3_result_error_toobig(C)] interface changes the return
+** {H16418} The [sqlite3_result_error_toobig(C)] interface changes the return
** value of the function C to be an exception with error code
** [SQLITE_TOOBIG] and an appropriate error message.
**
-** {F16421} The [sqlite3_result_error_nomem(C)] interface changes the return
+** {H16421} The [sqlite3_result_error_nomem(C)] interface changes the return
** value of the function C to be an exception with error code
** [SQLITE_NOMEM] and an appropriate error message.
**
-** {F16424} The [sqlite3_result_error_code(C,E)] interface changes the return
+** {H16424} The [sqlite3_result_error_code(C,E)] interface changes the return
** value of the function C to be an exception with error code E.
** The error message text is unchanged.
**
-** {F16427} The [sqlite3_result_int(C,V)] interface changes the
+** {H16427} The [sqlite3_result_int(C,V)] interface changes the
** return value of function C to be the 32-bit integer value V.
**
-** {F16430} The [sqlite3_result_int64(C,V)] interface changes the
+** {H16430} The [sqlite3_result_int64(C,V)] interface changes the
** return value of function C to be the 64-bit integer value V.
**
-** {F16433} The [sqlite3_result_null(C)] interface changes the
+** {H16433} The [sqlite3_result_null(C)] interface changes the
** return value of function C to be NULL.
**
-** {F16436} The [sqlite3_result_text(C,V,N,D)] interface changes the
-** return value of function C to be the UTF8 string
+** {H16436} The [sqlite3_result_text(C,V,N,D)] interface changes the
+** return value of function C to be the UTF-8 string
** V up to the first zero if N is negative
** or the first N bytes of V if N is non-negative.
**
-** {F16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 native byte order
-** string V up to the first zero if N is
-** negative or the first N bytes of V if N is non-negative.
+** {H16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the
+** return value of function C to be the UTF-16 native byte order
+** string V up to the first zero if N is negative
+** or the first N bytes of V if N is non-negative.
**
-** {F16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 big-endian
-** string V up to the first zero if N is
-** is negative or the first N bytes or V if N is non-negative.
+** {H16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the
+** return value of function C to be the UTF-16 big-endian
+** string V up to the first zero if N is negative
+** or the first N bytes or V if N is non-negative.
**
-** {F16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 little-endian
-** string V up to the first zero if N is
-** negative or the first N bytes of V if N is non-negative.
+** {H16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the
+** return value of function C to be the UTF-16 little-endian
+** string V up to the first zero if N is negative
+** or the first N bytes of V if N is non-negative.
**
-** {F16448} The [sqlite3_result_value(C,V)] interface changes the
-** return value of function C to be [unprotected sqlite3_value]
+** {H16448} The [sqlite3_result_value(C,V)] interface changes the
+** return value of function C to be the [unprotected sqlite3_value]
** object V.
**
-** {F16451} The [sqlite3_result_zeroblob(C,N)] interface changes the
-** return value of function C to be an N-byte blob of all zeros.
+** {H16451} The [sqlite3_result_zeroblob(C,N)] interface changes the
+** return value of function C to be an N-byte BLOB of all zeros.
**
-** {F16454} The [sqlite3_result_error()] and [sqlite3_result_error16()]
+** {H16454} The [sqlite3_result_error()] and [sqlite3_result_error16()]
** interfaces make a copy of their error message strings before
** returning.
**
-** {F16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** {H16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
** [sqlite3_result_text16be(C,V,N,D)], or
** [sqlite3_result_text16le(C,V,N,D)] is the constant [SQLITE_STATIC]
** then no destructor is ever called on the pointer V and SQLite
** assumes that V is immutable.
**
-** {F16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** {H16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
** [sqlite3_result_text16be(C,V,N,D)], or
** [sqlite3_result_text16le(C,V,N,D)] is the constant
** [SQLITE_TRANSIENT] then the interfaces makes a copy of the
** content of V and retains the copy.
**
-** {F16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** {H16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
** [sqlite3_result_text16be(C,V,N,D)], or
** [sqlite3_result_text16le(C,V,N,D)] is some value other than
-** the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then
+** the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then
** SQLite will invoke the destructor D with V as its only argument
** when it has finished with the V value.
*/
SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
/*
-** CAPI3REF: Define New Collating Sequences {F16600}
+** CAPI3REF: Define New Collating Sequences {H16600} <S20300>
**
** These functions are used to add new collation sequences to the
-** [sqlite3*] handle specified as the first argument.
+** [database connection] specified as the first argument.
**
** The name of the new collation sequence is specified as a UTF-8 string
** for sqlite3_create_collation() and sqlite3_create_collation_v2()
** The third argument may be one of the constants [SQLITE_UTF8],
** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied
** routine expects to be passed pointers to strings encoded using UTF-8,
-** UTF-16 little-endian or UTF-16 big-endian respectively. The
+** UTF-16 little-endian, or UTF-16 big-endian, respectively. The
** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that
** the routine expects pointers to 16-bit word aligned strings
-** of UTF16 in the native byte order of the host computer.
+** of UTF-16 in the native byte order of the host computer.
**
** A pointer to the user supplied routine must be passed as the fifth
** argument. If it is NULL, this is the same as deleting the collation
** sequence (so that SQLite cannot call it anymore).
-** Each time the application
-** supplied function is invoked, it is passed a copy of the void* passed as
-** the fourth argument to sqlite3_create_collation() or
-** sqlite3_create_collation16() as its first parameter.
+** Each time the application supplied function is invoked, it is passed
+** as its first parameter a copy of the void* passed as the fourth argument
+** to sqlite3_create_collation() or sqlite3_create_collation16().
**
** The remaining arguments to the application-supplied routine are two strings,
** each represented by a (length, data) pair and encoded in the encoding
** that was passed as the third argument when the collation sequence was
-** registered. {END} The application defined collation routine should
-** return negative, zero or positive if
-** the first string is less than, equal to, or greater than the second
-** string. i.e. (STRING1 - STRING2).
+** registered. {END} The application defined collation routine should
+** return negative, zero or positive if the first string is less than,
+** equal to, or greater than the second string. i.e. (STRING1 - STRING2).
**
** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
-** excapt that it takes an extra argument which is a destructor for
+** except that it takes an extra argument which is a destructor for
** the collation. The destructor is called when the collation is
** destroyed and is passed a copy of the fourth parameter void* pointer
** of the sqlite3_create_collation_v2().
-** Collations are destroyed when
-** they are overridden by later calls to the collation creation functions
-** or when the [sqlite3*] database handle is closed using [sqlite3_close()].
+** Collations are destroyed when they are overridden by later calls to the
+** collation creation functions or when the [database connection] is closed
+** using [sqlite3_close()].
**
** INVARIANTS:
**
-** {F16603} A successful call to the
+** {H16603} A successful call to the
** [sqlite3_create_collation_v2(B,X,E,P,F,D)] interface
** registers function F as the comparison function used to
-** implement collation X on [database connection] B for
+** implement collation X on the [database connection] B for
** databases having encoding E.
**
-** {F16604} SQLite understands the X parameter to
+** {H16604} SQLite understands the X parameter to
** [sqlite3_create_collation_v2(B,X,E,P,F,D)] as a zero-terminated
** UTF-8 string in which case is ignored for ASCII characters and
** is significant for non-ASCII characters.
**
-** {F16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** {H16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)]
** with the same values for B, X, and E, override prior values
** of P, F, and D.
**
-** {F16609} The destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** {H16609} If the destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
** is not NULL then it is called with argument P when the
** collating function is dropped by SQLite.
**
-** {F16612} A collating function is dropped when it is overloaded.
+** {H16612} A collating function is dropped when it is overloaded.
**
-** {F16615} A collating function is dropped when the database connection
+** {H16615} A collating function is dropped when the database connection
** is closed using [sqlite3_close()].
**
-** {F16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** {H16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
** is passed through as the first parameter to the comparison
** function F for all subsequent invocations of F.
**
-** {F16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly
+** {H16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly
** the same as a call to [sqlite3_create_collation_v2()] with
** the same parameters and a NULL destructor.
**
-** {F16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)],
+** {H16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)],
** SQLite uses the comparison function F for all text comparison
-** operations on [database connection] B on text values that
-** use the collating sequence name X.
+** operations on the [database connection] B on text values that
+** use the collating sequence named X.
**
-** {F16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same
+** {H16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same
** as [sqlite3_create_collation(B,X,E,P,F)] except that the
** collation name X is understood as UTF-16 in native byte order
** instead of UTF-8.
**
-** {F16630} When multiple comparison functions are available for the same
+** {H16630} When multiple comparison functions are available for the same
** collating sequence, SQLite chooses the one whose text encoding
** requires the least amount of conversion from the default
** text encoding of the database.
);
SQLITE_API int sqlite3_create_collation16(
sqlite3*,
- const char *zName,
+ const void *zName,
int eTextRep,
void*,
int(*xCompare)(void*,int,const void*,int,const void*)
);
/*
-** CAPI3REF: Collation Needed Callbacks {F16700}
+** CAPI3REF: Collation Needed Callbacks {H16700} <S20300>
**
** To avoid having to register all collation sequences before a database
** can be used, a single callback function may be registered with the
-** database handle to be called whenever an undefined collation sequence is
-** required.
+** [database connection] to be called whenever an undefined collation
+** sequence is required.
**
** If the function is registered using the sqlite3_collation_needed() API,
** then it is passed the names of undefined collation sequences as strings
-** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names
-** are passed as UTF-16 in machine native byte order. A call to either
-** function replaces any existing callback.
+** encoded in UTF-8. {H16703} If sqlite3_collation_needed16() is used,
+** the names are passed as UTF-16 in machine native byte order.
+** A call to either function replaces any existing callback.
**
** When the callback is invoked, the first argument passed is a copy
** of the second argument to sqlite3_collation_needed() or
** sqlite3_collation_needed16(). The second argument is the database
-** handle. The third argument is one of [SQLITE_UTF8],
-** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most
-** desirable form of the collation sequence function required.
-** The fourth parameter is the name of the
+** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
+** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
+** sequence function required. The fourth parameter is the name of the
** required collation sequence.
**
** The callback function should register the desired collation using
**
** INVARIANTS:
**
-** {F16702} A successful call to [sqlite3_collation_needed(D,P,F)]
+** {H16702} A successful call to [sqlite3_collation_needed(D,P,F)]
** or [sqlite3_collation_needed16(D,P,F)] causes
** the [database connection] D to invoke callback F with first
** parameter P whenever it needs a comparison function for a
** collating sequence that it does not know about.
**
-** {F16704} Each successful call to [sqlite3_collation_needed()] or
+** {H16704} Each successful call to [sqlite3_collation_needed()] or
** [sqlite3_collation_needed16()] overrides the callback registered
** on the same [database connection] by prior calls to either
** interface.
**
-** {F16706} The name of the requested collating function passed in the
+** {H16706} The name of the requested collating function passed in the
** 4th parameter to the callback is in UTF-8 if the callback
** was registered using [sqlite3_collation_needed()] and
** is in UTF-16 native byte order if the callback was
** registered using [sqlite3_collation_needed16()].
-**
-**
*/
SQLITE_API int sqlite3_collation_needed(
sqlite3*,
);
/*
-** CAPI3REF: Suspend Execution For A Short Time {F10530}
+** CAPI3REF: Suspend Execution For A Short Time {H10530} <S40410>
**
-** The sqlite3_sleep() function
-** causes the current thread to suspend execution
+** The sqlite3_sleep() function causes the current thread to suspend execution
** for at least a number of milliseconds specified in its parameter.
**
-** If the operating system does not support sleep requests with
-** millisecond time resolution, then the time will be rounded up to
-** the nearest second. The number of milliseconds of sleep actually
+** If the operating system does not support sleep requests with
+** millisecond time resolution, then the time will be rounded up to
+** the nearest second. The number of milliseconds of sleep actually
** requested from the operating system is returned.
**
** SQLite implements this interface by calling the xSleep()
**
** INVARIANTS:
**
-** {F10533} The [sqlite3_sleep(M)] interface invokes the xSleep
+** {H10533} The [sqlite3_sleep(M)] interface invokes the xSleep
** method of the default [sqlite3_vfs|VFS] in order to
** suspend execution of the current thread for at least
** M milliseconds.
**
-** {F10536} The [sqlite3_sleep(M)] interface returns the number of
+** {H10536} The [sqlite3_sleep(M)] interface returns the number of
** milliseconds of sleep actually requested of the operating
** system, which might be larger than the parameter M.
*/
SQLITE_API int sqlite3_sleep(int);
/*
-** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310}
+** CAPI3REF: Name Of The Folder Holding Temporary Files {H10310} <S20000>
**
** If this global variable is made to point to a string which is
-** the name of a folder (a.ka. directory), then all temporary files
+** the name of a folder (a.k.a. directory), then all temporary files
** created by SQLite will be placed in that directory. If this variable
-** is NULL pointer, then SQLite does a search for an appropriate temporary
-** file directory.
+** is a NULL pointer, then SQLite performs a search for an appropriate
+** temporary file directory.
**
-** It is not safe to modify this variable once a database connection
+** It is not safe to modify this variable once a [database connection]
** has been opened. It is intended that this variable be set once
** as part of process initialization and before any SQLite interface
** routines have been call and remain unchanged thereafter.
SQLITE_API char *sqlite3_temp_directory;
/*
-** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930}
+** CAPI3REF: Test For Auto-Commit Mode {H12930} <S60200>
+** KEYWORDS: {autocommit mode}
**
-** The sqlite3_get_autocommit() interfaces returns non-zero or
+** The sqlite3_get_autocommit() interface returns non-zero or
** zero if the given database connection is or is not in autocommit mode,
-** respectively. Autocommit mode is on
-** by default. Autocommit mode is disabled by a [BEGIN] statement.
-** Autocommit mode is reenabled by a [COMMIT] or [ROLLBACK].
+** respectively. Autocommit mode is on by default.
+** Autocommit mode is disabled by a [BEGIN] statement.
+** Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
**
** If certain kinds of errors occur on a statement within a multi-statement
-** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR],
+** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
** transaction might be rolled back automatically. The only way to
-** find out if SQLite automatically rolled back the transaction after
+** find out whether SQLite automatically rolled back the transaction after
** an error is to use this function.
**
** INVARIANTS:
**
-** {F12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or
+** {H12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or
** zero if the [database connection] D is or is not in autocommit
** mode, respectively.
**
-** {F12932} Autocommit mode is on by default.
+** {H12932} Autocommit mode is on by default.
**
-** {F12933} Autocommit mode is disabled by a successful [BEGIN] statement.
+** {H12933} Autocommit mode is disabled by a successful [BEGIN] statement.
**
-** {F12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK]
+** {H12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK]
** statement.
-**
**
-** LIMITATIONS:
-***
-** {U12936} If another thread changes the autocommit status of the database
+** ASSUMPTIONS:
+**
+** {A12936} If another thread changes the autocommit status of the database
** connection while this routine is running, then the return value
** is undefined.
*/
SQLITE_API int sqlite3_get_autocommit(sqlite3*);
/*
-** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120}
+** CAPI3REF: Find The Database Handle Of A Prepared Statement {H13120} <S60600>
**
-** The sqlite3_db_handle interface
-** returns the [sqlite3*] database handle to which a
-** [prepared statement] belongs.
-** The database handle returned by sqlite3_db_handle
-** is the same database handle that was
-** the first argument to the [sqlite3_prepare_v2()] or its variants
-** that was used to create the statement in the first place.
+** The sqlite3_db_handle interface returns the [database connection] handle
+** to which a [prepared statement] belongs. The database handle returned by
+** sqlite3_db_handle is the same database handle that was the first argument
+** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
+** create the statement in the first place.
**
** INVARIANTS:
**
-** {F13123} The [sqlite3_db_handle(S)] interface returns a pointer
-** to the [database connection] associated with
+** {H13123} The [sqlite3_db_handle(S)] interface returns a pointer
+** to the [database connection] associated with the
** [prepared statement] S.
*/
SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
+/*
+** CAPI3REF: Find the next prepared statement {H13140} <S60600>
+**
+** This interface returns a pointer to the next [prepared statement] after
+** pStmt associated with the [database connection] pDb. If pStmt is NULL
+** then this interface returns a pointer to the first prepared statement
+** associated with the database connection pDb. If no prepared statement
+** satisfies the conditions of this routine, it returns NULL.
+**
+** INVARIANTS:
+**
+** {H13143} If D is a [database connection] that holds one or more
+** unfinalized [prepared statements] and S is a NULL pointer,
+** then [sqlite3_next_stmt(D, S)] routine shall return a pointer
+** to one of the prepared statements associated with D.
+**
+** {H13146} If D is a [database connection] that holds no unfinalized
+** [prepared statements] and S is a NULL pointer, then
+** [sqlite3_next_stmt(D, S)] routine shall return a NULL pointer.
+**
+** {H13149} If S is a [prepared statement] in the [database connection] D
+** and S is not the last prepared statement in D, then
+** [sqlite3_next_stmt(D, S)] routine shall return a pointer
+** to the next prepared statement in D after S.
+**
+** {H13152} If S is the last [prepared statement] in the
+** [database connection] D then the [sqlite3_next_stmt(D, S)]
+** routine shall return a NULL pointer.
+**
+** ASSUMPTIONS:
+**
+** {A13154} The [database connection] pointer D in a call to
+** [sqlite3_next_stmt(D,S)] must refer to an open database
+** connection and in particular must not be a NULL pointer.
+*/
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Commit And Rollback Notification Callbacks {F12950}
+** CAPI3REF: Commit And Rollback Notification Callbacks {H12950} <S60400>
**
** The sqlite3_commit_hook() interface registers a callback
** function to be invoked whenever a transaction is committed.
** function to be invoked whenever a transaction is committed.
** Any callback set by a previous call to sqlite3_commit_hook()
** for the same database connection is overridden.
-** The pArg argument is passed through
-** to the callback. If the callback on a commit hook function
-** returns non-zero, then the commit is converted into a rollback.
+** The pArg argument is passed through to the callback.
+** If the callback on a commit hook function returns non-zero,
+** then the commit is converted into a rollback.
**
** If another function was previously registered, its
** pArg value is returned. Otherwise NULL is returned.
**
** Registering a NULL function disables the callback.
**
-** For the purposes of this API, a transaction is said to have been
+** For the purposes of this API, a transaction is said to have been
** rolled back if an explicit "ROLLBACK" statement is executed, or
** an error or constraint causes an implicit rollback to occur.
** The rollback callback is not invoked if a transaction is
** rolled back because a commit callback returned non-zero.
** <todo> Check on this </todo>
**
-** These are experimental interfaces and are subject to change.
-**
** INVARIANTS:
**
-** {F12951} The [sqlite3_commit_hook(D,F,P)] interface registers the
+** {H12951} The [sqlite3_commit_hook(D,F,P)] interface registers the
** callback function F to be invoked with argument P whenever
-** a transaction commits on [database connection] D.
+** a transaction commits on the [database connection] D.
**
-** {F12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P
-** argument from the previous call with the same
-** [database connection ] D , or NULL on the first call
-** for a particular [database connection] D.
+** {H12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P argument
+** from the previous call with the same [database connection] D,
+** or NULL on the first call for a particular database connection D.
**
-** {F12953} Each call to [sqlite3_commit_hook()] overwrites the callback
+** {H12953} Each call to [sqlite3_commit_hook()] overwrites the callback
** registered by prior calls.
**
-** {F12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL
-** then the commit hook callback is cancelled and no callback
+** {H12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL
+** then the commit hook callback is canceled and no callback
** is invoked when a transaction commits.
**
-** {F12955} If the commit callback returns non-zero then the commit is
+** {H12955} If the commit callback returns non-zero then the commit is
** converted into a rollback.
**
-** {F12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the
+** {H12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the
** callback function F to be invoked with argument P whenever
-** a transaction rolls back on [database connection] D.
+** a transaction rolls back on the [database connection] D.
**
-** {F12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P
-** argument from the previous call with the same
-** [database connection ] D , or NULL on the first call
-** for a particular [database connection] D.
+** {H12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P
+** argument from the previous call with the same
+** [database connection] D, or NULL on the first call
+** for a particular database connection D.
**
-** {F12963} Each call to [sqlite3_rollback_hook()] overwrites the callback
+** {H12963} Each call to [sqlite3_rollback_hook()] overwrites the callback
** registered by prior calls.
**
-** {F12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL
-** then the rollback hook callback is cancelled and no callback
+** {H12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL
+** then the rollback hook callback is canceled and no callback
** is invoked when a transaction rolls back.
*/
SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
/*
-** CAPI3REF: Data Change Notification Callbacks {F12970}
-**
-** The sqlite3_update_hook() interface
-** registers a callback function with the database connection identified by the
-** first argument to be invoked whenever a row is updated, inserted or deleted.
-** Any callback set by a previous call to this function for the same
-** database connection is overridden.
-**
-** The second argument is a pointer to the function to invoke when a
-** row is updated, inserted or deleted.
-** The first argument to the callback is
-** a copy of the third argument to sqlite3_update_hook().
-** The second callback
-** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
-** depending on the operation that caused the callback to be invoked.
-** The third and
-** fourth arguments to the callback contain pointers to the database and
-** table name containing the affected row.
-** The final callback parameter is
-** the rowid of the row.
-** In the case of an update, this is the rowid after
-** the update takes place.
+** CAPI3REF: Data Change Notification Callbacks {H12970} <S60400>
+**
+** The sqlite3_update_hook() interface registers a callback function
+** with the [database connection] identified by the first argument
+** to be invoked whenever a row is updated, inserted or deleted.
+** Any callback set by a previous call to this function
+** for the same database connection is overridden.
+**
+** The second argument is a pointer to the function to invoke when a
+** row is updated, inserted or deleted.
+** The first argument to the callback is a copy of the third argument
+** to sqlite3_update_hook().
+** The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
+** or [SQLITE_UPDATE], depending on the operation that caused the callback
+** to be invoked.
+** The third and fourth arguments to the callback contain pointers to the
+** database and table name containing the affected row.
+** The final callback parameter is the rowid of the row. In the case of
+** an update, this is the rowid after the update takes place.
**
** The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).
**
** INVARIANTS:
**
-** {F12971} The [sqlite3_update_hook(D,F,P)] interface causes callback
+** {H12971} The [sqlite3_update_hook(D,F,P)] interface causes the callback
** function F to be invoked with first parameter P whenever
** a table row is modified, inserted, or deleted on
-** [database connection] D.
+** the [database connection] D.
**
-** {F12973} The [sqlite3_update_hook(D,F,P)] interface returns the value
+** {H12973} The [sqlite3_update_hook(D,F,P)] interface returns the value
** of P for the previous call on the same [database connection] D,
** or NULL for the first call.
**
-** {F12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)]
+** {H12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)]
** is NULL then the no update callbacks are made.
**
-** {F12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls
+** {H12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls
** to the same interface on the same [database connection] D.
**
-** {F12979} The update hook callback is not invoked when internal system
+** {H12979} The update hook callback is not invoked when internal system
** tables such as sqlite_master and sqlite_sequence are modified.
**
-** {F12981} The second parameter to the update callback
+** {H12981} The second parameter to the update callback
** is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
** depending on the operation that caused the callback to be invoked.
**
-** {F12983} The third and fourth arguments to the callback contain pointers
+** {H12983} The third and fourth arguments to the callback contain pointers
** to zero-terminated UTF-8 strings which are the names of the
** database and table that is being updated.
-** {F12985} The final callback parameter is the rowid of the row after
+** {H12985} The final callback parameter is the rowid of the row after
** the change occurs.
*/
SQLITE_API void *sqlite3_update_hook(
);
/*
-** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330}
+** CAPI3REF: Enable Or Disable Shared Pager Cache {H10330} <S30900>
+** KEYWORDS: {shared cache} {shared cache mode}
**
** This routine enables or disables the sharing of the database cache
-** and schema data structures between connections to the same database.
-** Sharing is enabled if the argument is true and disabled if the argument
-** is false.
+** and schema data structures between [database connection | connections]
+** to the same database. Sharing is enabled if the argument is true
+** and disabled if the argument is false.
**
-** Cache sharing is enabled and disabled
-** for an entire process. {END} This is a change as of SQLite version 3.5.0.
-** In prior versions of SQLite, sharing was
-** enabled or disabled for each thread separately.
+** Cache sharing is enabled and disabled for an entire process. {END}
+** This is a change as of SQLite version 3.5.0. In prior versions of SQLite,
+** sharing was enabled or disabled for each thread separately.
**
** The cache sharing mode set by this interface effects all subsequent
** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
** Existing database connections continue use the sharing mode
** that was in effect at the time they were opened.
**
-** Virtual tables cannot be used with a shared cache. When shared
+** Virtual tables cannot be used with a shared cache. When shared
** cache is enabled, the [sqlite3_create_module()] API used to register
** virtual tables will always return an error.
**
-** This routine returns [SQLITE_OK] if shared cache was
-** enabled or disabled successfully. An [error code]
-** is returned otherwise.
+** This routine returns [SQLITE_OK] if shared cache was enabled or disabled
+** successfully. An [error code] is returned otherwise.
**
** Shared cache is disabled by default. But this might change in
** future releases of SQLite. Applications that care about shared
** cache setting should set it explicitly.
**
** INVARIANTS:
-**
-** {F10331} A successful invocation of [sqlite3_enable_shared_cache(B)]
+**
+** {H10331} A successful invocation of [sqlite3_enable_shared_cache(B)]
** will enable or disable shared cache mode for any subsequently
** created [database connection] in the same process.
**
-** {F10336} When shared cache is enabled, the [sqlite3_create_module()]
+** {H10336} When shared cache is enabled, the [sqlite3_create_module()]
** interface will always return an error.
**
-** {F10337} The [sqlite3_enable_shared_cache(B)] interface returns
+** {H10337} The [sqlite3_enable_shared_cache(B)] interface returns
** [SQLITE_OK] if shared cache was enabled or disabled successfully.
**
-** {F10339} Shared cache is disabled by default.
+** {H10339} Shared cache is disabled by default.
*/
SQLITE_API int sqlite3_enable_shared_cache(int);
/*
-** CAPI3REF: Attempt To Free Heap Memory {F17340}
+** CAPI3REF: Attempt To Free Heap Memory {H17340} <S30220>
**
-** The sqlite3_release_memory() interface attempts to
-** free N bytes of heap memory by deallocating non-essential memory
-** allocations held by the database labrary. {END} Memory used
-** to cache database pages to improve performance is an example of
-** non-essential memory. Sqlite3_release_memory() returns
-** the number of bytes actually freed, which might be more or less
-** than the amount requested.
+** The sqlite3_release_memory() interface attempts to free N bytes
+** of heap memory by deallocating non-essential memory allocations
+** held by the database library. {END} Memory used to cache database
+** pages to improve performance is an example of non-essential memory.
+** sqlite3_release_memory() returns the number of bytes actually freed,
+** which might be more or less than the amount requested.
**
** INVARIANTS:
**
-** {F17341} The [sqlite3_release_memory(N)] interface attempts to
+** {H17341} The [sqlite3_release_memory(N)] interface attempts to
** free N bytes of heap memory by deallocating non-essential
-** memory allocations held by the database labrary.
+** memory allocations held by the database library.
**
-** {F16342} The [sqlite3_release_memory(N)] returns the number
+** {H16342} The [sqlite3_release_memory(N)] returns the number
** of bytes actually freed, which might be more or less
** than the amount requested.
*/
SQLITE_API int sqlite3_release_memory(int);
/*
-** CAPI3REF: Impose A Limit On Heap Size {F17350}
+** CAPI3REF: Impose A Limit On Heap Size {H17350} <S30220>
**
-** The sqlite3_soft_heap_limit() interface
-** places a "soft" limit on the amount of heap memory that may be allocated
-** by SQLite. If an internal allocation is requested
-** that would exceed the soft heap limit, [sqlite3_release_memory()] is
-** invoked one or more times to free up some space before the allocation
-** is made.
+** The sqlite3_soft_heap_limit() interface places a "soft" limit
+** on the amount of heap memory that may be allocated by SQLite.
+** If an internal allocation is requested that would exceed the
+** soft heap limit, [sqlite3_release_memory()] is invoked one or
+** more times to free up some space before the allocation is performed.
**
-** The limit is called "soft", because if
-** [sqlite3_release_memory()] cannot
-** free sufficient memory to prevent the limit from being exceeded,
+** The limit is called "soft", because if [sqlite3_release_memory()]
+** cannot free sufficient memory to prevent the limit from being exceeded,
** the memory is allocated anyway and the current operation proceeds.
**
** A negative or zero value for N means that there is no soft heap limit and
** [sqlite3_release_memory()] will only be called when memory is exhausted.
** The default value for the soft heap limit is zero.
**
-** SQLite makes a best effort to honor the soft heap limit.
-** But if the soft heap limit cannot honored, execution will
-** continue without error or notification. This is why the limit is
+** SQLite makes a best effort to honor the soft heap limit.
+** But if the soft heap limit cannot be honored, execution will
+** continue without error or notification. This is why the limit is
** called a "soft" limit. It is advisory only.
**
** Prior to SQLite version 3.5.0, this routine only constrained the memory
**
** INVARIANTS:
**
-** {F16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit
+** {H16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit
** of N bytes on the amount of heap memory that may be allocated
** using [sqlite3_malloc()] or [sqlite3_realloc()] at any point
** in time.
**
-** {F16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would
+** {H16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would
** cause the total amount of allocated memory to exceed the
** soft heap limit, then [sqlite3_release_memory()] is invoked
** in an attempt to reduce the memory usage prior to proceeding
** with the memory allocation attempt.
**
-** {F16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger
+** {H16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger
** attempts to reduce memory usage through the soft heap limit
** mechanism continue even if the attempt to reduce memory
** usage is unsuccessful.
**
-** {F16354} A negative or zero value for N in a call to
+** {H16354} A negative or zero value for N in a call to
** [sqlite3_soft_heap_limit(N)] means that there is no soft
** heap limit and [sqlite3_release_memory()] will only be
** called when memory is completely exhausted.
**
-** {F16355} The default value for the soft heap limit is zero.
+** {H16355} The default value for the soft heap limit is zero.
**
-** {F16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the
+** {H16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the
** values set by all prior calls.
*/
SQLITE_API void sqlite3_soft_heap_limit(int);
/*
-** CAPI3REF: Extract Metadata About A Column Of A Table {F12850}
+** CAPI3REF: Extract Metadata About A Column Of A Table {H12850} <S60300>
**
-** This routine
-** returns meta-data about a specific column of a specific database
-** table accessible using the connection handle passed as the first function
-** argument.
+** This routine returns metadata about a specific column of a specific
+** database table accessible using the [database connection] handle
+** passed as the first function argument.
**
-** The column is identified by the second, third and fourth parameters to
+** The column is identified by the second, third and fourth parameters to
** this function. The second parameter is either the name of the database
** (i.e. "main", "temp" or an attached database) containing the specified
** table or NULL. If it is NULL, then all attached databases are searched
-** for the table using the same algorithm as the database engine uses to
+** for the table using the same algorithm used by the database engine to
** resolve unqualified table references.
**
-** The third and fourth parameters to this function are the table and column
-** name of the desired column, respectively. Neither of these parameters
+** The third and fourth parameters to this function are the table and column
+** name of the desired column, respectively. Neither of these parameters
** may be NULL.
**
-** Meta information is returned by writing to the memory locations passed as
-** the 5th and subsequent parameters to this function. Any of these
-** arguments may be NULL, in which case the corresponding element of meta
-** information is ommitted.
+** Metadata is returned by writing to the memory locations passed as the 5th
+** and subsequent parameters to this function. Any of these arguments may be
+** NULL, in which case the corresponding element of metadata is omitted.
**
-** <pre>
-** Parameter Output Type Description
-** -----------------------------------
-**
-** 5th const char* Data type
-** 6th const char* Name of the default collation sequence
-** 7th int True if the column has a NOT NULL constraint
-** 8th int True if the column is part of the PRIMARY KEY
-** 9th int True if the column is AUTOINCREMENT
-** </pre>
+** <blockquote>
+** <table border="1">
+** <tr><th> Parameter <th> Output<br>Type <th> Description
**
+** <tr><td> 5th <td> const char* <td> Data type
+** <tr><td> 6th <td> const char* <td> Name of default collation sequence
+** <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint
+** <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY
+** <tr><td> 9th <td> int <td> True if column is AUTOINCREMENT
+** </table>
+** </blockquote>
**
-** The memory pointed to by the character pointers returned for the
-** declaration type and collation sequence is valid only until the next
-** call to any sqlite API function.
+** The memory pointed to by the character pointers returned for the
+** declaration type and collation sequence is valid only until the next
+** call to any SQLite API function.
**
-** If the specified table is actually a view, then an error is returned.
+** If the specified table is actually a view, an [error code] is returned.
**
-** If the specified column is "rowid", "oid" or "_rowid_" and an
-** INTEGER PRIMARY KEY column has been explicitly declared, then the output
+** If the specified column is "rowid", "oid" or "_rowid_" and an
+** INTEGER PRIMARY KEY column has been explicitly declared, then the output
** parameters are set for the explicitly declared column. If there is no
-** explicitly declared IPK column, then the output parameters are set as
-** follows:
+** explicitly declared INTEGER PRIMARY KEY column, then the output
+** parameters are set as follows:
**
** <pre>
** data type: "INTEGER"
**
** This function may load one or more schemas from database files. If an
** error occurs during this process, or if the requested table or column
-** cannot be found, an SQLITE error code is returned and an error message
-** left in the database handle (to be retrieved using sqlite3_errmsg()).
+** cannot be found, an [error code] is returned and an error message left
+** in the [database connection] (to be retrieved using sqlite3_errmsg()).
**
** This API is only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
*/
SQLITE_API int sqlite3_table_column_metadata(
sqlite3 *db, /* Connection handle */
);
/*
-** CAPI3REF: Load An Extension {F12600}
+** CAPI3REF: Load An Extension {H12600} <S20500>
+**
+** This interface loads an SQLite extension library from the named file.
**
-** {F12601} The sqlite3_load_extension() interface
-** attempts to load an SQLite extension library contained in the file
-** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0
-** in which case the name of the entry point defaults
-** to "sqlite3_extension_init".
+** {H12601} The sqlite3_load_extension() interface attempts to load an
+** SQLite extension library contained in the file zFile.
**
-** {F12604} The sqlite3_load_extension() interface shall
-** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+** {H12602} The entry point is zProc.
**
-** {F12605}
-** If an error occurs and pzErrMsg is not 0, then the
-** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with
-** error message text stored in memory obtained from [sqlite3_malloc()].
-** {END} The calling function should free this memory
-** by calling [sqlite3_free()].
+** {H12603} zProc may be 0, in which case the name of the entry point
+** defaults to "sqlite3_extension_init".
**
-** {F12606}
-** Extension loading must be enabled using [sqlite3_enable_load_extension()]
-** prior to calling this API or an error will be returned.
+** {H12604} The sqlite3_load_extension() interface shall return
+** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+**
+** {H12605} If an error occurs and pzErrMsg is not 0, then the
+** [sqlite3_load_extension()] interface shall attempt to
+** fill *pzErrMsg with error message text stored in memory
+** obtained from [sqlite3_malloc()]. {END} The calling function
+** should free this memory by calling [sqlite3_free()].
+**
+** {H12606} Extension loading must be enabled using
+** [sqlite3_enable_load_extension()] prior to calling this API,
+** otherwise an error will be returned.
*/
SQLITE_API int sqlite3_load_extension(
sqlite3 *db, /* Load the extension into this database connection */
);
/*
-** CAPI3REF: Enable Or Disable Extension Loading {F12620}
+** CAPI3REF: Enable Or Disable Extension Loading {H12620} <S20500>
**
** So as not to open security holes in older applications that are
** unprepared to deal with extension loading, and as a means of disabling
-** extension loading while evaluating user-entered SQL, the following
-** API is provided to turn the [sqlite3_load_extension()] mechanism on and
-** off. {F12622} It is off by default. {END} See ticket #1863.
+** extension loading while evaluating user-entered SQL, the following API
+** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
+**
+** Extension loading is off by default. See ticket #1863.
**
-** {F12621} Call the sqlite3_enable_load_extension() routine
-** with onoff==1 to turn extension loading on
-** and call it with onoff==0 to turn it back off again. {END}
+** {H12621} Call the sqlite3_enable_load_extension() routine with onoff==1
+** to turn extension loading on and call it with onoff==0 to turn
+** it back off again.
+**
+** {H12622} Extension loading is off by default.
*/
SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
/*
-** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640}
-**
-** {F12641} This function
-** registers an extension entry point that is automatically invoked
-** whenever a new database connection is opened using
-** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END}
+** CAPI3REF: Automatically Load An Extensions {H12640} <S20500>
**
** This API can be invoked at program startup in order to register
** one or more statically linked extensions that will be available
-** to all new database connections.
+** to all new [database connections]. {END}
**
-** {F12642} Duplicate extensions are detected so calling this routine multiple
-** times with the same extension is harmless.
+** This routine stores a pointer to the extension in an array that is
+** obtained from [sqlite3_malloc()]. If you run a memory leak checker
+** on your program and it reports a leak because of this array, invoke
+** [sqlite3_reset_auto_extension()] prior to shutdown to free the memory.
**
-** {F12643} This routine stores a pointer to the extension in an array
-** that is obtained from sqlite_malloc(). {END} If you run a memory leak
-** checker on your program and it reports a leak because of this
-** array, then invoke [sqlite3_reset_auto_extension()] prior
-** to shutdown to free the memory.
+** {H12641} This function registers an extension entry point that is
+** automatically invoked whenever a new [database connection]
+** is opened using [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()].
**
-** {F12644} Automatic extensions apply across all threads. {END}
+** {H12642} Duplicate extensions are detected so calling this routine
+** multiple times with the same extension is harmless.
**
-** This interface is experimental and is subject to change or
-** removal in future releases of SQLite.
+** {H12643} This routine stores a pointer to the extension in an array
+** that is obtained from [sqlite3_malloc()].
+**
+** {H12644} Automatic extensions apply across all threads.
*/
SQLITE_API int sqlite3_auto_extension(void *xEntryPoint);
-
/*
-** CAPI3REF: Reset Automatic Extension Loading {F12660}
+** CAPI3REF: Reset Automatic Extension Loading {H12660} <S20500>
**
-** {F12661} This function disables all previously registered
-** automatic extensions. {END} This
-** routine undoes the effect of all prior [sqlite3_auto_extension()]
-** calls.
+** This function disables all previously registered automatic
+** extensions. {END} It undoes the effect of all prior
+** [sqlite3_auto_extension()] calls.
**
-** {F12662} This call disabled automatic extensions in all threads. {END}
+** {H12661} This function disables all previously registered
+** automatic extensions.
**
-** This interface is experimental and is subject to change or
-** removal in future releases of SQLite.
+** {H12662} This function disables automatic extensions in all threads.
*/
SQLITE_API void sqlite3_reset_auto_extension(void);
-
/*
****** EXPERIMENTAL - subject to change without notice **************
**
** to be experimental. The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
-** When the virtual-table mechanism stablizes, we will declare the
+** When the virtual-table mechanism stabilizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
*/
typedef struct sqlite3_module sqlite3_module;
/*
-** CAPI3REF: Virtual Table Object {F18000}
+** CAPI3REF: Virtual Table Object {H18000} <S20400>
** KEYWORDS: sqlite3_module
+** EXPERIMENTAL
**
** A module is a class of virtual tables. Each module is defined
** by an instance of the following structure. This structure consists
** mostly of methods for the module.
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
struct sqlite3_module {
int iVersion;
int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
void **ppArg);
-
int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
};
/*
-** CAPI3REF: Virtual Table Indexing Information {F18100}
+** CAPI3REF: Virtual Table Indexing Information {H18100} <S20400>
** KEYWORDS: sqlite3_index_info
+** EXPERIMENTAL
**
** The sqlite3_index_info structure and its substructures is used to
** pass information into and receive the reply from the xBestIndex
** inputs to xBestIndex and are read-only. xBestIndex inserts its
** results into the **Outputs** fields.
**
-** The aConstraint[] array records WHERE clause constraints of the
-** form:
+** The aConstraint[] array records WHERE clause constraints of the form:
**
-** column OP expr
+** <pre>column OP expr</pre>
**
-** Where OP is =, <, <=, >, or >=.
-** The particular operator is stored
-** in aConstraint[].op. The index of the column is stored in
+** where OP is =, <, <=, >, or >=. The particular operator is
+** stored in aConstraint[].op. The index of the column is stored in
** aConstraint[].iColumn. aConstraint[].usable is TRUE if the
** expr on the right-hand side can be evaluated (and thus the constraint
** is usable) and false if it cannot.
** particular lookup. A full scan of a table with N entries should have
** a cost of N. A binary search of a table of N entries should have a
** cost of approximately log(N).
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
struct sqlite3_index_info {
/* Inputs */
int iColumn; /* Column number */
unsigned char desc; /* True for DESC. False for ASC. */
} *aOrderBy; /* The ORDER BY clause */
-
/* Outputs */
struct sqlite3_index_constraint_usage {
int argvIndex; /* if >0, constraint is part of argv to xFilter */
#define SQLITE_INDEX_CONSTRAINT_MATCH 64
/*
-** CAPI3REF: Register A Virtual Table Implementation {F18200}
+** CAPI3REF: Register A Virtual Table Implementation {H18200} <S20400>
+** EXPERIMENTAL
+**
+** This routine is used to register a new module name with a
+** [database connection]. Module names must be registered before
+** creating new virtual tables on the module, or before using
+** preexisting virtual tables of the module.
**
-** This routine is used to register a new module name with an SQLite
-** connection. Module names must be registered before creating new
-** virtual tables on the module, or before using preexisting virtual
-** tables of the module.
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
SQLITE_API int sqlite3_create_module(
sqlite3 *db, /* SQLite connection to register module with */
);
/*
-** CAPI3REF: Register A Virtual Table Implementation {F18210}
+** CAPI3REF: Register A Virtual Table Implementation {H18210} <S20400>
+** EXPERIMENTAL
**
-** This routine is identical to the sqlite3_create_module() method above,
+** This routine is identical to the [sqlite3_create_module()] method above,
** except that it allows a destructor function to be specified. It is
** even more experimental than the rest of the virtual tables API.
*/
);
/*
-** CAPI3REF: Virtual Table Instance Object {F18010}
+** CAPI3REF: Virtual Table Instance Object {H18010} <S20400>
** KEYWORDS: sqlite3_vtab
+** EXPERIMENTAL
**
** Every module implementation uses a subclass of the following structure
** to describe a particular instance of the module. Each subclass will
-** be tailored to the specific needs of the module implementation. The
-** purpose of this superclass is to define certain fields that are common
-** to all module implementations.
+** be tailored to the specific needs of the module implementation.
+** The purpose of this superclass is to define certain fields that are
+** common to all module implementations.
**
** Virtual tables methods can set an error message by assigning a
-** string obtained from sqlite3_mprintf() to zErrMsg. The method should
-** take care that any prior string is freed by a call to sqlite3_free()
+** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
+** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg. After the error message
** is delivered up to the client application, the string will be automatically
** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note
** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
** since virtual tables are commonly implemented in loadable extensions which
** do not have access to sqlite3MPrintf() or sqlite3Free().
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
struct sqlite3_vtab {
const sqlite3_module *pModule; /* The module for this virtual table */
};
/*
-** CAPI3REF: Virtual Table Cursor Object {F18020}
+** CAPI3REF: Virtual Table Cursor Object {H18020} <S20400>
** KEYWORDS: sqlite3_vtab_cursor
+** EXPERIMENTAL
**
** Every module implementation uses a subclass of the following structure
** to describe cursors that point into the virtual table and are used
**
** This superclass exists in order to define fields of the cursor that
** are common to all implementations.
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
struct sqlite3_vtab_cursor {
sqlite3_vtab *pVtab; /* Virtual table of this cursor */
};
/*
-** CAPI3REF: Declare The Schema Of A Virtual Table {F18280}
+** CAPI3REF: Declare The Schema Of A Virtual Table {H18280} <S20400>
+** EXPERIMENTAL
**
** The xCreate and xConnect methods of a module use the following API
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
/*
-** CAPI3REF: Overload A Function For A Virtual Table {F18300}
+** CAPI3REF: Overload A Function For A Virtual Table {H18300} <S20400>
+** EXPERIMENTAL
**
** Virtual tables can provide alternative implementations of functions
** using the xFindFunction method. But global versions of those functions
** before this API is called, a new function is created. The implementation
** of the new function always causes an exception to be thrown. So
** the new function is not good for anything by itself. Its only
-** purpose is to be a place-holder function that can be overloaded
+** purpose is to be a placeholder function that can be overloaded
** by virtual tables.
**
** This API should be considered part of the virtual table interface,
*/
/*
-** CAPI3REF: A Handle To An Open BLOB {F17800}
+** CAPI3REF: A Handle To An Open BLOB {H17800} <S30230>
+** KEYWORDS: {BLOB handle} {BLOB handles}
**
** An instance of this object represents an open BLOB on which
-** incremental I/O can be preformed.
-** Objects of this type are created by
-** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()].
+** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
+** Objects of this type are created by [sqlite3_blob_open()]
+** and destroyed by [sqlite3_blob_close()].
** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
-** can be used to read or write small subsections of the blob.
-** The [sqlite3_blob_bytes()] interface returns the size of the
-** blob in bytes.
+** can be used to read or write small subsections of the BLOB.
+** The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
*/
typedef struct sqlite3_blob sqlite3_blob;
/*
-** CAPI3REF: Open A BLOB For Incremental I/O {F17810}
+** CAPI3REF: Open A BLOB For Incremental I/O {H17810} <S30230>
**
-** This interfaces opens a handle to the blob located
+** This interfaces opens a [BLOB handle | handle] to the BLOB located
** in row iRow, column zColumn, table zTable in database zDb;
-** in other words, the same blob that would be selected by:
+** in other words, the same BLOB that would be selected by:
**
** <pre>
** SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
** </pre> {END}
**
-** If the flags parameter is non-zero, the blob is opened for
-** read and write access. If it is zero, the blob is opened for read
-** access.
+** If the flags parameter is non-zero, the the BLOB is opened for read
+** and write access. If it is zero, the BLOB is opened for read access.
**
** Note that the database name is not the filename that contains
** the database but rather the symbolic name of the database that
** is assigned when the database is connected using [ATTACH].
-** For the main database file, the database name is "main". For
-** TEMP tables, the database name is "temp".
-**
-** On success, [SQLITE_OK] is returned and the new
-** [sqlite3_blob | blob handle] is written to *ppBlob.
-** Otherwise an error code is returned and
-** any value written to *ppBlob should not be used by the caller.
-** This function sets the database-handle error code and message
+** For the main database file, the database name is "main".
+** For TEMP tables, the database name is "temp".
+**
+** On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
+** to *ppBlob. Otherwise an [error code] is returned and any value written
+** to *ppBlob should not be used by the caller.
+** This function sets the [database connection] error code and message
** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].
-**
+**
+** If the row that a BLOB handle points to is modified by an
+** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
+** then the BLOB handle is marked as "expired".
+** This is true if any column of the row is changed, even a column
+** other than the one the BLOB handle is open on.
+** Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
+** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
+** Changes written into a BLOB prior to the BLOB expiring are not
+** rollback by the expiration of the BLOB. Such changes will eventually
+** commit if the transaction continues to completion.
+**
** INVARIANTS:
**
-** {F17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)]
-** interface opens an [sqlite3_blob] object P on the blob
-** in column C of table T in database B on [database connection] D.
+** {H17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)]
+** interface shall open an [sqlite3_blob] object P on the BLOB
+** in column C of the table T in the database B on
+** the [database connection] D.
**
-** {F17814} A successful invocation of [sqlite3_blob_open(D,...)] starts
-** a new transaction on [database connection] D if that connection
-** is not already in a transaction.
+** {H17814} A successful invocation of [sqlite3_blob_open(D,...)] shall start
+** a new transaction on the [database connection] D if that
+** connection is not already in a transaction.
**
-** {F17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface opens the blob
-** for read and write access if and only if the F parameter
-** is non-zero.
+** {H17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface shall open
+** the BLOB for read and write access if and only if the F
+** parameter is non-zero.
**
-** {F17819} The [sqlite3_blob_open()] interface returns [SQLITE_OK] on
+** {H17819} The [sqlite3_blob_open()] interface shall return [SQLITE_OK] on
** success and an appropriate [error code] on failure.
**
-** {F17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)]
+** {H17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)]
** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error.
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] shall return
+** information appropriate for that error.
+**
+** {H17824} If any column in the row that a [sqlite3_blob] has open is
+** changed by a separate [UPDATE] or [DELETE] statement or by
+** an [ON CONFLICT] side effect, then the [sqlite3_blob] shall
+** be marked as invalid.
*/
SQLITE_API int sqlite3_blob_open(
sqlite3*,
);
/*
-** CAPI3REF: Close A BLOB Handle {F17830}
+** CAPI3REF: Close A BLOB Handle {H17830} <S30230>
**
-** Close an open [sqlite3_blob | blob handle].
+** Closes an open [BLOB handle].
**
** Closing a BLOB shall cause the current transaction to commit
** if there are no other BLOBs, no pending prepared statements, and the
-** database connection is in autocommit mode.
+** database connection is in [autocommit mode].
** If any writes were made to the BLOB, they might be held in cache
** until the close operation if they will fit. {END}
+**
** Closing the BLOB often forces the changes
** out to disk and so if any I/O errors occur, they will likely occur
-** at the time when the BLOB is closed. {F17833} Any errors that occur during
+** at the time when the BLOB is closed. {H17833} Any errors that occur during
** closing are reported as a non-zero return value.
**
** The BLOB is closed unconditionally. Even if this routine returns
**
** INVARIANTS:
**
-** {F17833} The [sqlite3_blob_close(P)] interface closes an
-** [sqlite3_blob] object P previously opened using
-** [sqlite3_blob_open()].
+** {H17833} The [sqlite3_blob_close(P)] interface closes an [sqlite3_blob]
+** object P previously opened using [sqlite3_blob_open()].
**
-** {F17836} Closing an [sqlite3_blob] object using
+** {H17836} Closing an [sqlite3_blob] object using
** [sqlite3_blob_close()] shall cause the current transaction to
** commit if there are no other open [sqlite3_blob] objects
** or [prepared statements] on the same [database connection] and
-** the [database connection] is in
-** [sqlite3_get_autocommit | autocommit mode].
+** the database connection is in [autocommit mode].
**
-** {F17839} The [sqlite3_blob_close(P)] interfaces closes the
+** {H17839} The [sqlite3_blob_close(P)] interfaces shall close the
** [sqlite3_blob] object P unconditionally, even if
** [sqlite3_blob_close(P)] returns something other than [SQLITE_OK].
-**
*/
SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
/*
-** CAPI3REF: Return The Size Of An Open BLOB {F17840}
+** CAPI3REF: Return The Size Of An Open BLOB {H17840} <S30230>
**
-** Return the size in bytes of the blob accessible via the open
-** [sqlite3_blob] object in its only argument.
+** Returns the size in bytes of the BLOB accessible via the open
+** []BLOB handle] in its only argument.
**
** INVARIANTS:
**
-** {F17843} The [sqlite3_blob_bytes(P)] interface returns the size
+** {H17843} The [sqlite3_blob_bytes(P)] interface returns the size
** in bytes of the BLOB that the [sqlite3_blob] object P
** refers to.
*/
SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
/*
-** CAPI3REF: Read Data From A BLOB Incrementally {F17850}
+** CAPI3REF: Read Data From A BLOB Incrementally {H17850} <S30230>
**
-** This function is used to read data from an open
-** [sqlite3_blob | blob-handle] into a caller supplied buffer.
-** N bytes of data are copied into buffer
-** Z from the open blob, starting at offset iOffset.
+** This function is used to read data from an open [BLOB handle] into a
+** caller-supplied buffer. N bytes of data are copied into buffer Z
+** from the open BLOB, starting at offset iOffset.
**
-** If offset iOffset is less than N bytes from the end of the blob,
+** If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is
-** less than zero [SQLITE_ERROR] is returned and no data is read.
+** less than zero, [SQLITE_ERROR] is returned and no data is read.
+**
+** An attempt to read from an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT].
**
-** On success, SQLITE_OK is returned. Otherwise, an
-** [error code] or an [extended error code] is returned.
+** On success, SQLITE_OK is returned.
+** Otherwise, an [error code] or an [extended error code] is returned.
**
** INVARIANTS:
**
-** {F17853} The [sqlite3_blob_read(P,Z,N,X)] interface reads N bytes
-** beginning at offset X from
-** the blob that [sqlite3_blob] object P refers to
-** and writes those N bytes into buffer Z.
+** {H17853} A successful invocation of [sqlite3_blob_read(P,Z,N,X)]
+** shall reads N bytes of data out of the BLOB referenced by
+** [BLOB handle] P beginning at offset X and store those bytes
+** into buffer Z.
**
-** {F17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the blob
-** is less than N+X bytes, then the function returns [SQLITE_ERROR]
-** and nothing is read from the blob.
+** {H17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the BLOB
+** is less than N+X bytes, then the function shall leave the
+** Z buffer unchanged and return [SQLITE_ERROR].
**
-** {F17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero
-** then the function returns [SQLITE_ERROR]
-** and nothing is read from the blob.
+** {H17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero
+** then the function shall leave the Z buffer unchanged
+** and return [SQLITE_ERROR].
**
-** {F17862} The [sqlite3_blob_read(P,Z,N,X)] interface returns [SQLITE_OK]
-** if N bytes where successfully read into buffer Z.
+** {H17862} The [sqlite3_blob_read(P,Z,N,X)] interface shall return [SQLITE_OK]
+** if N bytes are successfully read into buffer Z.
**
-** {F17865} If the requested read could not be completed,
-** the [sqlite3_blob_read(P,Z,N,X)] interface returns an
+** {H17863} If the [BLOB handle] P is expired and X and N are within bounds
+** then [sqlite3_blob_read(P,Z,N,X)] shall leave the Z buffer
+** unchanged and return [SQLITE_ABORT].
+**
+** {H17865} If the requested read could not be completed,
+** the [sqlite3_blob_read(P,Z,N,X)] interface shall return an
** appropriate [error code] or [extended error code].
**
-** {F17868} If an error occurs during evaluation of [sqlite3_blob_read(P,...)]
+** {H17868} If an error occurs during evaluation of [sqlite3_blob_read(P,...)]
** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error, where D is the
-** database handle that was used to open blob handle P.
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] shall return
+** information appropriate for that error, where D is the
+** [database connection] that was used to open the [BLOB handle] P.
*/
SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
/*
-** CAPI3REF: Write Data Into A BLOB Incrementally {F17870}
+** CAPI3REF: Write Data Into A BLOB Incrementally {H17870} <S30230>
**
-** This function is used to write data into an open
-** [sqlite3_blob | blob-handle] from a user supplied buffer.
-** n bytes of data are copied from the buffer
-** pointed to by z into the open blob, starting at offset iOffset.
+** This function is used to write data into an open [BLOB handle] from a
+** caller-supplied buffer. N bytes of data are copied from the buffer Z
+** into the open BLOB, starting at offset iOffset.
**
-** If the [sqlite3_blob | blob-handle] passed as the first argument
-** was not opened for writing (the flags parameter to [sqlite3_blob_open()]
-*** was zero), this function returns [SQLITE_READONLY].
+** If the [BLOB handle] passed as the first argument was not opened for
+** writing (the flags parameter to [sqlite3_blob_open()] was zero),
+** this function returns [SQLITE_READONLY].
**
-** This function may only modify the contents of the blob; it is
-** not possible to increase the size of a blob using this API.
-** If offset iOffset is less than n bytes from the end of the blob,
-** [SQLITE_ERROR] is returned and no data is written. If n is
+** This function may only modify the contents of the BLOB; it is
+** not possible to increase the size of a BLOB using this API.
+** If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is written. If N is
** less than zero [SQLITE_ERROR] is returned and no data is written.
**
-** On success, SQLITE_OK is returned. Otherwise, an
-** [error code] or an [extended error code] is returned.
+** An attempt to write to an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT]. Writes to the BLOB that occurred
+** before the [BLOB handle] expired are not rolled back by the
+** expiration of the handle, though of course those changes might
+** have been overwritten by the statement that expired the BLOB handle
+** or by other independent statements.
+**
+** On success, SQLITE_OK is returned.
+** Otherwise, an [error code] or an [extended error code] is returned.
**
** INVARIANTS:
**
-** {F17873} The [sqlite3_blob_write(P,Z,N,X)] interface writes N bytes
-** from buffer Z into
-** the blob that [sqlite3_blob] object P refers to
-** beginning at an offset of X into the blob.
+** {H17873} A successful invocation of [sqlite3_blob_write(P,Z,N,X)]
+** shall write N bytes of data from buffer Z into the BLOB
+** referenced by [BLOB handle] P beginning at offset X into
+** the BLOB.
+**
+** {H17874} In the absence of other overridding changes, the changes
+** written to a BLOB by [sqlite3_blob_write()] shall
+** remain in effect after the associated [BLOB handle] expires.
+**
+** {H17875} If the [BLOB handle] P was opened for reading only then
+** an invocation of [sqlite3_blob_write(P,Z,N,X)] shall leave
+** the referenced BLOB unchanged and return [SQLITE_READONLY].
**
-** {F17875} The [sqlite3_blob_write(P,Z,N,X)] interface returns
-** [SQLITE_READONLY] if the [sqlite3_blob] object P was
-** [sqlite3_blob_open | opened] for reading only.
+** {H17876} If the size of the BLOB referenced by [BLOB handle] P is
+** less than N+X bytes then [sqlite3_blob_write(P,Z,N,X)] shall
+** leave the BLOB unchanged and return [SQLITE_ERROR].
**
-** {F17876} In [sqlite3_blob_write(P,Z,N,X)] if the size of the blob
-** is less than N+X bytes, then the function returns [SQLITE_ERROR]
-** and nothing is written into the blob.
+** {H17877} If the [BLOB handle] P is expired and X and N are within bounds
+** then [sqlite3_blob_read(P,Z,N,X)] shall leave the BLOB
+** unchanged and return [SQLITE_ABORT].
**
-** {F17879} In [sqlite3_blob_write(P,Z,N,X)] if X or N is less than zero
-** then the function returns [SQLITE_ERROR]
-** and nothing is written into the blob.
+** {H17879} If X or N are less than zero then [sqlite3_blob_write(P,Z,N,X)]
+** shall leave the BLOB referenced by [BLOB handle] P unchanged
+** and return [SQLITE_ERROR].
**
-** {F17882} The [sqlite3_blob_write(P,Z,N,X)] interface returns [SQLITE_OK]
-** if N bytes where successfully written into blob.
+** {H17882} The [sqlite3_blob_write(P,Z,N,X)] interface shall return
+** [SQLITE_OK] if N bytes where successfully written into the BLOB.
**
-** {F17885} If the requested write could not be completed,
-** the [sqlite3_blob_write(P,Z,N,X)] interface returns an
+** {H17885} If the requested write could not be completed,
+** the [sqlite3_blob_write(P,Z,N,X)] interface shall return an
** appropriate [error code] or [extended error code].
**
-** {F17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)]
+** {H17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)]
** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error.
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] shall return
+** information appropriate for that error.
*/
SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
/*
-** CAPI3REF: Virtual File System Objects {F11200}
+** CAPI3REF: Virtual File System Objects {H11200} <S20100>
**
** A virtual filesystem (VFS) is an [sqlite3_vfs] object
** that SQLite uses to interact
** New VFSes can be registered and existing VFSes can be unregistered.
** The following interfaces are provided.
**
-** The sqlite3_vfs_find() interface returns a pointer to
-** a VFS given its name. Names are case sensitive.
+** The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
+** Names are case sensitive.
** Names are zero-terminated UTF-8 strings.
-** If there is no match, a NULL
-** pointer is returned. If zVfsName is NULL then the default
-** VFS is returned.
+** If there is no match, a NULL pointer is returned.
+** If zVfsName is NULL then the default VFS is returned.
**
** New VFSes are registered with sqlite3_vfs_register().
** Each new VFS becomes the default VFS if the makeDflt flag is set.
** same name are registered, the behavior is undefined. If a
** VFS is registered with a name that is NULL or an empty string,
** then the behavior is undefined.
-**
+**
** Unregister a VFS with the sqlite3_vfs_unregister() interface.
** If the default VFS is unregistered, another VFS is chosen as
** the default. The choice for the new VFS is arbitrary.
**
** INVARIANTS:
**
-** {F11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the
+** {H11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the
** registered [sqlite3_vfs] object whose name exactly matches
** the zero-terminated UTF-8 string N, or it returns NULL if
** there is no match.
**
-** {F11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then
+** {H11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then
** the function returns a pointer to the default [sqlite3_vfs]
-** object if there is one, or NULL if there is no default
+** object if there is one, or NULL if there is no default
** [sqlite3_vfs] object.
**
-** {F11209} The [sqlite3_vfs_register(P,F)] interface registers the
+** {H11209} The [sqlite3_vfs_register(P,F)] interface registers the
** well-formed [sqlite3_vfs] object P using the name given
** by the zName field of the object.
**
-** {F11212} Using the [sqlite3_vfs_register(P,F)] interface to register
+** {H11212} Using the [sqlite3_vfs_register(P,F)] interface to register
** the same [sqlite3_vfs] object multiple times is a harmless no-op.
**
-** {F11215} The [sqlite3_vfs_register(P,F)] interface makes the
-** the [sqlite3_vfs] object P the default [sqlite3_vfs] object
-** if F is non-zero.
+** {H11215} The [sqlite3_vfs_register(P,F)] interface makes the [sqlite3_vfs]
+** object P the default [sqlite3_vfs] object if F is non-zero.
**
-** {F11218} The [sqlite3_vfs_unregister(P)] interface unregisters the
+** {H11218} The [sqlite3_vfs_unregister(P)] interface unregisters the
** [sqlite3_vfs] object P so that it is no longer returned by
** subsequent calls to [sqlite3_vfs_find()].
*/
SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
/*
-** CAPI3REF: Mutexes {F17000}
+** CAPI3REF: Mutexes {H17000} <S20000>
**
** The SQLite core uses these routines for thread
-** synchronization. Though they are intended for internal
+** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is
** permitted to use any of these routines.
**
-** The SQLite source code contains multiple implementations
+** The SQLite source code contains multiple implementations
** of these mutex routines. An appropriate implementation
** is selected automatically at compile-time. The following
** implementations are available in the SQLite core:
** <li> SQLITE_MUTEX_NOOP
** </ul>
**
-** The SQLITE_MUTEX_NOOP implementation is a set of routines
-** that does no real locking and is appropriate for use in
+** The SQLITE_MUTEX_NOOP implementation is a set of routines
+** that does no real locking and is appropriate for use in
** a single-threaded application. The SQLITE_MUTEX_OS2,
** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
-** are appropriate for use on os/2, unix, and windows.
-**
+** are appropriate for use on OS/2, Unix, and Windows.
+**
** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
-** implementation is included with the library. The
-** mutex interface routines defined here become external
-** references in the SQLite library for which implementations
-** must be provided by the application. This facility allows an
-** application that links against SQLite to provide its own mutex
-** implementation without having to modify the SQLite core.
-**
-** {F17011} The sqlite3_mutex_alloc() routine allocates a new
-** mutex and returns a pointer to it. {F17012} If it returns NULL
-** that means that a mutex could not be allocated. {F17013} SQLite
-** will unwind its stack and return an error. {F17014} The argument
+** implementation is included with the library. In this case the
+** application must supply a custom mutex implementation using the
+** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
+** before calling sqlite3_initialize() or any other public sqlite3_
+** function that calls sqlite3_initialize().
+**
+** {H17011} The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. {H17012} If it returns NULL
+** that means that a mutex could not be allocated. {H17013} SQLite
+** will unwind its stack and return an error. {H17014} The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li> SQLITE_MUTEX_STATIC_PRNG
** <li> SQLITE_MUTEX_STATIC_LRU
** <li> SQLITE_MUTEX_STATIC_LRU2
-** </ul> {END}
+** </ul>
**
-** {F17015} The first two constants cause sqlite3_mutex_alloc() to create
+** {H17015} The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
-** not want to. {F17016} But SQLite will only request a recursive mutex in
+** not want to. {H17016} But SQLite will only request a recursive mutex in
** cases where it really needs one. {END} If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
-** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return
+** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex. {END} Four static mutexes are
** used by the current version of SQLite. Future versions of SQLite
** may add additional static mutexes. Static mutexes are for internal
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
-** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
-** returns a different mutex on every call. {F17034} But for the static
+** returns a different mutex on every call. {H17034} But for the static
** mutex types, the same mutex is returned on every call that has
-** the same type number. {END}
+** the same type number.
**
-** {F17019} The sqlite3_mutex_free() routine deallocates a previously
-** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every
-** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in
-** use when they are deallocated. {U17022} Attempting to deallocate a static
-** mutex results in undefined behavior. {F17023} SQLite never deallocates
+** {H17019} The sqlite3_mutex_free() routine deallocates a previously
+** allocated dynamic mutex. {H17020} SQLite is careful to deallocate every
+** dynamic mutex that it allocates. {A17021} The dynamic mutexes must not be in
+** use when they are deallocated. {A17022} Attempting to deallocate a static
+** mutex results in undefined behavior. {H17023} SQLite never deallocates
** a static mutex. {END}
**
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
-** to enter a mutex. {F17024} If another thread is already within the mutex,
+** to enter a mutex. {H17024} If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
-** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK
-** upon successful entry. {F17026} Mutexes created using
+** SQLITE_BUSY. {H17025} The sqlite3_mutex_try() interface returns [SQLITE_OK]
+** upon successful entry. {H17026} Mutexes created using
** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
-** {F17027} In such cases the,
+** {H17027} In such cases the,
** mutex must be exited an equal number of times before another thread
-** can enter. {U17028} If the same thread tries to enter any other
+** can enter. {A17028} If the same thread tries to enter any other
** kind of mutex more than once, the behavior is undefined.
-** {F17029} SQLite will never exhibit
-** such behavior in its own use of mutexes. {END}
+** {H17029} SQLite will never exhibit
+** such behavior in its own use of mutexes.
**
-** Some systems (ex: windows95) do not the operation implemented by
-** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will
-** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses
-** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END}
+** Some systems (for example, Windows 95) do not support the operation
+** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
+** will always return SQLITE_BUSY. {H17030} The SQLite core only ever uses
+** sqlite3_mutex_try() as an optimization so this is acceptable behavior.
**
-** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was
-** previously entered by the same thread. {U17032} The behavior
+** {H17031} The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. {A17032} The behavior
** is undefined if the mutex is not currently entered by the
-** calling thread or is not currently allocated. {F17033} SQLite will
+** calling thread or is not currently allocated. {H17033} SQLite will
** never do either. {END}
**
+** If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
+** sqlite3_mutex_leave() is a NULL pointer, then all three routines
+** behave as no-ops.
+**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
/*
-** CAPI3REF: Mutex Verifcation Routines {F17080}
+** CAPI3REF: Mutex Methods Object {H17120} <S20130>
+** EXPERIMENTAL
+**
+** An instance of this structure defines the low-level routines
+** used to allocate and use mutexes.
+**
+** Usually, the default mutex implementations provided by SQLite are
+** sufficient, however the user has the option of substituting a custom
+** implementation for specialized deployments or systems for which SQLite
+** does not provide a suitable implementation. In this case, the user
+** creates and populates an instance of this structure to pass
+** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
+** Additionally, an instance of this structure can be used as an
+** output variable when querying the system for the current mutex
+** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
+**
+** The xMutexInit method defined by this structure is invoked as
+** part of system initialization by the sqlite3_initialize() function.
+** {H17001} The xMutexInit routine shall be called by SQLite once for each
+** effective call to [sqlite3_initialize()].
+**
+** The xMutexEnd method defined by this structure is invoked as
+** part of system shutdown by the sqlite3_shutdown() function. The
+** implementation of this method is expected to release all outstanding
+** resources obtained by the mutex methods implementation, especially
+** those obtained by the xMutexInit method. {H17003} The xMutexEnd()
+** interface shall be invoked once for each call to [sqlite3_shutdown()].
+**
+** The remaining seven methods defined by this structure (xMutexAlloc,
+** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
+** xMutexNotheld) implement the following interfaces (respectively):
+**
+** <ul>
+** <li> [sqlite3_mutex_alloc()] </li>
+** <li> [sqlite3_mutex_free()] </li>
+** <li> [sqlite3_mutex_enter()] </li>
+** <li> [sqlite3_mutex_try()] </li>
+** <li> [sqlite3_mutex_leave()] </li>
+** <li> [sqlite3_mutex_held()] </li>
+** <li> [sqlite3_mutex_notheld()] </li>
+** </ul>
+**
+** The only difference is that the public sqlite3_XXX functions enumerated
+** above silently ignore any invocations that pass a NULL pointer instead
+** of a valid mutex handle. The implementations of the methods defined
+** by this structure are not required to handle this case, the results
+** of passing a NULL pointer instead of a valid mutex handle are undefined
+** (i.e. it is acceptable to provide an implementation that segfaults if
+** it is passed a NULL pointer).
+*/
+typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
+struct sqlite3_mutex_methods {
+ int (*xMutexInit)(void);
+ int (*xMutexEnd)(void);
+ sqlite3_mutex *(*xMutexAlloc)(int);
+ void (*xMutexFree)(sqlite3_mutex *);
+ void (*xMutexEnter)(sqlite3_mutex *);
+ int (*xMutexTry)(sqlite3_mutex *);
+ void (*xMutexLeave)(sqlite3_mutex *);
+ int (*xMutexHeld)(sqlite3_mutex *);
+ int (*xMutexNotheld)(sqlite3_mutex *);
+};
+
+/*
+** CAPI3REF: Mutex Verification Routines {H17080} <S20130> <S30800>
**
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
-** are intended for use inside assert() statements. {F17081} The SQLite core
+** are intended for use inside assert() statements. {H17081} The SQLite core
** never uses these routines except inside an assert() and applications
-** are advised to follow the lead of the core. {F17082} The core only
+** are advised to follow the lead of the core. {H17082} The core only
** provides implementations for these routines when it is compiled
-** with the SQLITE_DEBUG flag. {U17087} External mutex implementations
+** with the SQLITE_DEBUG flag. {A17087} External mutex implementations
** are only required to provide these routines if SQLITE_DEBUG is
** defined and if NDEBUG is not defined.
**
-** {F17083} These routines should return true if the mutex in their argument
-** is held or not held, respectively, by the calling thread. {END}
+** {H17083} These routines should return true if the mutex in their argument
+** is held or not held, respectively, by the calling thread.
**
** {X17084} The implementation is not required to provided versions of these
-** routines that actually work.
-** If the implementation does not provide working
-** versions of these routines, it should at least provide stubs
-** that always return true so that one does not get spurious
-** assertion failures. {END}
+** routines that actually work. If the implementation does not provide working
+** versions of these routines, it should at least provide stubs that always
+** return true so that one does not get spurious assertion failures.
**
-** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
+** {H17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
** the routine should return 1. {END} This seems counter-intuitive since
** clearly the mutex cannot be held if it does not exist. But the
** the reason the mutex does not exist is because the build is not
** using mutexes. And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
-** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld()
+** the appropriate thing to do. {H17086} The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
/*
-** CAPI3REF: Mutex Types {F17001}
+** CAPI3REF: Mutex Types {H17001} <H17000>
**
-** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument
-** which is one of these integer constants. {END}
+** The [sqlite3_mutex_alloc()] interface takes a single argument
+** which is one of these integer constants.
+**
+** The set of static mutexes may change from one SQLite release to the
+** next. Applications that override the built-in mutex logic must be
+** prepared to accommodate additional static mutexes.
*/
#define SQLITE_MUTEX_FAST 0
#define SQLITE_MUTEX_RECURSIVE 1
#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */
/*
-** CAPI3REF: Low-Level Control Of Database Files {F11300}
+** CAPI3REF: Low-Level Control Of Database Files {H11300} <S30800>
**
-** {F11301} The [sqlite3_file_control()] interface makes a direct call to the
+** {H11301} The [sqlite3_file_control()] interface makes a direct call to the
** xFileControl method for the [sqlite3_io_methods] object associated
-** with a particular database identified by the second argument. {F11302} The
+** with a particular database identified by the second argument. {H11302} The
** name of the database is the name assigned to the database by the
** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
-** database. {F11303} To control the main database file, use the name "main"
-** or a NULL pointer. {F11304} The third and fourth parameters to this routine
+** database. {H11303} To control the main database file, use the name "main"
+** or a NULL pointer. {H11304} The third and fourth parameters to this routine
** are passed directly through to the second and third parameters of
-** the xFileControl method. {F11305} The return value of the xFileControl
+** the xFileControl method. {H11305} The return value of the xFileControl
** method becomes the return value of this routine.
**
-** {F11306} If the second parameter (zDbName) does not match the name of any
-** open database file, then SQLITE_ERROR is returned. {F11307} This error
+** {H11306} If the second parameter (zDbName) does not match the name of any
+** open database file, then SQLITE_ERROR is returned. {H11307} This error
** code is not remembered and will not be recalled by [sqlite3_errcode()]
-** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might
-** also return SQLITE_ERROR. {U11309} There is no way to distinguish between
+** or [sqlite3_errmsg()]. {A11308} The underlying xFileControl method might
+** also return SQLITE_ERROR. {A11309} There is no way to distinguish between
** an incorrect zDbName and an SQLITE_ERROR return from the underlying
** xFileControl method. {END}
**
SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
/*
-** CAPI3REF: Testing Interface {F11400}
+** CAPI3REF: Testing Interface {H11400} <S30800>
**
** The sqlite3_test_control() interface is used to read out internal
** state of SQLite and to inject faults into SQLite for testing
-** purposes. The first parameter a operation code that determines
+** purposes. The first parameter is an operation code that determines
** the number, meaning, and operation of all subsequent parameters.
**
** This interface is not for use by applications. It exists solely
SQLITE_API int sqlite3_test_control(int op, ...);
/*
-** CAPI3REF: Testing Interface Operation Codes {F11410}
+** CAPI3REF: Testing Interface Operation Codes {H11410} <H11400>
**
** These constants are the valid operation code parameters used
** as the first argument to [sqlite3_test_control()].
**
-** These parameters and their meansing are subject to change
+** These parameters and their meanings are subject to change
** without notice. These values are for testing purposes only.
** Applications should not use any of these parameters or the
** [sqlite3_test_control()] interface.
*/
-#define SQLITE_TESTCTRL_FAULT_CONFIG 1
-#define SQLITE_TESTCTRL_FAULT_FAILURES 2
-#define SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES 3
-#define SQLITE_TESTCTRL_FAULT_PENDING 4
#define SQLITE_TESTCTRL_PRNG_SAVE 5
#define SQLITE_TESTCTRL_PRNG_RESTORE 6
#define SQLITE_TESTCTRL_PRNG_RESET 7
#define SQLITE_TESTCTRL_BITVEC_TEST 8
+#define SQLITE_TESTCTRL_FAULT_INSTALL 9
+#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10
+/*
+** CAPI3REF: SQLite Runtime Status {H17200} <S60200>
+** EXPERIMENTAL
+**
+** This interface is used to retrieve runtime status information
+** about the preformance of SQLite, and optionally to reset various
+** highwater marks. The first argument is an integer code for
+** the specific parameter to measure. Recognized integer codes
+** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].
+** The current value of the parameter is returned into *pCurrent.
+** The highest recorded value is returned in *pHighwater. If the
+** resetFlag is true, then the highest record value is reset after
+** *pHighwater is written. Some parameters do not record the highest
+** value. For those parameters
+** nothing is written into *pHighwater and the resetFlag is ignored.
+** Other parameters record only the highwater mark and not the current
+** value. For these latter parameters nothing is written into *pCurrent.
+**
+** This routine returns SQLITE_OK on success and a non-zero
+** [error code] on failure.
+**
+** This routine is threadsafe but is not atomic. This routine can
+** called while other threads are running the same or different SQLite
+** interfaces. However the values returned in *pCurrent and
+** *pHighwater reflect the status of SQLite at different points in time
+** and it is possible that another thread might change the parameter
+** in between the times when *pCurrent and *pHighwater are written.
+**
+** See also: [sqlite3_db_status()]
+*/
+SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
+
+/*
+** CAPI3REF: Database Connection Status {H17201} <S60200>
+** EXPERIMENTAL
+**
+** This interface is used to retrieve runtime status information
+** about a single [database connection]. The first argument is the
+** database connection object to be interrogated. The second argument
+** is the parameter to interrogate. Currently, the only allowed value
+** for the second parameter is [SQLITE_DBSTATUS_LOOKASIDE_USED].
+** Additional options will likely appear in future releases of SQLite.
+**
+** The current value of the request parameter is written into *pCur
+** and the highest instantaneous value is written into *pHiwtr. If
+** the resetFlg is true, then the highest instantaneous value is
+** reset back down to the current value.
+**
+** See also: [sqlite3_status()].
+*/
+SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters {H17250} <H17200>
+** EXPERIMENTAL
+**
+** These integer constants designate various run-time status parameters
+** that can be returned by [sqlite3_status()].
+**
+** <dl>
+** <dt>SQLITE_STATUS_MEMORY_USED</dt>
+** <dd>This parameter is the current amount of memory checked out
+** using [sqlite3_malloc()], either directly or indirectly. The
+** figure includes calls made to [sqlite3_malloc()] by the application
+** and internal memory usage by the SQLite library. Scratch memory
+** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache
+** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
+** this parameter. The amount returned is the sum of the allocation
+** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>
+**
+** <dt>SQLITE_STATUS_MALLOC_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
+** internal equivalents). Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_USED</dt>
+** <dd>This parameter returns the number of pages used out of the
+** [pagecache memory allocator] that was configured using
+** [SQLITE_CONFIG_PAGECACHE]. The
+** value returned is in pages, not in bytes.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of page cache
+** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The
+** returned value includes allocations that overflowed because they
+** where too large (they were larger than the "sz" parameter to
+** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
+** no space was left in the page cache.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [pagecache memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_USED</dt>
+** <dd>This parameter returns the number of allocations used out of the
+** [scratch memory allocator] configured using
+** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not
+** in bytes. Since a single thread may only have one scratch allocation
+** outstanding at time, this parameter also reports the number of threads
+** using scratch memory at the same time.</dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of scratch memory
+** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The values
+** returned include overflows because the requested allocation was too
+** larger (that is, because the requested allocation was larger than the
+** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer
+** slots were available.
+** </dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [scratch memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_PARSER_STACK</dt>
+** <dd>This parameter records the deepest parser stack. It is only
+** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>
+** </dl>
+**
+** New status parameters may be added from time to time.
+*/
+#define SQLITE_STATUS_MEMORY_USED 0
+#define SQLITE_STATUS_PAGECACHE_USED 1
+#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2
+#define SQLITE_STATUS_SCRATCH_USED 3
+#define SQLITE_STATUS_SCRATCH_OVERFLOW 4
+#define SQLITE_STATUS_MALLOC_SIZE 5
+#define SQLITE_STATUS_PARSER_STACK 6
+#define SQLITE_STATUS_PAGECACHE_SIZE 7
+#define SQLITE_STATUS_SCRATCH_SIZE 8
+
+/*
+** CAPI3REF: Status Parameters for database connections {H17275} <H17200>
+** EXPERIMENTAL
+**
+** Status verbs for [sqlite3_db_status()].
+**
+** <dl>
+** <dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
+** <dd>This parameter returns the number of lookaside memory slots currently
+** checked out.</dd>
+** </dl>
+*/
+#define SQLITE_DBSTATUS_LOOKASIDE_USED 0
/*
** Undo the hack that converts floating point types to integer for
#endif
/*
-** Provide a default value for TEMP_STORE in case it is not specified
+** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
** on the command-line
*/
-#ifndef TEMP_STORE
-# define TEMP_STORE 1
+#ifndef SQLITE_TEMP_STORE
+# define SQLITE_TEMP_STORE 1
#endif
/*
#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
/*
+** The following value as a destructor means to use sqlite3DbFree().
+** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
+*/
+#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree)
+
+/*
** Forward references to structures
*/
typedef struct AggInfo AggInfo;
typedef struct Index Index;
typedef struct KeyClass KeyClass;
typedef struct KeyInfo KeyInfo;
+typedef struct Lookaside Lookaside;
+typedef struct LookasideSlot LookasideSlot;
typedef struct Module Module;
typedef struct NameContext NameContext;
typedef struct Parse Parse;
** subsystem. See comments in the source code for a detailed description
** of what each interface routine does.
**
-** @(#) $Id: btree.h,v 1.98 2008/04/26 13:39:47 drh Exp $
+** @(#) $Id: btree.h,v 1.102 2008/07/11 21:02:54 drh Exp $
*/
#ifndef _BTREE_H_
#define _BTREE_H_
#define BTREE_READWRITE 16 /* Open for both reading and writing */
#define BTREE_CREATE 32 /* Create the database if it does not exist */
-/* Additional values for the 4th argument of sqlite3BtreeOpen that
-** are not associated with PAGER_ values.
-*/
-#define BTREE_PRIVATE 64 /* Never share with other connections */
-
SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
int bias,
int *pRes
);
+SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*, int*);
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
const void *pData, int nData,
#ifdef SQLITE_TEST
SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
-SQLITE_PRIVATE int sqlite3BtreePageDump(Btree*, int, int recursive);
#endif
/*
#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*);
SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*);
+#ifndef NDEBUG
+ /* This routine is used inside assert() statements only. */
SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*);
+#endif
SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*);
SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*);
SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*);
SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*);
+#ifndef NDEBUG
+ /* This routine is used inside assert() statements only. */
SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*);
+#endif
SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*);
SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*);
SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*);
#else
# define sqlite3BtreeEnter(X)
# define sqlite3BtreeLeave(X)
+#ifndef NDEBUG
+ /* This routine is used inside assert() statements only. */
# define sqlite3BtreeHoldsMutex(X) 1
+#endif
# define sqlite3BtreeEnterCursor(X)
# define sqlite3BtreeLeaveCursor(X)
# define sqlite3BtreeEnterAll(X)
# define sqlite3BtreeLeaveAll(X)
+#ifndef NDEBUG
+ /* This routine is used inside assert() statements only. */
# define sqlite3BtreeHoldsAllMutexes(X) 1
+#endif
# define sqlite3BtreeMutexArrayEnter(X)
# define sqlite3BtreeMutexArrayLeave(X)
# define sqlite3BtreeMutexArrayInsert(X,Y)
** or VDBE. The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
-** $Id: vdbe.h,v 1.131 2008/05/01 17:03:49 drh Exp $
+** $Id: vdbe.h,v 1.135 2008/08/01 20:10:08 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
Mem *pMem; /* Used when p4type is P4_MEM */
sqlite3_vtab *pVtab; /* Used when p4type is P4_VTAB */
KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
+ int *ai; /* Used when p4type is P4_INTARRAY */
} p4;
#ifdef SQLITE_DEBUG
- char *zComment; /* Comment to improve readability */
+ char *zComment; /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
- int cnt; /* Number of times this instruction was executed */
- long long cycles; /* Total time spend executing this instruction */
+ int cnt; /* Number of times this instruction was executed */
+ u64 cycles; /* Total time spent executing this instruction */
#endif
};
typedef struct VdbeOp VdbeOp;
#define P4_REAL (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */
+#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
** is made. That copy is freed when the Vdbe is finalized. But if the
** from a single sqliteMalloc(). But no copy is made and the calling
** function should *not* try to free the KeyInfo.
*/
-#define P4_KEYINFO_HANDOFF (-9)
+#define P4_KEYINFO_HANDOFF (-16)
+#define P4_KEYINFO_STATIC (-17)
/*
** The Vdbe.aColName array contains 5n Mem structures, where n is the
#define OP_Expire 14
#define OP_AutoCommit 15
#define OP_Gt 69 /* same as TK_GT */
-#define OP_IntegrityCk 17
-#define OP_Sort 18
-#define OP_Copy 19
-#define OP_Trace 20
-#define OP_Function 21
-#define OP_IfNeg 22
+#define OP_Pagecount 17
+#define OP_IntegrityCk 18
+#define OP_Sort 19
+#define OP_Copy 20
+#define OP_Trace 21
+#define OP_Function 22
+#define OP_IfNeg 23
#define OP_And 61 /* same as TK_AND */
#define OP_Subtract 79 /* same as TK_MINUS */
-#define OP_Noop 23
-#define OP_Return 24
+#define OP_Noop 24
+#define OP_Return 25
#define OP_Remainder 82 /* same as TK_REM */
-#define OP_NewRowid 25
+#define OP_NewRowid 26
#define OP_Multiply 80 /* same as TK_STAR */
-#define OP_Variable 26
-#define OP_String 27
-#define OP_RealAffinity 28
-#define OP_VRename 29
-#define OP_ParseSchema 30
-#define OP_VOpen 31
-#define OP_Close 32
-#define OP_CreateIndex 33
-#define OP_IsUnique 34
-#define OP_NotFound 35
-#define OP_Int64 36
-#define OP_MustBeInt 37
-#define OP_Halt 38
-#define OP_Rowid 39
-#define OP_IdxLT 40
-#define OP_AddImm 41
-#define OP_Statement 42
-#define OP_RowData 43
-#define OP_MemMax 44
+#define OP_Variable 27
+#define OP_String 28
+#define OP_RealAffinity 29
+#define OP_VRename 30
+#define OP_ParseSchema 31
+#define OP_VOpen 32
+#define OP_Close 33
+#define OP_CreateIndex 34
+#define OP_IsUnique 35
+#define OP_NotFound 36
+#define OP_Int64 37
+#define OP_MustBeInt 38
+#define OP_Halt 39
+#define OP_Rowid 40
+#define OP_IdxLT 41
+#define OP_AddImm 42
+#define OP_Statement 43
+#define OP_RowData 44
+#define OP_MemMax 45
#define OP_Or 60 /* same as TK_OR */
-#define OP_NotExists 45
-#define OP_Gosub 46
+#define OP_NotExists 46
+#define OP_Gosub 47
#define OP_Divide 81 /* same as TK_SLASH */
-#define OP_Integer 47
+#define OP_Integer 48
#define OP_ToNumeric 140 /* same as TK_TO_NUMERIC*/
-#define OP_Prev 48
+#define OP_Prev 49
#define OP_Concat 83 /* same as TK_CONCAT */
#define OP_BitAnd 74 /* same as TK_BITAND */
-#define OP_VColumn 49
-#define OP_CreateTable 50
-#define OP_Last 51
+#define OP_VColumn 50
+#define OP_CreateTable 51
+#define OP_Last 52
#define OP_IsNull 65 /* same as TK_ISNULL */
-#define OP_IncrVacuum 52
-#define OP_IdxRowid 53
+#define OP_IncrVacuum 53
+#define OP_IdxRowid 54
#define OP_ShiftRight 77 /* same as TK_RSHIFT */
-#define OP_ResetCount 54
-#define OP_FifoWrite 55
-#define OP_ContextPush 56
-#define OP_DropTrigger 57
-#define OP_DropIndex 58
-#define OP_IdxGE 59
-#define OP_IdxDelete 62
-#define OP_Vacuum 63
-#define OP_MoveLe 64
-#define OP_IfNot 73
-#define OP_DropTable 84
-#define OP_MakeRecord 85
+#define OP_ResetCount 55
+#define OP_FifoWrite 56
+#define OP_ContextPush 57
+#define OP_Yield 58
+#define OP_DropTrigger 59
+#define OP_DropIndex 62
+#define OP_IdxGE 63
+#define OP_IdxDelete 64
+#define OP_Vacuum 73
+#define OP_MoveLe 84
+#define OP_IfNot 85
+#define OP_DropTable 86
+#define OP_MakeRecord 89
#define OP_ToBlob 139 /* same as TK_TO_BLOB */
-#define OP_ResultRow 86
-#define OP_Delete 89
-#define OP_AggFinal 90
+#define OP_ResultRow 90
+#define OP_Delete 91
+#define OP_AggFinal 92
+#define OP_Compare 93
#define OP_ShiftLeft 76 /* same as TK_LSHIFT */
-#define OP_Goto 91
-#define OP_TableLock 92
-#define OP_FifoRead 93
-#define OP_Clear 94
-#define OP_MoveLt 95
+#define OP_Goto 94
+#define OP_TableLock 95
+#define OP_FifoRead 96
+#define OP_Clear 97
+#define OP_MoveLt 98
#define OP_Le 70 /* same as TK_LE */
-#define OP_VerifyCookie 96
-#define OP_AggStep 97
+#define OP_VerifyCookie 99
+#define OP_AggStep 100
#define OP_ToText 138 /* same as TK_TO_TEXT */
#define OP_Not 16 /* same as TK_NOT */
#define OP_ToReal 142 /* same as TK_TO_REAL */
-#define OP_SetNumColumns 98
-#define OP_Transaction 99
-#define OP_VFilter 100
+#define OP_SetNumColumns 101
+#define OP_Transaction 102
+#define OP_VFilter 103
#define OP_Ne 67 /* same as TK_NE */
-#define OP_VDestroy 101
-#define OP_ContextPop 102
+#define OP_VDestroy 104
+#define OP_ContextPop 105
#define OP_BitOr 75 /* same as TK_BITOR */
-#define OP_Next 103
-#define OP_IdxInsert 104
+#define OP_Next 106
+#define OP_IdxInsert 107
#define OP_Lt 71 /* same as TK_LT */
-#define OP_Insert 105
-#define OP_Destroy 106
-#define OP_ReadCookie 107
-#define OP_ForceInt 108
-#define OP_LoadAnalysis 109
-#define OP_Explain 110
-#define OP_OpenPseudo 111
-#define OP_OpenEphemeral 112
-#define OP_Null 113
-#define OP_Move 114
-#define OP_Blob 115
+#define OP_Insert 108
+#define OP_Destroy 109
+#define OP_ReadCookie 110
+#define OP_ForceInt 111
+#define OP_LoadAnalysis 112
+#define OP_Explain 113
+#define OP_OpenPseudo 114
+#define OP_OpenEphemeral 115
+#define OP_Null 116
+#define OP_Move 117
+#define OP_Blob 118
#define OP_Add 78 /* same as TK_PLUS */
-#define OP_Rewind 116
-#define OP_MoveGe 117
-#define OP_VBegin 118
-#define OP_VUpdate 119
-#define OP_IfZero 120
+#define OP_Rewind 119
+#define OP_MoveGe 120
+#define OP_VBegin 121
+#define OP_VUpdate 122
+#define OP_IfZero 123
#define OP_BitNot 87 /* same as TK_BITNOT */
-#define OP_VCreate 121
-#define OP_Found 122
-#define OP_IfPos 123
-#define OP_NullRow 124
+#define OP_VCreate 124
+#define OP_Found 126
+#define OP_IfPos 127
+#define OP_NullRow 128
+#define OP_Jump 129
+#define OP_Permutation 130
/* The following opcode values are never used */
-#define OP_NotUsed_126 126
-#define OP_NotUsed_127 127
-#define OP_NotUsed_128 128
-#define OP_NotUsed_129 129
-#define OP_NotUsed_130 130
#define OP_NotUsed_131 131
#define OP_NotUsed_132 132
#define OP_NotUsed_133 133
#define OPFLG_INITIALIZER {\
/* 0 */ 0x00, 0x01, 0x00, 0x00, 0x10, 0x02, 0x11, 0x00,\
/* 8 */ 0x00, 0x00, 0x05, 0x02, 0x00, 0x00, 0x00, 0x00,\
-/* 16 */ 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x05, 0x00,\
-/* 24 */ 0x00, 0x02, 0x02, 0x02, 0x04, 0x00, 0x00, 0x00,\
-/* 32 */ 0x00, 0x02, 0x11, 0x11, 0x02, 0x05, 0x00, 0x02,\
-/* 40 */ 0x11, 0x04, 0x00, 0x00, 0x0c, 0x11, 0x01, 0x02,\
-/* 48 */ 0x01, 0x00, 0x02, 0x01, 0x01, 0x02, 0x00, 0x04,\
-/* 56 */ 0x00, 0x00, 0x00, 0x11, 0x2c, 0x2c, 0x00, 0x00,\
-/* 64 */ 0x11, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\
-/* 72 */ 0x15, 0x05, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\
-/* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04,\
-/* 88 */ 0x02, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x11,\
-/* 96 */ 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x01,\
-/* 104 */ 0x08, 0x00, 0x02, 0x02, 0x05, 0x00, 0x00, 0x00,\
-/* 112 */ 0x00, 0x02, 0x00, 0x02, 0x01, 0x11, 0x00, 0x00,\
-/* 120 */ 0x05, 0x00, 0x11, 0x05, 0x00, 0x02, 0x00, 0x00,\
-/* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
+/* 16 */ 0x04, 0x02, 0x00, 0x01, 0x00, 0x00, 0x00, 0x05,\
+/* 24 */ 0x00, 0x04, 0x02, 0x02, 0x02, 0x04, 0x00, 0x00,\
+/* 32 */ 0x00, 0x00, 0x02, 0x11, 0x11, 0x02, 0x05, 0x00,\
+/* 40 */ 0x02, 0x11, 0x04, 0x00, 0x00, 0x0c, 0x11, 0x01,\
+/* 48 */ 0x02, 0x01, 0x00, 0x02, 0x01, 0x01, 0x02, 0x00,\
+/* 56 */ 0x04, 0x00, 0x00, 0x00, 0x2c, 0x2c, 0x00, 0x11,\
+/* 64 */ 0x00, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\
+/* 72 */ 0x15, 0x00, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\
+/* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x11, 0x05, 0x00, 0x04,\
+/* 88 */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,\
+/* 96 */ 0x01, 0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x01,\
+/* 104 */ 0x00, 0x00, 0x01, 0x08, 0x00, 0x02, 0x02, 0x05,\
+/* 112 */ 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x02, 0x01,\
+/* 120 */ 0x11, 0x00, 0x00, 0x05, 0x00, 0x02, 0x11, 0x05,\
+/* 128 */ 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 136 */ 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x04,}
/************** End of opcodes.h *********************************************/
SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*);
#endif
SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
-SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*, int);
+SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, int);
SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
#ifndef NDEBUG
SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...);
# define VdbeComment(X) sqlite3VdbeComment X
+SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...);
+# define VdbeNoopComment(X) sqlite3VdbeNoopComment X
#else
# define VdbeComment(X)
+# define VdbeNoopComment(X)
#endif
#endif
** subsystem. The page cache subsystem reads and writes a file a page
** at a time and provides a journal for rollback.
**
-** @(#) $Id: pager.h,v 1.72 2008/05/01 17:03:49 drh Exp $
+** @(#) $Id: pager.h,v 1.77 2008/07/16 18:17:56 danielk1977 Exp $
*/
#ifndef _PAGER_H_
#define _PAGER_H_
/*
+** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
+** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
+*/
+#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
+ #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1
+#endif
+
+/*
** The type used to represent a page number. The first page in a file
** is called page 1. 0 is used to represent "not a page".
*/
-typedef unsigned int Pgno;
+typedef u32 Pgno;
/*
** Each open file is managed by a separate instance of the "Pager" structure.
SQLITE_PRIVATE int sqlite3PagerRef(DbPage*);
SQLITE_PRIVATE int sqlite3PagerUnref(DbPage*);
SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
-SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*);
+SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*, int*);
SQLITE_PRIVATE int sqlite3PagerTruncate(Pager*,Pgno);
SQLITE_PRIVATE int sqlite3PagerBegin(DbPage*, int exFlag);
SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, Pgno, int);
SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager*);
SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
-SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno);
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int);
SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *);
SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *, int);
+SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager);
#ifdef SQLITE_TEST
SQLITE_PRIVATE int *sqlite3PagerStats(Pager*);
SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*);
+SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*);
#endif
#ifdef SQLITE_TEST
**
** This header file is #include-ed by sqliteInt.h and thus ends up
** being included by every source file.
+**
+** $Id: os.h,v 1.105 2008/06/26 10:41:19 danielk1977 Exp $
*/
#ifndef _SQLITE_OS_H_
#define _SQLITE_OS_H_
/*
** Figure out if we are dealing with Unix, Windows, or some other
** operating system. After the following block of preprocess macros,
-** all of OS_UNIX, OS_WIN, OS_OS2, and OS_OTHER will defined to either
-** 1 or 0. One of the four will be 1. The other three will be 0.
-*/
-#if defined(OS_OTHER)
-# if OS_OTHER==1
-# undef OS_UNIX
-# define OS_UNIX 0
-# undef OS_WIN
-# define OS_WIN 0
-# undef OS_OS2
-# define OS_OS2 0
+** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, SQLITE_OS_OS2, and SQLITE_OS_OTHER
+** will defined to either 1 or 0. One of the four will be 1. The other
+** three will be 0.
+*/
+#if defined(SQLITE_OS_OTHER)
+# if SQLITE_OS_OTHER==1
+# undef SQLITE_OS_UNIX
+# define SQLITE_OS_UNIX 0
+# undef SQLITE_OS_WIN
+# define SQLITE_OS_WIN 0
+# undef SQLITE_OS_OS2
+# define SQLITE_OS_OS2 0
# else
-# undef OS_OTHER
+# undef SQLITE_OS_OTHER
# endif
#endif
-#if !defined(OS_UNIX) && !defined(OS_OTHER)
-# define OS_OTHER 0
-# ifndef OS_WIN
+#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER)
+# define SQLITE_OS_OTHER 0
+# ifndef SQLITE_OS_WIN
# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
-# define OS_WIN 1
-# define OS_UNIX 0
-# define OS_OS2 0
+# define SQLITE_OS_WIN 1
+# define SQLITE_OS_UNIX 0
+# define SQLITE_OS_OS2 0
# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
-# define OS_WIN 0
-# define OS_UNIX 0
-# define OS_OS2 1
+# define SQLITE_OS_WIN 0
+# define SQLITE_OS_UNIX 0
+# define SQLITE_OS_OS2 1
# else
-# define OS_WIN 0
-# define OS_UNIX 1
-# define OS_OS2 0
+# define SQLITE_OS_WIN 0
+# define SQLITE_OS_UNIX 1
+# define SQLITE_OS_OS2 0
# endif
# else
-# define OS_UNIX 0
-# define OS_OS2 0
+# define SQLITE_OS_UNIX 0
+# define SQLITE_OS_OS2 0
# endif
#else
-# ifndef OS_WIN
-# define OS_WIN 0
+# ifndef SQLITE_OS_WIN
+# define SQLITE_OS_WIN 0
# endif
#endif
+/*
+** Determine if we are dealing with WindowsCE - which has a much
+** reduced API.
+*/
+#if defined(_WIN32_WCE)
+# define SQLITE_OS_WINCE 1
+#else
+# define SQLITE_OS_WINCE 0
+#endif
/*
** Define the maximum size of a temporary filename
*/
-#if OS_WIN
+#if SQLITE_OS_WIN
# include <windows.h>
# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
-#elif OS_OS2
+#elif SQLITE_OS_OS2
# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
# include <os2safe.h> /* has to be included before os2.h for linking to work */
# endif
SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int);
SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int);
-SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id);
+SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut);
SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*);
SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id);
SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
*/
SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
-SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int);
-SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *, int, char *);
+SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut);
SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *);
SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *, void *, const char *);
SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *);
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int);
SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *, double*);
SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *);
-/*
-** Each OS-specific backend defines an instance of the following
-** structure for returning a pointer to its sqlite3_vfs. If OS_OTHER
-** is defined (meaning that the application-defined OS interface layer
-** is used) then there is no default VFS. The application must
-** register one or more VFS structures using sqlite3_vfs_register()
-** before attempting to use SQLite.
-*/
-SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void);
-
#endif /* _SQLITE_OS_H_ */
/************** End of os.h **************************************************/
** Source files should #include the sqliteInt.h file and let that file
** include this one indirectly.
**
-** $Id: mutex.h,v 1.2 2007/08/30 14:10:30 drh Exp $
+** $Id: mutex.h,v 1.8 2008/06/26 10:41:19 danielk1977 Exp $
*/
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_NOOP_DEBUG
#endif
-#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX
+#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && SQLITE_OS_UNIX
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_PTHREADS
#endif
-#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN
+#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && SQLITE_OS_WIN
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_W32
#endif
-#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_OS2
+#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && SQLITE_OS_OS2
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_OS2
#endif
#define sqlite3_mutex_leave(X)
#define sqlite3_mutex_held(X) 1
#define sqlite3_mutex_notheld(X) 1
+#define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8)
+#define sqlite3MutexInit() SQLITE_OK
+#define sqlite3MutexEnd()
#endif
#endif /* SQLITE_MUTEX_APPDEF */
#define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1)
/*
+** Lookaside malloc is a set of fixed-size buffers that can be used
+** to satisify small transient memory allocation requests for objects
+** associated with a particular database connection. The use of
+** lookaside malloc provides a significant performance enhancement
+** (approx 10%) by avoiding numerous malloc/free requests while parsing
+** SQL statements.
+**
+** The Lookaside structure holds configuration information about the
+** lookaside malloc subsystem. Each available memory allocation in
+** the lookaside subsystem is stored on a linked list of LookasideSlot
+** objects.
+*/
+struct Lookaside {
+ u16 sz; /* Size of each buffer in bytes */
+ u8 bEnabled; /* True if use lookaside. False to ignore it */
+ u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */
+ int nOut; /* Number of buffers currently checked out */
+ int mxOut; /* Highwater mark for nOut */
+ LookasideSlot *pFree; /* List if available buffers */
+ void *pStart; /* First byte of available memory space */
+ void *pEnd; /* First byte past end of available space */
+};
+struct LookasideSlot {
+ LookasideSlot *pNext; /* Next buffer in the list of free buffers */
+};
+
+/*
** Each database is an instance of the following structure.
**
** The sqlite.lastRowid records the last insert rowid generated by an
int isInterrupted; /* True if sqlite3_interrupt has been called */
double notUsed1; /* Spacer */
} u1;
+ Lookaside lookaside; /* Lookaside malloc configuration */
#ifndef SQLITE_OMIT_AUTHORIZATION
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
/* Access authorization function */
** changing the affinity.
*/
#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
-#define SQLITE_NULLEQUAL 0x10 /* compare NULLs equal */
-#define SQLITE_STOREP2 0x80 /* Store result in reg[P2] rather than jump */
+#define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */
/*
** Each SQL table is represented in memory by an instance of the
** of a SELECT statement.
*/
struct Table {
+ sqlite3 *db; /* Associated database connection. Might be NULL. */
char *zName; /* Name of the table */
int nCol; /* Number of columns in this table */
Column *aCol; /* Information about each column */
Select *pSelect; /* When the expression is a sub-select. Also the
** right side of "<expr> IN (<select>)" */
Table *pTab; /* Table for OP_Column expressions. */
-/* Schema *pSchema; */
-#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
+#if SQLITE_MAX_EXPR_DEPTH>0
int nHeight; /* Height of the tree headed by this node */
#endif
};
#define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */
#define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */
#define EP_FixedDest 0x0400 /* Result needed in a specific register */
-
+#define EP_IntValue 0x0800 /* Integer value contained in iTable */
/*
** These macros can be used to test, set, or clear bits in the
** Expr.flags field.
#define SRT_Callback 5 /* Invoke a callback with each row of result */
#define SRT_Mem 6 /* Store result in a memory cell */
-#define SRT_Set 7 /* Store non-null results as keys in an index */
+#define SRT_Set 7 /* Store results as keys in an index */
#define SRT_Table 8 /* Store result as data with an automatic rowid */
#define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */
-#define SRT_Subroutine 10 /* Call a subroutine to handle results */
+#define SRT_Coroutine 10 /* Generate a single row of result */
/*
** A structure used to customize the behaviour of sqlite3Select(). See
int nVtabLock; /* Number of virtual tables to lock */
Table **apVtabLock; /* Pointer to virtual tables needing locking */
#endif
-#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
int nHeight; /* Expression tree height of current sub-select */
-#endif
};
#ifdef SQLITE_OMIT_VIRTUALTABLE
** do not necessarily know how big the string will be in the end.
*/
struct StrAccum {
- char *zBase; /* A base allocation. Not from malloc. */
- char *zText; /* The string collected so far */
- int nChar; /* Length of the string so far */
- int nAlloc; /* Amount of space allocated in zText */
+ sqlite3 *db; /* Optional database for lookaside. Can be NULL */
+ char *zBase; /* A base allocation. Not from malloc. */
+ char *zText; /* The string collected so far */
+ int nChar; /* Length of the string so far */
+ int nAlloc; /* Amount of space allocated in zText */
int mxAlloc; /* Maximum allowed string length */
u8 mallocFailed; /* Becomes true if any memory allocation fails */
u8 useMalloc; /* True if zText is enlargable using realloc */
} InitData;
/*
+** Structure containing global configuration data for the SQLite library.
+**
+** This structure also contains some state information.
+*/
+struct Sqlite3Config {
+ int bMemstat; /* True to enable memory status */
+ int bCoreMutex; /* True to enable core mutexing */
+ int bFullMutex; /* True to enable full mutexing */
+ int mxStrlen; /* Maximum string length */
+ int szLookaside; /* Default lookaside buffer size */
+ int nLookaside; /* Default lookaside buffer count */
+ sqlite3_mem_methods m; /* Low-level memory allocation interface */
+ sqlite3_mutex_methods mutex; /* Low-level mutex interface */
+ void *pHeap; /* Heap storage space */
+ int nHeap; /* Size of pHeap[] */
+ int mnReq, mxReq; /* Min and max heap requests sizes */
+ void *pScratch; /* Scratch memory */
+ int szScratch; /* Size of each scratch buffer */
+ int nScratch; /* Number of scratch buffers */
+ void *pPage; /* Page cache memory */
+ int szPage; /* Size of each page in pPage[] */
+ int nPage; /* Number of pages in pPage[] */
+ int isInit; /* True after initialization has finished */
+ int isMallocInit; /* True after malloc is initialized */
+ sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */
+ int nSmall; /* alloc size threshold used by mem6.c */
+ int mxParserStack; /* maximum depth of the parser stack */
+};
+
+/*
** Assuming zIn points to the first byte of a UTF-8 character,
** advance zIn to point to the first byte of the next UTF-8 character.
*/
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3Corrupt(void);
# define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
-# define DEBUGONLY(X) X
#else
# define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
-# define DEBUGONLY(X)
#endif
/*
SQLITE_PRIVATE int sqlite3StrICmp(const char *, const char *);
SQLITE_PRIVATE int sqlite3StrNICmp(const char *, const char *, int);
SQLITE_PRIVATE int sqlite3IsNumber(const char*, int*, u8);
-
-SQLITE_PRIVATE void *sqlite3MallocZero(unsigned);
-SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, unsigned);
-SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, unsigned);
-SQLITE_PRIVATE char *sqlite3StrDup(const char*);
-SQLITE_PRIVATE char *sqlite3StrNDup(const char*, int);
+SQLITE_PRIVATE int sqlite3Strlen(sqlite3*, const char*);
+
+SQLITE_PRIVATE int sqlite3MallocInit(void);
+SQLITE_PRIVATE void sqlite3MallocEnd(void);
+SQLITE_PRIVATE void *sqlite3Malloc(int);
+SQLITE_PRIVATE void *sqlite3MallocZero(int);
+SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, int);
+SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, int);
SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, int);
+SQLITE_PRIVATE void *sqlite3Realloc(void*, int);
SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, int);
-SQLITE_PRIVATE int sqlite3MallocSize(void *);
+SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*);
+SQLITE_PRIVATE int sqlite3MallocSize(void*);
+SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, void*);
+SQLITE_PRIVATE void *sqlite3ScratchMalloc(int);
+SQLITE_PRIVATE void sqlite3ScratchFree(void*);
+SQLITE_PRIVATE void *sqlite3PageMalloc(int);
+SQLITE_PRIVATE void sqlite3PageFree(void*);
+SQLITE_PRIVATE void sqlite3MemSetDefault(void);
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetDefault(void);
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys6(void);
+SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
+
+#ifndef SQLITE_MUTEX_NOOP
+SQLITE_PRIVATE sqlite3_mutex_methods *sqlite3DefaultMutex(void);
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int);
+SQLITE_PRIVATE int sqlite3MutexInit(void);
+SQLITE_PRIVATE int sqlite3MutexEnd(void);
+#endif
+
+SQLITE_PRIVATE void sqlite3StatusReset(void);
+SQLITE_PRIVATE int sqlite3StatusValue(int);
+SQLITE_PRIVATE void sqlite3StatusAdd(int, int);
+SQLITE_PRIVATE void sqlite3StatusSet(int, int);
SQLITE_PRIVATE int sqlite3IsNaN(double);
+SQLITE_PRIVATE void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
+SQLITE_PRIVATE char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...);
#endif
#if defined(SQLITE_TEST)
-SQLITE_PRIVATE void *sqlite3TextToPtr(const char*);
+SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*);
#endif
-SQLITE_PRIVATE void sqlite3SetString(char **, ...);
+SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*, ...);
SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
SQLITE_PRIVATE void sqlite3ErrorClear(Parse*);
SQLITE_PRIVATE void sqlite3Dequote(char*);
SQLITE_PRIVATE void sqlite3ExprSpan(Expr*,Token*,Token*);
SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*);
-SQLITE_PRIVATE void sqlite3ExprDelete(Expr*);
+SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*);
SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*);
-SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList*);
+SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3*, ExprList*);
SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
Select*, Expr*, IdList*);
SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*);
SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*);
-SQLITE_PRIVATE void sqlite3IdListDelete(IdList*);
-SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList*);
+SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*);
+SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*);
SQLITE_PRIVATE void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
Token*, int, int);
SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
-SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*, char *aff);
+SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*);
SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
Expr*,ExprList*,int,Expr*,Expr*);
-SQLITE_PRIVATE void sqlite3SelectDelete(Select*);
+SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*);
SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8);
SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int);
-SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int);
+SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int);
+SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprClearColumnCache(Parse*, int);
SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
SQLITE_PRIVATE int sqlite3ExprWritableRegister(Parse*,int,int);
SQLITE_PRIVATE int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
int, int, u32*, u32*);
void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
-SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep*);
+SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
ExprList*,Select*,int);
SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int);
SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
-SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger*);
+SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3*, Trigger*);
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
#else
# define sqlite3TriggersExist(A,B,C,D,E,F) 0
-# define sqlite3DeleteTrigger(A)
+# define sqlite3DeleteTrigger(A,B)
# define sqlite3DropTriggerPtr(A,B)
# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0
SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
+SQLITE_PRIVATE struct Sqlite3Config sqlite3Config;
#endif
SQLITE_PRIVATE void sqlite3RootPageMoved(Db*, int, int);
SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*);
-SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *, Expr *);
+SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *, Expr *, int);
SQLITE_PRIVATE int sqlite3SelectResolve(Parse *, Select *, NameContext *);
SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int);
SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
+SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, char*, int, int);
SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int);
SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*);
SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum*);
SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(size_t));
SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*));
SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*);
+#ifdef YYTRACKMAXSTACKDEPTH
+SQLITE_PRIVATE int sqlite3ParserStackPeak(void*);
+#endif
SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3*);
#ifndef SQLITE_OMIT_LOAD_EXTENSION
#ifdef SQLITE_OMIT_VIRTUALTABLE
# define sqlite3VtabClear(X)
-# define sqlite3VtabSync(X,Y) (Y)
+# define sqlite3VtabSync(X,Y) SQLITE_OK
# define sqlite3VtabRollback(X)
# define sqlite3VtabCommit(X)
#else
SQLITE_PRIVATE void sqlite3VtabClear(Table*);
-SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, int rc);
+SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, char **);
SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db);
SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db);
#endif
#define SQLITE_FAULTINJECTOR_COUNT 1
/*
-** The interface to the fault injector subsystem. If the fault injector
-** mechanism is disabled at compile-time then set up macros so that no
-** unnecessary code is generated.
+** The interface to the code in fault.c used for identifying "benign"
+** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
+** is not defined.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
-SQLITE_PRIVATE void sqlite3FaultConfig(int,int,int);
-SQLITE_PRIVATE int sqlite3FaultFailures(int);
-SQLITE_PRIVATE int sqlite3FaultBenignFailures(int);
-SQLITE_PRIVATE int sqlite3FaultPending(int);
-SQLITE_PRIVATE void sqlite3FaultBeginBenign(int);
-SQLITE_PRIVATE void sqlite3FaultEndBenign(int);
-SQLITE_PRIVATE int sqlite3FaultStep(int);
+SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void);
+SQLITE_PRIVATE void sqlite3EndBenignMalloc(void);
#else
-# define sqlite3FaultConfig(A,B,C)
-# define sqlite3FaultFailures(A) 0
-# define sqlite3FaultBenignFailures(A) 0
-# define sqlite3FaultPending(A) (-1)
-# define sqlite3FaultBeginBenign(A)
-# define sqlite3FaultEndBenign(A)
-# define sqlite3FaultStep(A) 0
+ #define sqlite3BeginBenignMalloc()
+ #define sqlite3EndBenignMalloc()
#endif
-
-
#define IN_INDEX_ROWID 1
#define IN_INDEX_EPH 2
#define IN_INDEX_INDEX 3
-SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int);
+SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int*);
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
#define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
#endif
-#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
-SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *);
+#if SQLITE_MAX_EXPR_DEPTH>0
+SQLITE_PRIVATE void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *);
#else
- #define sqlite3ExprSetHeight(x)
+ #define sqlite3ExprSetHeight(x,y)
+ #define sqlite3SelectExprHeight(x) 0
#endif
SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
#endif
/************** End of sqliteInt.h *******************************************/
+/************** Begin file global.c ******************************************/
+/*
+** 2008 June 13
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains definitions of global variables and contants.
+**
+** $Id: global.c,v 1.4 2008/07/28 19:34:53 drh Exp $
+*/
+
+
+/* An array to map all upper-case characters into their corresponding
+** lower-case character.
+**
+** SQLite only considers US-ASCII (or EBCDIC) characters. We do not
+** handle case conversions for the UTF character set since the tables
+** involved are nearly as big or bigger than SQLite itself.
+*/
+SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
+#ifdef SQLITE_ASCII
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
+ 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
+ 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
+ 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
+ 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
+ 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
+ 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
+ 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
+ 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
+ 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
+ 252,253,254,255
+#endif
+#ifdef SQLITE_EBCDIC
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
+ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
+ 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
+ 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
+ 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
+ 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
+ 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
+ 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
+ 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
+ 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
+ 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
+#endif
+};
+
+/*
+** The following singleton contains the global configuration for
+** the SQLite library.
+*/
+SQLITE_PRIVATE struct Sqlite3Config sqlite3Config = {
+ 1, /* bMemstat */
+ 1, /* bCoreMutex */
+ 1, /* bFullMutex */
+ 0x7ffffffe, /* mxStrlen */
+ 100, /* szLookaside */
+ 500, /* nLookaside */
+ /* Other fields all default to zero */
+};
+
+/************** End of global.c **********************************************/
+/************** Begin file status.c ******************************************/
+/*
+** 2008 June 18
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This module implements the sqlite3_status() interface and related
+** functionality.
+**
+** $Id: status.c,v 1.7 2008/08/05 17:53:23 drh Exp $
+*/
+
+/*
+** Variables in which to record status information.
+*/
+static struct {
+ int nowValue[9]; /* Current value */
+ int mxValue[9]; /* Maximum value */
+} sqlite3Stat;
+
+
+/*
+** Reset the status records. This routine is called by
+** sqlite3_initialize().
+*/
+SQLITE_PRIVATE void sqlite3StatusReset(void){
+ memset(&sqlite3Stat, 0, sizeof(sqlite3Stat));
+}
+
+/*
+** Return the current value of a status parameter.
+*/
+SQLITE_PRIVATE int sqlite3StatusValue(int op){
+ assert( op>=0 && op<ArraySize(sqlite3Stat.nowValue) );
+ return sqlite3Stat.nowValue[op];
+}
+
+/*
+** Add N to the value of a status record. It is assumed that the
+** caller holds appropriate locks.
+*/
+SQLITE_PRIVATE void sqlite3StatusAdd(int op, int N){
+ assert( op>=0 && op<ArraySize(sqlite3Stat.nowValue) );
+ sqlite3Stat.nowValue[op] += N;
+ if( sqlite3Stat.nowValue[op]>sqlite3Stat.mxValue[op] ){
+ sqlite3Stat.mxValue[op] = sqlite3Stat.nowValue[op];
+ }
+}
+
+/*
+** Set the value of a status to X.
+*/
+SQLITE_PRIVATE void sqlite3StatusSet(int op, int X){
+ assert( op>=0 && op<ArraySize(sqlite3Stat.nowValue) );
+ sqlite3Stat.nowValue[op] = X;
+ if( sqlite3Stat.nowValue[op]>sqlite3Stat.mxValue[op] ){
+ sqlite3Stat.mxValue[op] = sqlite3Stat.nowValue[op];
+ }
+}
+
+/*
+** Query status information.
+**
+** This implementation assumes that reading or writing an aligned
+** 32-bit integer is an atomic operation. If that assumption is not true,
+** then this routine is not threadsafe.
+*/
+SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
+ if( op<0 || op>=ArraySize(sqlite3Stat.nowValue) ){
+ return SQLITE_MISUSE;
+ }
+ *pCurrent = sqlite3Stat.nowValue[op];
+ *pHighwater = sqlite3Stat.mxValue[op];
+ if( resetFlag ){
+ sqlite3Stat.mxValue[op] = sqlite3Stat.nowValue[op];
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Query status information for a single database connection
+*/
+SQLITE_API int sqlite3_db_status(
+ sqlite3 *db, /* The database connection whose status is desired */
+ int op, /* Status verb */
+ int *pCurrent, /* Write current value here */
+ int *pHighwater, /* Write high-water mark here */
+ int resetFlag /* Reset high-water mark if true */
+){
+ switch( op ){
+ case SQLITE_DBSTATUS_LOOKASIDE_USED: {
+ *pCurrent = db->lookaside.nOut;
+ *pHighwater = db->lookaside.mxOut;
+ if( resetFlag ){
+ db->lookaside.mxOut = db->lookaside.nOut;
+ }
+ break;
+ }
+ default: {
+ return SQLITE_ERROR;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/************** End of status.c **********************************************/
/************** Begin file date.c ********************************************/
/*
** 2003 October 31
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
-** $Id: date.c,v 1.79 2008/03/20 14:03:29 drh Exp $
+** $Id: date.c,v 1.87 2008/07/28 19:34:53 drh Exp $
**
** SQLite processes all times and dates as Julian Day numbers. The
** dates and times are stored as the number of days since noon
#ifndef SQLITE_OMIT_DATETIME_FUNCS
/*
+** On recent Windows platforms, the localtime_s() function is available
+** as part of the "Secure CRT". It is essentially equivalent to
+** localtime_r() available under most POSIX platforms, except that the
+** order of the parameters is reversed.
+**
+** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
+**
+** If the user has not indicated to use localtime_r() or localtime_s()
+** already, check for an MSVC build environment that provides
+** localtime_s().
+*/
+#if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
+ defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
+#define HAVE_LOCALTIME_S 1
+#endif
+
+/*
** A structure for holding a single date and time.
*/
typedef struct DateTime DateTime;
struct DateTime {
- double rJD; /* The julian day number */
- int Y, M, D; /* Year, month, and day */
- int h, m; /* Hour and minutes */
- int tz; /* Timezone offset in minutes */
- double s; /* Seconds */
- char validYMD; /* True if Y,M,D are valid */
- char validHMS; /* True if h,m,s are valid */
- char validJD; /* True if rJD is valid */
- char validTZ; /* True if tz is valid */
+ sqlite3_int64 iJD; /* The julian day number times 86400000 */
+ int Y, M, D; /* Year, month, and day */
+ int h, m; /* Hour and minutes */
+ int tz; /* Timezone offset in minutes */
+ double s; /* Seconds */
+ char validYMD; /* True if Y,M,D are valid */
+ char validHMS; /* True if h,m,s are valid */
+ char validJD; /* True if iJD is valid */
+ char validTZ; /* True if tz is valid */
};
B = 2 - A + (A/4);
X1 = 365.25*(Y+4716);
X2 = 30.6001*(M+1);
- p->rJD = X1 + X2 + D + B - 1524.5;
+ p->iJD = (X1 + X2 + D + B - 1524.5)*86400000;
p->validJD = 1;
if( p->validHMS ){
- p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
+ p->iJD += p->h*3600000 + p->m*60000 + p->s*1000;
if( p->validTZ ){
- p->rJD -= p->tz*60/86400.0;
+ p->iJD -= p->tz*60000;
p->validYMD = 0;
p->validHMS = 0;
p->validTZ = 0;
}
/*
+** Set the time to the current time reported by the VFS
+*/
+static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
+ double r;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ sqlite3OsCurrentTime(db->pVfs, &r);
+ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
+ p->validJD = 1;
+}
+
+/*
** Attempt to parse the given string into a Julian Day Number. Return
** the number of errors.
**
const char *zDate,
DateTime *p
){
- memset(p, 0, sizeof(*p));
if( parseYyyyMmDd(zDate,p)==0 ){
return 0;
}else if( parseHhMmSs(zDate, p)==0 ){
return 0;
}else if( sqlite3StrICmp(zDate,"now")==0){
- double r;
- sqlite3 *db = sqlite3_context_db_handle(context);
- sqlite3OsCurrentTime(db->pVfs, &r);
- p->rJD = r;
- p->validJD = 1;
+ setDateTimeToCurrent(context, p);
return 0;
}else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
- getValue(zDate, &p->rJD);
+ double r;
+ getValue(zDate, &r);
+ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
p->validJD = 1;
return 0;
}
p->M = 1;
p->D = 1;
}else{
- Z = p->rJD + 0.5;
+ Z = (p->iJD + 43200000)/86400000;
A = (Z - 1867216.25)/36524.25;
A = Z + 1 + A - (A/4);
B = A + 1524;
** Compute the Hour, Minute, and Seconds from the julian day number.
*/
static void computeHMS(DateTime *p){
- int Z, s;
+ int s;
if( p->validHMS ) return;
computeJD(p);
- Z = p->rJD + 0.5;
- s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
- p->s = 0.001*s;
+ s = (p->iJD + 43200000) % 86400000;
+ p->s = s/1000.0;
s = p->s;
p->s -= s;
p->h = s/3600;
p->validTZ = 0;
}
+#ifndef SQLITE_OMIT_LOCALTIME
/*
-** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
+** Compute the difference (in milliseconds)
+** between localtime and UTC (a.k.a. GMT)
** for the time value p where p is in UTC.
*/
-static double localtimeOffset(DateTime *p){
+static int localtimeOffset(DateTime *p){
DateTime x, y;
time_t t;
x = *p;
x.tz = 0;
x.validJD = 0;
computeJD(&x);
- t = (x.rJD-2440587.5)*86400.0 + 0.5;
+ t = x.iJD/1000 - 2440587.5*86400.0;
#ifdef HAVE_LOCALTIME_R
{
struct tm sLocal;
y.m = sLocal.tm_min;
y.s = sLocal.tm_sec;
}
+#elif defined(HAVE_LOCALTIME_S)
+ {
+ struct tm sLocal;
+ localtime_s(&sLocal, &t);
+ y.Y = sLocal.tm_year + 1900;
+ y.M = sLocal.tm_mon + 1;
+ y.D = sLocal.tm_mday;
+ y.h = sLocal.tm_hour;
+ y.m = sLocal.tm_min;
+ y.s = sLocal.tm_sec;
+ }
#else
{
struct tm *pTm;
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
pTm = localtime(&t);
y.Y = pTm->tm_year + 1900;
y.M = pTm->tm_mon + 1;
y.h = pTm->tm_hour;
y.m = pTm->tm_min;
y.s = pTm->tm_sec;
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
#endif
y.validYMD = 1;
y.validJD = 0;
y.validTZ = 0;
computeJD(&y);
- return y.rJD - x.rJD;
+ return y.iJD - x.iJD;
}
+#endif /* SQLITE_OMIT_LOCALTIME */
/*
** Process a modifier to a date-time stamp. The modifiers are
}
z[n] = 0;
switch( z[0] ){
+#ifndef SQLITE_OMIT_LOCALTIME
case 'l': {
/* localtime
**
*/
if( strcmp(z, "localtime")==0 ){
computeJD(p);
- p->rJD += localtimeOffset(p);
+ p->iJD += localtimeOffset(p);
clearYMD_HMS_TZ(p);
rc = 0;
}
break;
}
+#endif
case 'u': {
/*
** unixepoch
**
- ** Treat the current value of p->rJD as the number of
+ ** Treat the current value of p->iJD as the number of
** seconds since 1970. Convert to a real julian day number.
*/
if( strcmp(z, "unixepoch")==0 && p->validJD ){
- p->rJD = p->rJD/86400.0 + 2440587.5;
+ p->iJD = p->iJD/86400.0 + 2440587.5*86400000.0;
clearYMD_HMS_TZ(p);
rc = 0;
- }else if( strcmp(z, "utc")==0 ){
+ }
+#ifndef SQLITE_OMIT_LOCALTIME
+ else if( strcmp(z, "utc")==0 ){
double c1;
computeJD(p);
c1 = localtimeOffset(p);
- p->rJD -= c1;
+ p->iJD -= c1;
clearYMD_HMS_TZ(p);
- p->rJD += c1 - localtimeOffset(p);
+ p->iJD += c1 - localtimeOffset(p);
rc = 0;
}
+#endif
break;
}
case 'w': {
*/
if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
&& (n=r)==r && n>=0 && r<7 ){
- int Z;
+ sqlite3_int64 Z;
computeYMD_HMS(p);
p->validTZ = 0;
p->validJD = 0;
computeJD(p);
- Z = p->rJD + 1.5;
- Z %= 7;
+ Z = ((p->iJD + 129600000)/86400000) % 7;
if( Z>n ) Z -= 7;
- p->rJD += n - Z;
+ p->iJD += (n - Z)*86400000;
clearYMD_HMS_TZ(p);
rc = 0;
}
*/
const char *z2 = z;
DateTime tx;
- int day;
+ sqlite3_int64 day;
if( !isdigit(*(u8*)z2) ) z2++;
memset(&tx, 0, sizeof(tx));
if( parseHhMmSs(z2, &tx) ) break;
computeJD(&tx);
- tx.rJD -= 0.5;
- day = (int)tx.rJD;
- tx.rJD -= day;
- if( z[0]=='-' ) tx.rJD = -tx.rJD;
+ tx.iJD -= 43200000;
+ day = tx.iJD/86400000;
+ tx.iJD -= day*86400000;
+ if( z[0]=='-' ) tx.iJD = -tx.iJD;
computeJD(p);
clearYMD_HMS_TZ(p);
- p->rJD += tx.rJD;
+ p->iJD += tx.iJD;
rc = 0;
break;
}
computeJD(p);
rc = 0;
if( n==3 && strcmp(z,"day")==0 ){
- p->rJD += r;
+ p->iJD += r*86400000.0 + 0.5;
}else if( n==4 && strcmp(z,"hour")==0 ){
- p->rJD += r/24.0;
+ p->iJD += r*(86400000.0/24.0) + 0.5;
}else if( n==6 && strcmp(z,"minute")==0 ){
- p->rJD += r/(24.0*60.0);
+ p->iJD += r*(86400000.0/(24.0*60.0)) + 0.5;
}else if( n==6 && strcmp(z,"second")==0 ){
- p->rJD += r/(24.0*60.0*60.0);
+ p->iJD += r*(86400000.0/(24.0*60.0*60.0)) + 0.5;
}else if( n==5 && strcmp(z,"month")==0 ){
int x, y;
computeYMD_HMS(p);
computeJD(p);
y = r;
if( y!=r ){
- p->rJD += (r - y)*30.0;
+ p->iJD += (r - y)*30.0*86400000.0 + 0.5;
}
}else if( n==4 && strcmp(z,"year")==0 ){
computeYMD_HMS(p);
){
int i;
const unsigned char *z;
- static const unsigned char zDflt[] = "now";
+ int eType;
+ memset(p, 0, sizeof(*p));
if( argc==0 ){
- z = zDflt;
+ setDateTimeToCurrent(context, p);
+ }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
+ || eType==SQLITE_INTEGER ){
+ p->iJD = sqlite3_value_double(argv[0])*86400000.0 + 0.5;
+ p->validJD = 1;
}else{
z = sqlite3_value_text(argv[0]);
- }
- if( !z || parseDateOrTime(context, (char*)z, p) ){
- return 1;
+ if( !z || parseDateOrTime(context, (char*)z, p) ){
+ return 1;
+ }
}
for(i=1; i<argc; i++){
if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
DateTime x;
if( isDate(context, argc, argv, &x)==0 ){
computeJD(&x);
- sqlite3_result_double(context, x.rJD);
+ sqlite3_result_double(context, x.iJD/86400000.0);
}
}
u64 n;
int i, j;
char *z;
+ sqlite3 *db;
const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
char zBuf[100];
if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
+ db = sqlite3_context_db_handle(context);
for(i=0, n=1; zFmt[i]; i++, n++){
if( zFmt[i]=='%' ){
switch( zFmt[i+1] ){
}
if( n<sizeof(zBuf) ){
z = zBuf;
- }else if( n>sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH] ){
+ }else if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sqlite3_result_error_toobig(context);
return;
}else{
- z = sqlite3_malloc( n );
+ z = sqlite3DbMallocRaw(db, n);
if( z==0 ){
sqlite3_result_error_nomem(context);
return;
y.M = 1;
y.D = 1;
computeJD(&y);
- nDay = x.rJD - y.rJD + 0.5;
+ nDay = (x.iJD - y.iJD)/86400000.0 + 0.5;
if( zFmt[i]=='W' ){
int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
- wd = ((int)(x.rJD+0.5)) % 7;
+ wd = ((x.iJD+43200000)/86400000) % 7;
sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
j += 2;
}else{
break;
}
case 'J': {
- sqlite3_snprintf(20, &z[j],"%.16g",x.rJD);
+ sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
j+=strlen(&z[j]);
break;
}
case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
case 's': {
sqlite3_snprintf(30,&z[j],"%d",
- (int)((x.rJD-2440587.5)*86400.0 + 0.5));
+ (int)(x.iJD/1000.0 - 210866760000.0));
j += strlen(&z[j]);
break;
}
case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
- case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
+ case 'w': z[j++] = (((x.iJD+129600000)/86400000) % 7) + '0'; break;
case 'Y': sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=strlen(&z[j]);break;
default: z[j++] = '%'; break;
}
}
z[j] = 0;
sqlite3_result_text(context, z, -1,
- z==zBuf ? SQLITE_TRANSIENT : sqlite3_free);
+ z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
}
/*
#else
{
struct tm *pTm;
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
pTm = gmtime(&t);
strftime(zBuf, 20, zFormat, pTm);
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
#endif
**
** This file contains OS interface code that is common to all
** architectures.
+**
+** $Id: os.c,v 1.120 2008/07/28 19:34:53 drh Exp $
*/
#define _SQLITE_OS_C_ 1
#undef _SQLITE_OS_C_
** sqlite3OsLock()
**
*/
-#if defined(SQLITE_TEST) && (OS_WIN==0)
+#if defined(SQLITE_TEST) && (SQLITE_OS_WIN==0) && 0
#define DO_OS_MALLOC_TEST if (1) { \
- void *pTstAlloc = sqlite3_malloc(10); \
+ void *pTstAlloc = sqlite3Malloc(10); \
if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \
sqlite3_free(pTstAlloc); \
}
return id->pMethods->xSync(id, flags);
}
SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
+ DO_OS_MALLOC_TEST;
return id->pMethods->xFileSize(id, pSize);
}
SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){
SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){
return id->pMethods->xUnlock(id, lockType);
}
-SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id){
- return id->pMethods->xCheckReservedLock(id);
+SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){
+ DO_OS_MALLOC_TEST;
+ return id->pMethods->xCheckReservedLock(id, pResOut);
}
SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
- return id->pMethods->xFileControl(id,op,pArg);
+ return id->pMethods->xFileControl(id, op, pArg);
}
SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){
int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
return pVfs->xDelete(pVfs, zPath, dirSync);
}
-SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){
- int rc;
-#ifdef SQLITE_TEST
- void *pTstAlloc = sqlite3_malloc(10);
- if (!pTstAlloc) return -1;
- sqlite3_free(pTstAlloc);
-#endif
- rc = pVfs->xAccess(pVfs, zPath, flags);
- return rc;
-}
-SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *pVfs, int nBufOut, char *zBufOut){
- return pVfs->xGetTempname(pVfs, nBufOut, zBufOut);
+SQLITE_PRIVATE int sqlite3OsAccess(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int flags,
+ int *pResOut
+){
+ DO_OS_MALLOC_TEST;
+ return pVfs->xAccess(pVfs, zPath, flags, pResOut);
}
SQLITE_PRIVATE int sqlite3OsFullPathname(
sqlite3_vfs *pVfs,
){
return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
}
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
return pVfs->xDlOpen(pVfs, zPath);
}
SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
pVfs->xDlClose(pVfs, pHandle);
}
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
return pVfs->xRandomness(pVfs, nByte, zBufOut);
}
){
int rc = SQLITE_NOMEM;
sqlite3_file *pFile;
- pFile = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile);
+ pFile = (sqlite3_file *)sqlite3Malloc(pVfs->szOsFile);
if( pFile ){
rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
if( rc!=SQLITE_OK ){
}
/*
-** The list of all registered VFS implementations. This list is
-** initialized to the single VFS returned by sqlite3OsDefaultVfs()
-** upon the first call to sqlite3_vfs_find().
+** The list of all registered VFS implementations.
*/
static sqlite3_vfs *vfsList = 0;
** first VFS on the list.
*/
SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
+ sqlite3_vfs *pVfs = 0;
#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex *mutex;
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return 0;
+#endif
+#ifndef SQLITE_MUTEX_NOOP
+ mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
- sqlite3_vfs *pVfs = 0;
- static int isInit = 0;
sqlite3_mutex_enter(mutex);
- if( !isInit ){
- vfsList = sqlite3OsDefaultVfs();
- isInit = 1;
- }
for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
if( zVfs==0 ) break;
if( strcmp(zVfs, pVfs->zName)==0 ) break;
** Unlink a VFS from the linked list
*/
static void vfsUnlink(sqlite3_vfs *pVfs){
- assert( sqlite3_mutex_held(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)) );
+ assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) );
if( pVfs==0 ){
/* No-op */
}else if( vfsList==pVfs ){
** true.
*/
SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex *mutex = 0;
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return rc;
#endif
- sqlite3_vfs_find(0); /* Make sure we are initialized */
+ mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
sqlite3_mutex_enter(mutex);
vfsUnlink(pVfs);
if( makeDflt || vfsList==0 ){
*/
SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
sqlite3_mutex_enter(mutex);
vfsUnlink(pVfs);
return SQLITE_OK;
}
-/*
-** Provide a default sqlite3OsDefaultVfs() implementation in the
-** cases where none of the standard backends are used.
-*/
-#if !OS_UNIX && !OS_WIN && !OS_OS2
-SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){ return 0; }
-#endif
-
/************** End of os.c **************************************************/
/************** Begin file fault.c *******************************************/
/*
** May you share freely, never taking more than you give.
**
*************************************************************************
-** This file contains code to implement a fault-injector used for
-** testing and verification of SQLite.
-**
-** Subsystems within SQLite can call sqlite3FaultStep() to see if
-** they should simulate a fault. sqlite3FaultStep() normally returns
-** zero but will return non-zero if a fault should be simulated.
-** Fault injectors can be used, for example, to simulate memory
-** allocation failures or I/O errors.
**
-** The fault injector is omitted from the code if SQLite is
-** compiled with -DSQLITE_OMIT_BUILTIN_TEST=1. There is a very
-** small performance hit for leaving the fault injector in the code.
-** Commerical products will probably want to omit the fault injector
-** from production builds. But safety-critical systems who work
-** under the motto "fly what you test and test what you fly" may
-** choose to leave the fault injector enabled even in production.
-*/
-
-#ifndef SQLITE_OMIT_BUILTIN_TEST
-
-/*
-** There can be various kinds of faults. For example, there can be
-** a memory allocation failure. Or an I/O failure. For each different
-** fault type, there is a separate FaultInjector structure to keep track
-** of the status of that fault.
+** $Id: fault.c,v 1.10 2008/06/22 12:37:58 drh Exp $
*/
-static struct FaultInjector {
- int iCountdown; /* Number of pending successes before we hit a failure */
- int nRepeat; /* Number of times to repeat the failure */
- int nBenign; /* Number of benign failures seen since last config */
- int nFail; /* Number of failures seen since last config */
- u8 enable; /* True if enabled */
- i16 benign; /* Positive if next failure will be benign */
-} aFault[SQLITE_FAULTINJECTOR_COUNT];
/*
-** This routine configures and enables a fault injector. After
-** calling this routine, aFaultStep() will return false (zero)
-** nDelay times, then it will return true nRepeat times,
-** then it will again begin returning false.
+** This file contains code to support the concept of "benign"
+** malloc failures (when the xMalloc() or xRealloc() method of the
+** sqlite3_mem_methods structure fails to allocate a block of memory
+** and returns 0).
+**
+** Most malloc failures are non-benign. After they occur, SQLite
+** abandons the current operation and returns an error code (usually
+** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily
+** fatal. For example, if a malloc fails while resizing a hash table, this
+** is completely recoverable simply by not carrying out the resize. The
+** hash table will continue to function normally. So a malloc failure
+** during a hash table resize is a benign fault.
*/
-SQLITE_PRIVATE void sqlite3FaultConfig(int id, int nDelay, int nRepeat){
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- aFault[id].iCountdown = nDelay;
- aFault[id].nRepeat = nRepeat;
- aFault[id].nBenign = 0;
- aFault[id].nFail = 0;
- aFault[id].enable = nDelay>=0;
- aFault[id].benign = 0;
-}
-/*
-** Return the number of faults (both hard and benign faults) that have
-** occurred since the injector was last configured.
-*/
-SQLITE_PRIVATE int sqlite3FaultFailures(int id){
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- return aFault[id].nFail;
-}
-/*
-** Return the number of benign faults that have occurred since the
-** injector was last configured.
-*/
-SQLITE_PRIVATE int sqlite3FaultBenignFailures(int id){
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- return aFault[id].nBenign;
-}
+#ifndef SQLITE_OMIT_BUILTIN_TEST
/*
-** Return the number of successes that will occur before the next failure.
-** If no failures are scheduled, return -1.
+** Global variables.
*/
-SQLITE_PRIVATE int sqlite3FaultPending(int id){
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- if( aFault[id].enable ){
- return aFault[id].iCountdown;
- }else{
- return -1;
- }
-}
-
-/*
-** After this routine causes subsequent faults to be either benign
-** or hard (not benign), according to the "enable" parameter.
-**
-** Most faults are hard. In other words, most faults cause
-** an error to be propagated back up to the application interface.
-** However, sometimes a fault is easily recoverable. For example,
-** if a malloc fails while resizing a hash table, this is completely
-** recoverable simply by not carrying out the resize. The hash table
-** will continue to function normally. So a malloc failure during
-** a hash table resize is a benign fault.
-*/
-SQLITE_PRIVATE void sqlite3FaultBeginBenign(int id){
- if( id<0 ){
- for(id=0; id<SQLITE_FAULTINJECTOR_COUNT; id++){
- aFault[id].benign++;
- }
- }else{
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- aFault[id].benign++;
- }
-}
-SQLITE_PRIVATE void sqlite3FaultEndBenign(int id){
- if( id<0 ){
- for(id=0; id<SQLITE_FAULTINJECTOR_COUNT; id++){
- assert( aFault[id].benign>0 );
- aFault[id].benign--;
- }
- }else{
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- assert( aFault[id].benign>0 );
- aFault[id].benign--;
- }
-}
+static struct BenignMallocHooks {
+ void (*xBenignBegin)(void);
+ void (*xBenignEnd)(void);
+} hooks;
/*
-** This routine exists as a place to set a breakpoint that will
-** fire on any simulated fault.
+** Register hooks to call when sqlite3BeginBenignMalloc() and
+** sqlite3EndBenignMalloc() are called, respectively.
*/
-static void sqlite3Fault(void){
- static int cnt = 0;
- cnt++;
+SQLITE_PRIVATE void sqlite3BenignMallocHooks(
+ void (*xBenignBegin)(void),
+ void (*xBenignEnd)(void)
+){
+ hooks.xBenignBegin = xBenignBegin;
+ hooks.xBenignEnd = xBenignEnd;
}
-
/*
-** Check to see if a fault should be simulated. Return true to simulate
-** the fault. Return false if the fault should not be simulated.
+** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that
+** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc()
+** indicates that subsequent malloc failures are non-benign.
*/
-SQLITE_PRIVATE int sqlite3FaultStep(int id){
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- if( likely(!aFault[id].enable) ){
- return 0;
- }
- if( aFault[id].iCountdown>0 ){
- aFault[id].iCountdown--;
- return 0;
- }
- sqlite3Fault();
- aFault[id].nFail++;
- if( aFault[id].benign>0 ){
- aFault[id].nBenign++;
+SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void){
+ if( hooks.xBenignBegin ){
+ hooks.xBenignBegin();
}
- aFault[id].nRepeat--;
- if( aFault[id].nRepeat<=0 ){
- aFault[id].enable = 0;
+}
+SQLITE_PRIVATE void sqlite3EndBenignMalloc(void){
+ if( hooks.xBenignEnd ){
+ hooks.xBenignEnd();
}
- return 1;
}
-#endif /* SQLITE_OMIT_BUILTIN_TEST */
+#endif /* #ifndef SQLITE_OMIT_BUILTIN_TEST */
/************** End of fault.c ***********************************************/
/************** Begin file mem1.c ********************************************/
** May you share freely, never taking more than you give.
**
*************************************************************************
-** This file contains the C functions that implement a memory
-** allocation subsystem for use by SQLite.
**
-** $Id: mem1.c,v 1.17 2008/03/18 00:07:11 drh Exp $
+** This file contains low-level memory allocation drivers for when
+** SQLite will use the standard C-library malloc/realloc/free interface
+** to obtain the memory it needs.
+**
+** This file contains implementations of the low-level memory allocation
+** routines specified in the sqlite3_mem_methods object.
+**
+** $Id: mem1.c,v 1.25 2008/07/25 08:49:00 danielk1977 Exp $
*/
/*
#ifdef SQLITE_SYSTEM_MALLOC
/*
-** All of the static variables used by this module are collected
-** into a single structure named "mem". This is to keep the
-** static variables organized and to reduce namespace pollution
-** when this module is combined with other in the amalgamation.
-*/
-static struct {
- /*
- ** The alarm callback and its arguments. The mem.mutex lock will
- ** be held while the callback is running. Recursive calls into
- ** the memory subsystem are allowed, but no new callbacks will be
- ** issued. The alarmBusy variable is set to prevent recursive
- ** callbacks.
- */
- sqlite3_int64 alarmThreshold;
- void (*alarmCallback)(void*, sqlite3_int64,int);
- void *alarmArg;
- int alarmBusy;
-
- /*
- ** Mutex to control access to the memory allocation subsystem.
- */
- sqlite3_mutex *mutex;
-
- /*
- ** Current allocation and high-water mark.
- */
- sqlite3_int64 nowUsed;
- sqlite3_int64 mxUsed;
-
-
-} mem;
-
-/*
-** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
+** Like malloc(), but remember the size of the allocation
+** so that we can find it later using sqlite3MemSize().
+**
+** For this low-level routine, we are guaranteed that nByte>0 because
+** cases of nByte<=0 will be intercepted and dealt with by higher level
+** routines.
*/
-static void enterMem(void){
- if( mem.mutex==0 ){
- mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
+static void *sqlite3MemMalloc(int nByte){
+ sqlite3_int64 *p;
+ assert( nByte>0 );
+ nByte = (nByte+7)&~7;
+ p = malloc( nByte+8 );
+ if( p ){
+ p[0] = nByte;
+ p++;
}
- sqlite3_mutex_enter(mem.mutex);
+ return (void *)p;
}
/*
-** Return the amount of memory currently checked out.
+** Like free() but works for allocations obtained from sqlite3MemMalloc()
+** or sqlite3MemRealloc().
+**
+** For this low-level routine, we already know that pPrior!=0 since
+** cases where pPrior==0 will have been intecepted and dealt with
+** by higher-level routines.
*/
-SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
- sqlite3_int64 n;
- enterMem();
- n = mem.nowUsed;
- sqlite3_mutex_leave(mem.mutex);
- return n;
+static void sqlite3MemFree(void *pPrior){
+ sqlite3_int64 *p = (sqlite3_int64*)pPrior;
+ assert( pPrior!=0 );
+ p--;
+ free(p);
}
/*
-** Return the maximum amount of memory that has ever been
-** checked out since either the beginning of this process
-** or since the most recent reset.
+** Like realloc(). Resize an allocation previously obtained from
+** sqlite3MemMalloc().
+**
+** For this low-level interface, we know that pPrior!=0. Cases where
+** pPrior==0 while have been intercepted by higher-level routine and
+** redirected to xMalloc. Similarly, we know that nByte>0 becauses
+** cases where nByte<=0 will have been intercepted by higher-level
+** routines and redirected to xFree.
*/
-SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
- sqlite3_int64 n;
- enterMem();
- n = mem.mxUsed;
- if( resetFlag ){
- mem.mxUsed = mem.nowUsed;
+static void *sqlite3MemRealloc(void *pPrior, int nByte){
+ sqlite3_int64 *p = (sqlite3_int64*)pPrior;
+ assert( pPrior!=0 && nByte>0 );
+ nByte = (nByte+7)&~7;
+ p = (sqlite3_int64*)pPrior;
+ p--;
+ p = realloc(p, nByte+8 );
+ if( p ){
+ p[0] = nByte;
+ p++;
}
- sqlite3_mutex_leave(mem.mutex);
- return n;
+ return (void*)p;
}
/*
-** Change the alarm callback
+** Report the allocated size of a prior return from xMalloc()
+** or xRealloc().
*/
-SQLITE_API int sqlite3_memory_alarm(
- void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
- void *pArg,
- sqlite3_int64 iThreshold
-){
- enterMem();
- mem.alarmCallback = xCallback;
- mem.alarmArg = pArg;
- mem.alarmThreshold = iThreshold;
- sqlite3_mutex_leave(mem.mutex);
- return SQLITE_OK;
+static int sqlite3MemSize(void *pPrior){
+ sqlite3_int64 *p;
+ if( pPrior==0 ) return 0;
+ p = (sqlite3_int64*)pPrior;
+ p--;
+ return p[0];
}
/*
-** Trigger the alarm
+** Round up a request size to the next valid allocation size.
*/
-static void sqlite3MemsysAlarm(int nByte){
- void (*xCallback)(void*,sqlite3_int64,int);
- sqlite3_int64 nowUsed;
- void *pArg;
- if( mem.alarmCallback==0 || mem.alarmBusy ) return;
- mem.alarmBusy = 1;
- xCallback = mem.alarmCallback;
- nowUsed = mem.nowUsed;
- pArg = mem.alarmArg;
- sqlite3_mutex_leave(mem.mutex);
- xCallback(pArg, nowUsed, nByte);
- sqlite3_mutex_enter(mem.mutex);
- mem.alarmBusy = 0;
+static int sqlite3MemRoundup(int n){
+ return (n+7) & ~7;
}
/*
-** Allocate nBytes of memory
+** Initialize this module.
*/
-SQLITE_API void *sqlite3_malloc(int nBytes){
- sqlite3_int64 *p = 0;
- if( nBytes>0 ){
- enterMem();
- if( mem.alarmCallback!=0 && mem.nowUsed+nBytes>=mem.alarmThreshold ){
- sqlite3MemsysAlarm(nBytes);
- }
- if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){
- p = 0;
- }else{
- p = malloc(nBytes+8);
- if( p==0 ){
- sqlite3MemsysAlarm(nBytes);
- p = malloc(nBytes+8);
- }
- }
- if( p ){
- p[0] = nBytes;
- p++;
- mem.nowUsed += nBytes;
- if( mem.nowUsed>mem.mxUsed ){
- mem.mxUsed = mem.nowUsed;
- }
- }
- sqlite3_mutex_leave(mem.mutex);
- }
- return (void*)p;
+static int sqlite3MemInit(void *NotUsed){
+ return SQLITE_OK;
}
/*
-** Free memory.
+** Deinitialize this module.
*/
-SQLITE_API void sqlite3_free(void *pPrior){
- sqlite3_int64 *p;
- int nByte;
- if( pPrior==0 ){
- return;
- }
- assert( mem.mutex!=0 );
- p = pPrior;
- p--;
- nByte = (int)*p;
- sqlite3_mutex_enter(mem.mutex);
- mem.nowUsed -= nByte;
- free(p);
- sqlite3_mutex_leave(mem.mutex);
+static void sqlite3MemShutdown(void *NotUsed){
+ return;
}
-/*
-** Return the number of bytes allocated at p.
-*/
-SQLITE_PRIVATE int sqlite3MallocSize(void *p){
- sqlite3_int64 *pInt;
- if( !p ) return 0;
- pInt = p;
- return pInt[-1];
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetDefault(void){
+ static const sqlite3_mem_methods defaultMethods = {
+ sqlite3MemMalloc,
+ sqlite3MemFree,
+ sqlite3MemRealloc,
+ sqlite3MemSize,
+ sqlite3MemRoundup,
+ sqlite3MemInit,
+ sqlite3MemShutdown,
+ 0
+ };
+ return &defaultMethods;
}
/*
-** Change the size of an existing memory allocation
+** This routine is the only routine in this file with external linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3Config.m with pointers to the routines in this file.
*/
-SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
- int nOld;
- sqlite3_int64 *p;
- if( pPrior==0 ){
- return sqlite3_malloc(nBytes);
- }
- if( nBytes<=0 ){
- sqlite3_free(pPrior);
- return 0;
- }
- p = pPrior;
- p--;
- nOld = (int)p[0];
- assert( mem.mutex!=0 );
- sqlite3_mutex_enter(mem.mutex);
- if( mem.nowUsed+nBytes-nOld>=mem.alarmThreshold ){
- sqlite3MemsysAlarm(nBytes-nOld);
- }
- if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){
- p = 0;
- }else{
- p = realloc(p, nBytes+8);
- if( p==0 ){
- sqlite3MemsysAlarm(nBytes);
- p = pPrior;
- p--;
- p = realloc(p, nBytes+8);
- }
- }
- if( p ){
- p[0] = nBytes;
- p++;
- mem.nowUsed += nBytes-nOld;
- if( mem.nowUsed>mem.mxUsed ){
- mem.mxUsed = mem.nowUsed;
- }
- }
- sqlite3_mutex_leave(mem.mutex);
- return (void*)p;
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ sqlite3_config(SQLITE_CONFIG_MALLOC, sqlite3MemGetDefault());
}
#endif /* SQLITE_SYSTEM_MALLOC */
** May you share freely, never taking more than you give.
**
*************************************************************************
-** This file contains the C functions that implement a memory
-** allocation subsystem for use by SQLite.
**
-** $Id: mem2.c,v 1.26 2008/04/10 14:57:25 drh Exp $
+** This file contains low-level memory allocation drivers for when
+** SQLite will use the standard C-library malloc/realloc/free interface
+** to obtain the memory it needs while adding lots of additional debugging
+** information to each allocation in order to help detect and fix memory
+** leaks and memory usage errors.
+**
+** This file contains implementations of the low-level memory allocation
+** routines specified in the sqlite3_mem_methods object.
+**
+** $Id: mem2.c,v 1.37 2008/07/25 08:49:00 danielk1977 Exp $
*/
/*
** when this module is combined with other in the amalgamation.
*/
static struct {
- /*
- ** The alarm callback and its arguments. The mem.mutex lock will
- ** be held while the callback is running. Recursive calls into
- ** the memory subsystem are allowed, but no new callbacks will be
- ** issued. The alarmBusy variable is set to prevent recursive
- ** callbacks.
- */
- sqlite3_int64 alarmThreshold;
- void (*alarmCallback)(void*, sqlite3_int64, int);
- void *alarmArg;
- int alarmBusy;
/*
** Mutex to control access to the memory allocation subsystem.
*/
sqlite3_mutex *mutex;
-
- /*
- ** Current allocation and high-water mark.
- */
- sqlite3_int64 nowUsed;
- sqlite3_int64 mxUsed;
-
+
/*
** Head and tail of a linked list of all outstanding allocations
*/
/*
** Gather statistics on the sizes of memory allocations.
- ** sizeCnt[i] is the number of allocation attempts of i*8
+ ** nAlloc[i] is the number of allocation attempts of i*8
** bytes. i==NCSIZE is the number of allocation attempts for
** sizes more than NCSIZE*8 bytes.
*/
- int sizeCnt[NCSIZE];
+ int nAlloc[NCSIZE]; /* Total number of allocations */
+ int nCurrent[NCSIZE]; /* Current number of allocations */
+ int mxCurrent[NCSIZE]; /* Highwater mark for nCurrent */
} mem;
/*
-** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
+** Adjust memory usage statistics
*/
-static void enterMem(void){
- if( mem.mutex==0 ){
- mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
+static void adjustStats(int iSize, int increment){
+ int i = ((iSize+7)&~7)/8;
+ if( i>NCSIZE-1 ){
+ i = NCSIZE - 1;
}
- sqlite3_mutex_enter(mem.mutex);
-}
-
-/*
-** Return the amount of memory currently checked out.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
- sqlite3_int64 n;
- enterMem();
- n = mem.nowUsed;
- sqlite3_mutex_leave(mem.mutex);
- return n;
-}
-
-/*
-** Return the maximum amount of memory that has ever been
-** checked out since either the beginning of this process
-** or since the most recent reset.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
- sqlite3_int64 n;
- enterMem();
- n = mem.mxUsed;
- if( resetFlag ){
- mem.mxUsed = mem.nowUsed;
+ if( increment>0 ){
+ mem.nAlloc[i]++;
+ mem.nCurrent[i]++;
+ if( mem.nCurrent[i]>mem.mxCurrent[i] ){
+ mem.mxCurrent[i] = mem.nCurrent[i];
+ }
+ }else{
+ mem.nCurrent[i]--;
+ assert( mem.nCurrent[i]>=0 );
}
- sqlite3_mutex_leave(mem.mutex);
- return n;
-}
-
-/*
-** Change the alarm callback
-*/
-SQLITE_API int sqlite3_memory_alarm(
- void(*xCallback)(void *pArg, sqlite3_int64 used, int N),
- void *pArg,
- sqlite3_int64 iThreshold
-){
- enterMem();
- mem.alarmCallback = xCallback;
- mem.alarmArg = pArg;
- mem.alarmThreshold = iThreshold;
- sqlite3_mutex_leave(mem.mutex);
- return SQLITE_OK;
-}
-
-/*
-** Trigger the alarm
-*/
-static void sqlite3MemsysAlarm(int nByte){
- void (*xCallback)(void*,sqlite3_int64,int);
- sqlite3_int64 nowUsed;
- void *pArg;
- if( mem.alarmCallback==0 || mem.alarmBusy ) return;
- mem.alarmBusy = 1;
- xCallback = mem.alarmCallback;
- nowUsed = mem.nowUsed;
- pArg = mem.alarmArg;
- sqlite3_mutex_leave(mem.mutex);
- xCallback(pArg, nowUsed, nByte);
- sqlite3_mutex_enter(mem.mutex);
- mem.alarmBusy = 0;
}
/*
/*
** Return the number of bytes currently allocated at address p.
*/
-SQLITE_PRIVATE int sqlite3MallocSize(void *p){
+static int sqlite3MemSize(void *p){
struct MemBlockHdr *pHdr;
if( !p ){
return 0;
}
/*
+** Initialize the memory allocation subsystem.
+*/
+static int sqlite3MemInit(void *NotUsed){
+ if( !sqlite3Config.bMemstat ){
+ /* If memory status is enabled, then the malloc.c wrapper will already
+ ** hold the STATIC_MEM mutex when the routines here are invoked. */
+ mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize the memory allocation subsystem.
+*/
+static void sqlite3MemShutdown(void *NotUsed){
+ mem.mutex = 0;
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int sqlite3MemRoundup(int n){
+ return (n+7) & ~7;
+}
+
+/*
** Allocate nByte bytes of memory.
*/
-SQLITE_API void *sqlite3_malloc(int nByte){
+static void *sqlite3MemMalloc(int nByte){
struct MemBlockHdr *pHdr;
void **pBt;
char *z;
int *pInt;
void *p = 0;
int totalSize;
-
- if( nByte>0 ){
- int nReserve;
- enterMem();
- assert( mem.disallow==0 );
- if( mem.alarmCallback!=0 && mem.nowUsed+nByte>=mem.alarmThreshold ){
- sqlite3MemsysAlarm(nByte);
- }
- nReserve = (nByte+7)&~7;
- if( nReserve/8>NCSIZE-1 ){
- mem.sizeCnt[NCSIZE-1]++;
- }else{
- mem.sizeCnt[nReserve/8]++;
- }
- totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
- mem.nBacktrace*sizeof(void*) + mem.nTitle;
- if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){
- p = 0;
+ int nReserve;
+ sqlite3_mutex_enter(mem.mutex);
+ assert( mem.disallow==0 );
+ nReserve = (nByte+7)&~7;
+ totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
+ mem.nBacktrace*sizeof(void*) + mem.nTitle;
+ p = malloc(totalSize);
+ if( p ){
+ z = p;
+ pBt = (void**)&z[mem.nTitle];
+ pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
+ pHdr->pNext = 0;
+ pHdr->pPrev = mem.pLast;
+ if( mem.pLast ){
+ mem.pLast->pNext = pHdr;
}else{
- p = malloc(totalSize);
- if( p==0 ){
- sqlite3MemsysAlarm(nByte);
- p = malloc(totalSize);
+ mem.pFirst = pHdr;
+ }
+ mem.pLast = pHdr;
+ pHdr->iForeGuard = FOREGUARD;
+ pHdr->nBacktraceSlots = mem.nBacktrace;
+ pHdr->nTitle = mem.nTitle;
+ if( mem.nBacktrace ){
+ void *aAddr[40];
+ pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
+ memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
+ if( mem.xBacktrace ){
+ mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]);
}
+ }else{
+ pHdr->nBacktrace = 0;
}
- if( p ){
- z = p;
- pBt = (void**)&z[mem.nTitle];
- pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
- pHdr->pNext = 0;
- pHdr->pPrev = mem.pLast;
- if( mem.pLast ){
- mem.pLast->pNext = pHdr;
- }else{
- mem.pFirst = pHdr;
- }
- mem.pLast = pHdr;
- pHdr->iForeGuard = FOREGUARD;
- pHdr->nBacktraceSlots = mem.nBacktrace;
- pHdr->nTitle = mem.nTitle;
- if( mem.nBacktrace ){
- void *aAddr[40];
- pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
- memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
- if( mem.xBacktrace ){
- mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]);
- }
- }else{
- pHdr->nBacktrace = 0;
- }
- if( mem.nTitle ){
- memcpy(z, mem.zTitle, mem.nTitle);
- }
- pHdr->iSize = nByte;
- pInt = (int*)&pHdr[1];
- pInt[nReserve/sizeof(int)] = REARGUARD;
- memset(pInt, 0x65, nReserve);
- mem.nowUsed += nByte;
- if( mem.nowUsed>mem.mxUsed ){
- mem.mxUsed = mem.nowUsed;
- }
- p = (void*)pInt;
+ if( mem.nTitle ){
+ memcpy(z, mem.zTitle, mem.nTitle);
}
- sqlite3_mutex_leave(mem.mutex);
+ pHdr->iSize = nByte;
+ adjustStats(nByte, +1);
+ pInt = (int*)&pHdr[1];
+ pInt[nReserve/sizeof(int)] = REARGUARD;
+ memset(pInt, 0x65, nReserve);
+ p = (void*)pInt;
}
+ sqlite3_mutex_leave(mem.mutex);
return p;
}
/*
** Free memory.
*/
-SQLITE_API void sqlite3_free(void *pPrior){
+static void sqlite3MemFree(void *pPrior){
struct MemBlockHdr *pHdr;
void **pBt;
char *z;
- if( pPrior==0 ){
- return;
- }
- assert( mem.mutex!=0 );
+ assert( sqlite3Config.bMemstat || mem.mutex!=0 );
pHdr = sqlite3MemsysGetHeader(pPrior);
pBt = (void**)pHdr;
pBt -= pHdr->nBacktraceSlots;
sqlite3_mutex_enter(mem.mutex);
- mem.nowUsed -= pHdr->iSize;
if( pHdr->pPrev ){
assert( pHdr->pPrev->pNext==pHdr );
pHdr->pPrev->pNext = pHdr->pNext;
}
z = (char*)pBt;
z -= pHdr->nTitle;
+ adjustStats(pHdr->iSize, -1);
memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
pHdr->iSize + sizeof(int) + pHdr->nTitle);
free(z);
** much more likely to break and we are much more liking to find
** the error.
*/
-SQLITE_API void *sqlite3_realloc(void *pPrior, int nByte){
+static void *sqlite3MemRealloc(void *pPrior, int nByte){
struct MemBlockHdr *pOldHdr;
void *pNew;
- if( pPrior==0 ){
- return sqlite3_malloc(nByte);
- }
- if( nByte<=0 ){
- sqlite3_free(pPrior);
- return 0;
- }
assert( mem.disallow==0 );
pOldHdr = sqlite3MemsysGetHeader(pPrior);
- pNew = sqlite3_malloc(nByte);
+ pNew = sqlite3MemMalloc(nByte);
if( pNew ){
memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
if( nByte>pOldHdr->iSize ){
memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
}
- sqlite3_free(pPrior);
+ sqlite3MemFree(pPrior);
}
return pNew;
}
+
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetDefault(void){
+ static const sqlite3_mem_methods defaultMethods = {
+ sqlite3MemMalloc,
+ sqlite3MemFree,
+ sqlite3MemRealloc,
+ sqlite3MemSize,
+ sqlite3MemRoundup,
+ sqlite3MemInit,
+ sqlite3MemShutdown,
+ 0
+ };
+ return &defaultMethods;
+}
+
+/*
+** Populate the low-level memory allocation function pointers in
+** sqlite3Config.m with pointers to the routines in this file.
+*/
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ sqlite3_config(SQLITE_CONFIG_MALLOC, sqlite3MemGetDefault());
+}
+
/*
** Set the number of backtrace levels kept for each allocation.
-** A value of zero turns of backtracing. The number is always rounded
+** A value of zero turns off backtracing. The number is always rounded
** up to a multiple of 2.
*/
SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){
*/
SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){
int n = strlen(zTitle) + 1;
- enterMem();
+ sqlite3_mutex_enter(mem.mutex);
if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
memcpy(mem.zTitle, zTitle, n);
mem.zTitle[n] = 0;
}
fprintf(out, "COUNTS:\n");
for(i=0; i<NCSIZE-1; i++){
- if( mem.sizeCnt[i] ){
- fprintf(out, " %3d: %d\n", i*8+8, mem.sizeCnt[i]);
+ if( mem.nAlloc[i] ){
+ fprintf(out, " %5d: %10d %10d %10d\n",
+ i*8, mem.nAlloc[i], mem.nCurrent[i], mem.mxCurrent[i]);
}
}
- if( mem.sizeCnt[NCSIZE-1] ){
- fprintf(out, " >%3d: %d\n", NCSIZE*8, mem.sizeCnt[NCSIZE-1]);
+ if( mem.nAlloc[NCSIZE-1] ){
+ fprintf(out, " %5d: %10d %10d %10d\n",
+ NCSIZE*8-8, mem.nAlloc[NCSIZE-1],
+ mem.nCurrent[NCSIZE-1], mem.mxCurrent[NCSIZE-1]);
}
fclose(out);
}
/*
-** Return the number of times sqlite3_malloc() has been called.
+** Return the number of times sqlite3MemMalloc() has been called.
*/
SQLITE_PRIVATE int sqlite3MemdebugMallocCount(){
int i;
int nTotal = 0;
for(i=0; i<NCSIZE; i++){
- nTotal += mem.sizeCnt[i];
+ nTotal += mem.nAlloc[i];
}
return nTotal;
}
** allocation subsystem for use by SQLite.
**
** This version of the memory allocation subsystem omits all
-** use of malloc(). All dynamically allocatable memory is
-** contained in a static array, mem.aPool[]. The size of this
-** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
+** use of malloc(). The SQLite user supplies a block of memory
+** before calling sqlite3_initialize() from which allocations
+** are made and returned by the xMalloc() and xRealloc()
+** implementations. Once sqlite3_initialize() has been called,
+** the amount of memory available to SQLite is fixed and cannot
+** be changed.
**
-** This version of the memory allocation subsystem is used if
-** and only if SQLITE_MEMORY_SIZE is defined.
+** This version of the memory allocation subsystem is included
+** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
**
-** $Id: mem3.c,v 1.12 2008/02/19 15:15:16 drh Exp $
+** $Id: mem3.c,v 1.20 2008/07/18 18:56:17 drh Exp $
*/
/*
-** This version of the memory allocator is used only when
-** SQLITE_MEMORY_SIZE is defined.
+** This version of the memory allocator is only built into the library
+** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
+** mean that the library will use a memory-pool by default, just that
+** it is available. The mempool allocator is activated by calling
+** sqlite3_config().
*/
-#ifdef SQLITE_MEMORY_SIZE
+#ifdef SQLITE_ENABLE_MEMSYS3
/*
** Maximum size (in Mem3Blocks) of a "small" chunk.
** u.hdr.prevSize can be part of the data for that chunk and should
** not be read or written.
**
-** We often identify a chunk by its index in mem.aPool[]. When
+** We often identify a chunk by its index in mem3.aPool[]. When
** this is done, the chunk index refers to the second block of
** the chunk. In this way, the first chunk has an index of 1.
** A chunk index of 0 means "no such chunk" and is the equivalent
**
** The second block of free chunks is of the form u.list. The
** two fields form a double-linked list of chunks of related sizes.
-** Pointers to the head of the list are stored in mem.aiSmall[]
-** for smaller chunks and mem.aiHash[] for larger chunks.
+** Pointers to the head of the list are stored in mem3.aiSmall[]
+** for smaller chunks and mem3.aiHash[] for larger chunks.
**
** The second block of a chunk is user data if the chunk is checked
** out. If a chunk is checked out, the user data may extend into
u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
} hdr;
struct {
- u32 next; /* Index in mem.aPool[] of next free chunk */
- u32 prev; /* Index in mem.aPool[] of previous free chunk */
+ u32 next; /* Index in mem3.aPool[] of next free chunk */
+ u32 prev; /* Index in mem3.aPool[] of previous free chunk */
} list;
} u;
};
/*
** All of the static variables used by this module are collected
-** into a single structure named "mem". This is to keep the
+** into a single structure named "mem3". This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
/*
- ** Memory available for allocation
+ ** Memory available for allocation. nPool is the size of the array
+ ** (in Mem3Blocks) pointed to by aPool less 2.
*/
- Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2];
-} mem;
+ u32 nPool;
+ Mem3Block *aPool;
+} mem3;
/*
-** Unlink the chunk at mem.aPool[i] from list it is currently
+** Unlink the chunk at mem3.aPool[i] from list it is currently
** on. *pRoot is the list that i is a member of.
*/
static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
- u32 next = mem.aPool[i].u.list.next;
- u32 prev = mem.aPool[i].u.list.prev;
- assert( sqlite3_mutex_held(mem.mutex) );
+ u32 next = mem3.aPool[i].u.list.next;
+ u32 prev = mem3.aPool[i].u.list.prev;
+ assert( sqlite3_mutex_held(mem3.mutex) );
if( prev==0 ){
*pRoot = next;
}else{
- mem.aPool[prev].u.list.next = next;
+ mem3.aPool[prev].u.list.next = next;
}
if( next ){
- mem.aPool[next].u.list.prev = prev;
+ mem3.aPool[next].u.list.prev = prev;
}
- mem.aPool[i].u.list.next = 0;
- mem.aPool[i].u.list.prev = 0;
+ mem3.aPool[i].u.list.next = 0;
+ mem3.aPool[i].u.list.prev = 0;
}
/*
*/
static void memsys3Unlink(u32 i){
u32 size, hash;
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
assert( i>=1 );
- size = mem.aPool[i-1].u.hdr.size4x/4;
- assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
assert( size>=2 );
if( size <= MX_SMALL ){
- memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
+ memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
}else{
hash = size % N_HASH;
- memsys3UnlinkFromList(i, &mem.aiHash[hash]);
+ memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
}
}
/*
-** Link the chunk at mem.aPool[i] so that is on the list rooted
+** Link the chunk at mem3.aPool[i] so that is on the list rooted
** at *pRoot.
*/
static void memsys3LinkIntoList(u32 i, u32 *pRoot){
- assert( sqlite3_mutex_held(mem.mutex) );
- mem.aPool[i].u.list.next = *pRoot;
- mem.aPool[i].u.list.prev = 0;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ mem3.aPool[i].u.list.next = *pRoot;
+ mem3.aPool[i].u.list.prev = 0;
if( *pRoot ){
- mem.aPool[*pRoot].u.list.prev = i;
+ mem3.aPool[*pRoot].u.list.prev = i;
}
*pRoot = i;
}
*/
static void memsys3Link(u32 i){
u32 size, hash;
- assert( sqlite3_mutex_held(mem.mutex) );
+ assert( sqlite3_mutex_held(mem3.mutex) );
assert( i>=1 );
- assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
- size = mem.aPool[i-1].u.hdr.size4x/4;
- assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
+ assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
assert( size>=2 );
if( size <= MX_SMALL ){
- memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
+ memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
}else{
hash = size % N_HASH;
- memsys3LinkIntoList(i, &mem.aiHash[hash]);
+ memsys3LinkIntoList(i, &mem3.aiHash[hash]);
}
}
/*
-** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
-**
-** Also: Initialize the memory allocation subsystem the first time
-** this routine is called.
+** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
+** will already be held (obtained by code in malloc.c) if
+** sqlite3Config.bMemStat is true.
*/
static void memsys3Enter(void){
- if( mem.mutex==0 ){
- mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
- mem.aPool[0].u.hdr.size4x = SQLITE_MEMORY_SIZE/2 + 2;
- mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8;
- mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.size4x = 1;
- mem.iMaster = 1;
- mem.szMaster = SQLITE_MEMORY_SIZE/8;
- mem.mnMaster = mem.szMaster;
- }
- sqlite3_mutex_enter(mem.mutex);
-}
-
-/*
-** Return the amount of memory currently checked out.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
- sqlite3_int64 n;
- memsys3Enter();
- n = SQLITE_MEMORY_SIZE - mem.szMaster*8;
- sqlite3_mutex_leave(mem.mutex);
- return n;
-}
-
-/*
-** Return the maximum amount of memory that has ever been
-** checked out since either the beginning of this process
-** or since the most recent reset.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
- sqlite3_int64 n;
- memsys3Enter();
- n = SQLITE_MEMORY_SIZE - mem.mnMaster*8;
- if( resetFlag ){
- mem.mnMaster = mem.szMaster;
+ if( sqlite3Config.bMemstat==0 && mem3.mutex==0 ){
+ mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
}
- sqlite3_mutex_leave(mem.mutex);
- return n;
+ sqlite3_mutex_enter(mem3.mutex);
}
-
-/*
-** Change the alarm callback.
-**
-** This is a no-op for the static memory allocator. The purpose
-** of the memory alarm is to support sqlite3_soft_heap_limit().
-** But with this memory allocator, the soft_heap_limit is really
-** a hard limit that is fixed at SQLITE_MEMORY_SIZE.
-*/
-SQLITE_API int sqlite3_memory_alarm(
- void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
- void *pArg,
- sqlite3_int64 iThreshold
-){
- return SQLITE_OK;
+static void memsys3Leave(void){
+ sqlite3_mutex_leave(mem3.mutex);
}
/*
** Called when we are unable to satisfy an allocation of nBytes.
*/
static void memsys3OutOfMemory(int nByte){
- if( !mem.alarmBusy ){
- mem.alarmBusy = 1;
- assert( sqlite3_mutex_held(mem.mutex) );
- sqlite3_mutex_leave(mem.mutex);
+ if( !mem3.alarmBusy ){
+ mem3.alarmBusy = 1;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ sqlite3_mutex_leave(mem3.mutex);
sqlite3_release_memory(nByte);
- sqlite3_mutex_enter(mem.mutex);
- mem.alarmBusy = 0;
+ sqlite3_mutex_enter(mem3.mutex);
+ mem3.alarmBusy = 0;
}
}
-/*
-** Return the size of an outstanding allocation, in bytes. The
-** size returned omits the 8-byte header overhead. This only
-** works for chunks that are currently checked out.
-*/
-SQLITE_PRIVATE int sqlite3MallocSize(void *p){
- int iSize = 0;
- if( p ){
- Mem3Block *pBlock = (Mem3Block*)p;
- assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
- iSize = (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
- }
- return iSize;
-}
/*
** Chunk i is a free chunk that has been unlinked. Adjust its
*/
static void *memsys3Checkout(u32 i, int nBlock){
u32 x;
- assert( sqlite3_mutex_held(mem.mutex) );
+ assert( sqlite3_mutex_held(mem3.mutex) );
assert( i>=1 );
- assert( mem.aPool[i-1].u.hdr.size4x/4==nBlock );
- assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
- x = mem.aPool[i-1].u.hdr.size4x;
- mem.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
- mem.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
- mem.aPool[i+nBlock-1].u.hdr.size4x |= 2;
- return &mem.aPool[i];
+ assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
+ assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
+ x = mem3.aPool[i-1].u.hdr.size4x;
+ mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
+ mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
+ mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
+ return &mem3.aPool[i];
}
/*
-** Carve a piece off of the end of the mem.iMaster free chunk.
+** Carve a piece off of the end of the mem3.iMaster free chunk.
** Return a pointer to the new allocation. Or, if the master chunk
** is not large enough, return 0.
*/
static void *memsys3FromMaster(int nBlock){
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( mem.szMaster>=nBlock );
- if( nBlock>=mem.szMaster-1 ){
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( mem3.szMaster>=nBlock );
+ if( nBlock>=mem3.szMaster-1 ){
/* Use the entire master */
- void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
- mem.iMaster = 0;
- mem.szMaster = 0;
- mem.mnMaster = 0;
+ void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
+ mem3.iMaster = 0;
+ mem3.szMaster = 0;
+ mem3.mnMaster = 0;
return p;
}else{
/* Split the master block. Return the tail. */
u32 newi, x;
- newi = mem.iMaster + mem.szMaster - nBlock;
- assert( newi > mem.iMaster+1 );
- mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = nBlock;
- mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x |= 2;
- mem.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
- mem.szMaster -= nBlock;
- mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
- x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
- mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
- if( mem.szMaster < mem.mnMaster ){
- mem.mnMaster = mem.szMaster;
+ newi = mem3.iMaster + mem3.szMaster - nBlock;
+ assert( newi > mem3.iMaster+1 );
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
+ mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
+ mem3.szMaster -= nBlock;
+ mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
+ x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
+ mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
+ if( mem3.szMaster < mem3.mnMaster ){
+ mem3.mnMaster = mem3.szMaster;
}
- return (void*)&mem.aPool[newi];
+ return (void*)&mem3.aPool[newi];
}
}
/*
** *pRoot is the head of a list of free chunks of the same size
** or same size hash. In other words, *pRoot is an entry in either
-** mem.aiSmall[] or mem.aiHash[].
+** mem3.aiSmall[] or mem3.aiHash[].
**
** This routine examines all entries on the given list and tries
** to coalesce each entries with adjacent free chunks.
**
-** If it sees a chunk that is larger than mem.iMaster, it replaces
-** the current mem.iMaster with the new larger chunk. In order for
-** this mem.iMaster replacement to work, the master chunk must be
+** If it sees a chunk that is larger than mem3.iMaster, it replaces
+** the current mem3.iMaster with the new larger chunk. In order for
+** this mem3.iMaster replacement to work, the master chunk must be
** linked into the hash tables. That is not the normal state of
** affairs, of course. The calling routine must link the master
** chunk before invoking this routine, then must unlink the (possibly
static void memsys3Merge(u32 *pRoot){
u32 iNext, prev, size, i, x;
- assert( sqlite3_mutex_held(mem.mutex) );
+ assert( sqlite3_mutex_held(mem3.mutex) );
for(i=*pRoot; i>0; i=iNext){
- iNext = mem.aPool[i].u.list.next;
- size = mem.aPool[i-1].u.hdr.size4x;
+ iNext = mem3.aPool[i].u.list.next;
+ size = mem3.aPool[i-1].u.hdr.size4x;
assert( (size&1)==0 );
if( (size&2)==0 ){
memsys3UnlinkFromList(i, pRoot);
- assert( i > mem.aPool[i-1].u.hdr.prevSize );
- prev = i - mem.aPool[i-1].u.hdr.prevSize;
+ assert( i > mem3.aPool[i-1].u.hdr.prevSize );
+ prev = i - mem3.aPool[i-1].u.hdr.prevSize;
if( prev==iNext ){
- iNext = mem.aPool[prev].u.list.next;
+ iNext = mem3.aPool[prev].u.list.next;
}
memsys3Unlink(prev);
size = i + size/4 - prev;
- x = mem.aPool[prev-1].u.hdr.size4x & 2;
- mem.aPool[prev-1].u.hdr.size4x = size*4 | x;
- mem.aPool[prev+size-1].u.hdr.prevSize = size;
+ x = mem3.aPool[prev-1].u.hdr.size4x & 2;
+ mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
+ mem3.aPool[prev+size-1].u.hdr.prevSize = size;
memsys3Link(prev);
i = prev;
}else{
size /= 4;
}
- if( size>mem.szMaster ){
- mem.iMaster = i;
- mem.szMaster = size;
+ if( size>mem3.szMaster ){
+ mem3.iMaster = i;
+ mem3.szMaster = size;
}
}
}
/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.
+**
+** This function assumes that the necessary mutexes, if any, are
+** already held by the caller. Hence "Unsafe".
*/
-static void *memsys3Malloc(int nByte){
+static void *memsys3MallocUnsafe(int nByte){
u32 i;
int nBlock;
int toFree;
- assert( sqlite3_mutex_held(mem.mutex) );
+ assert( sqlite3_mutex_held(mem3.mutex) );
assert( sizeof(Mem3Block)==8 );
if( nByte<=12 ){
nBlock = 2;
}else{
nBlock = (nByte + 11)/8;
}
- assert( nBlock >= 2 );
+ assert( nBlock>=2 );
/* STEP 1:
** Look for an entry of the correct size in either the small
** successful most of the time (about 9 times out of 10).
*/
if( nBlock <= MX_SMALL ){
- i = mem.aiSmall[nBlock-2];
+ i = mem3.aiSmall[nBlock-2];
if( i>0 ){
- memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
+ memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
return memsys3Checkout(i, nBlock);
}
}else{
int hash = nBlock % N_HASH;
- for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
- if( mem.aPool[i-1].u.hdr.size4x/4==nBlock ){
- memsys3UnlinkFromList(i, &mem.aiHash[hash]);
+ for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
+ if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
+ memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
return memsys3Checkout(i, nBlock);
}
}
** Try to satisfy the allocation by carving a piece off of the end
** of the master chunk. This step usually works if step 1 fails.
*/
- if( mem.szMaster>=nBlock ){
+ if( mem3.szMaster>=nBlock ){
return memsys3FromMaster(nBlock);
}
** of the end of the master chunk. This step happens very
** rarely (we hope!)
*/
- for(toFree=nBlock*16; toFree<SQLITE_MEMORY_SIZE*2; toFree *= 2){
+ for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
memsys3OutOfMemory(toFree);
- if( mem.iMaster ){
- memsys3Link(mem.iMaster);
- mem.iMaster = 0;
- mem.szMaster = 0;
+ if( mem3.iMaster ){
+ memsys3Link(mem3.iMaster);
+ mem3.iMaster = 0;
+ mem3.szMaster = 0;
}
for(i=0; i<N_HASH; i++){
- memsys3Merge(&mem.aiHash[i]);
+ memsys3Merge(&mem3.aiHash[i]);
}
for(i=0; i<MX_SMALL-1; i++){
- memsys3Merge(&mem.aiSmall[i]);
+ memsys3Merge(&mem3.aiSmall[i]);
}
- if( mem.szMaster ){
- memsys3Unlink(mem.iMaster);
- if( mem.szMaster>=nBlock ){
+ if( mem3.szMaster ){
+ memsys3Unlink(mem3.iMaster);
+ if( mem3.szMaster>=nBlock ){
return memsys3FromMaster(nBlock);
}
}
/*
** Free an outstanding memory allocation.
+**
+** This function assumes that the necessary mutexes, if any, are
+** already held by the caller. Hence "Unsafe".
*/
-void memsys3Free(void *pOld){
+void memsys3FreeUnsafe(void *pOld){
Mem3Block *p = (Mem3Block*)pOld;
int i;
u32 size, x;
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] );
- i = p - mem.aPool;
- assert( (mem.aPool[i-1].u.hdr.size4x&1)==1 );
- size = mem.aPool[i-1].u.hdr.size4x/4;
- assert( i+size<=SQLITE_MEMORY_SIZE/8+1 );
- mem.aPool[i-1].u.hdr.size4x &= ~1;
- mem.aPool[i+size-1].u.hdr.prevSize = size;
- mem.aPool[i+size-1].u.hdr.size4x &= ~2;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
+ i = p - mem3.aPool;
+ assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( i+size<=mem3.nPool+1 );
+ mem3.aPool[i-1].u.hdr.size4x &= ~1;
+ mem3.aPool[i+size-1].u.hdr.prevSize = size;
+ mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
memsys3Link(i);
/* Try to expand the master using the newly freed chunk */
- if( mem.iMaster ){
- while( (mem.aPool[mem.iMaster-1].u.hdr.size4x&2)==0 ){
- size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
- mem.iMaster -= size;
- mem.szMaster += size;
- memsys3Unlink(mem.iMaster);
- x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
- mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
- mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
+ if( mem3.iMaster ){
+ while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
+ size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
+ mem3.iMaster -= size;
+ mem3.szMaster += size;
+ memsys3Unlink(mem3.iMaster);
+ x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
+ mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
}
- x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
- while( (mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x&1)==0 ){
- memsys3Unlink(mem.iMaster+mem.szMaster);
- mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x/4;
- mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
- mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
+ x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
+ while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
+ memsys3Unlink(mem3.iMaster+mem3.szMaster);
+ mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
+ mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
}
}
}
/*
-** Allocate nBytes of memory
+** Return the size of an outstanding allocation, in bytes. The
+** size returned omits the 8-byte header overhead. This only
+** works for chunks that are currently checked out.
*/
-SQLITE_API void *sqlite3_malloc(int nBytes){
- sqlite3_int64 *p = 0;
- if( nBytes>0 ){
- memsys3Enter();
- p = memsys3Malloc(nBytes);
- sqlite3_mutex_leave(mem.mutex);
+static int memsys3Size(void *p){
+ Mem3Block *pBlock;
+ if( p==0 ) return 0;
+ pBlock = (Mem3Block*)p;
+ assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
+ return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int memsys3Roundup(int n){
+ if( n<=12 ){
+ return 12;
+ }else{
+ return ((n+11)&~7) - 4;
}
+}
+
+/*
+** Allocate nBytes of memory.
+*/
+static void *memsys3Malloc(int nBytes){
+ sqlite3_int64 *p;
+ assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */
+ memsys3Enter();
+ p = memsys3MallocUnsafe(nBytes);
+ memsys3Leave();
return (void*)p;
}
/*
** Free memory.
*/
-SQLITE_API void sqlite3_free(void *pPrior){
- if( pPrior==0 ){
- return;
- }
- assert( mem.mutex!=0 );
- sqlite3_mutex_enter(mem.mutex);
- memsys3Free(pPrior);
- sqlite3_mutex_leave(mem.mutex);
+void memsys3Free(void *pPrior){
+ assert( pPrior );
+ memsys3Enter();
+ memsys3FreeUnsafe(pPrior);
+ memsys3Leave();
}
/*
** Change the size of an existing memory allocation
*/
-SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
+void *memsys3Realloc(void *pPrior, int nBytes){
int nOld;
void *p;
if( pPrior==0 ){
sqlite3_free(pPrior);
return 0;
}
- assert( mem.mutex!=0 );
- nOld = sqlite3MallocSize(pPrior);
+ nOld = memsys3Size(pPrior);
if( nBytes<=nOld && nBytes>=nOld-128 ){
return pPrior;
}
- sqlite3_mutex_enter(mem.mutex);
- p = memsys3Malloc(nBytes);
+ memsys3Enter();
+ p = memsys3MallocUnsafe(nBytes);
if( p ){
if( nOld<nBytes ){
memcpy(p, pPrior, nOld);
}else{
memcpy(p, pPrior, nBytes);
}
- memsys3Free(pPrior);
+ memsys3FreeUnsafe(pPrior);
}
- sqlite3_mutex_leave(mem.mutex);
+ memsys3Leave();
return p;
}
/*
+** Initialize this module.
+*/
+static int memsys3Init(void *NotUsed){
+ if( !sqlite3Config.pHeap ){
+ return SQLITE_ERROR;
+ }
+
+ /* Store a pointer to the memory block in global structure mem3. */
+ assert( sizeof(Mem3Block)==8 );
+ mem3.aPool = (Mem3Block *)sqlite3Config.pHeap;
+ mem3.nPool = (sqlite3Config.nHeap / sizeof(Mem3Block)) - 2;
+
+ /* Initialize the master block. */
+ mem3.szMaster = mem3.nPool;
+ mem3.mnMaster = mem3.szMaster;
+ mem3.iMaster = 1;
+ mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
+ mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
+ mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
+
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void memsys3Shutdown(void *NotUsed){
+ return;
+}
+
+
+
+/*
** Open the file indicated and write a log of all unfreed memory
** allocations into that log.
*/
-SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3Memsys3Dump(const char *zFilename){
FILE *out;
int i, j;
u32 size;
}
memsys3Enter();
fprintf(out, "CHUNKS:\n");
- for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size/4){
- size = mem.aPool[i-1].u.hdr.size4x;
+ for(i=1; i<=mem3.nPool; i+=size/4){
+ size = mem3.aPool[i-1].u.hdr.size4x;
if( size/4<=1 ){
- fprintf(out, "%p size error\n", &mem.aPool[i]);
+ fprintf(out, "%p size error\n", &mem3.aPool[i]);
assert( 0 );
break;
}
- if( (size&1)==0 && mem.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
- fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
+ if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
+ fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
assert( 0 );
break;
}
- if( ((mem.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
- fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]);
+ if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
+ fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
assert( 0 );
break;
}
if( size&1 ){
- fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], (size/4)*8-8);
+ fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
}else{
- fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size/4)*8-8,
- i==mem.iMaster ? " **master**" : "");
+ fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
+ i==mem3.iMaster ? " **master**" : "");
}
}
for(i=0; i<MX_SMALL-1; i++){
- if( mem.aiSmall[i]==0 ) continue;
+ if( mem3.aiSmall[i]==0 ) continue;
fprintf(out, "small(%2d):", i);
- for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
- fprintf(out, " %p(%d)", &mem.aPool[j],
- (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
+ for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
+ fprintf(out, " %p(%d)", &mem3.aPool[j],
+ (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
}
fprintf(out, "\n");
}
for(i=0; i<N_HASH; i++){
- if( mem.aiHash[i]==0 ) continue;
+ if( mem3.aiHash[i]==0 ) continue;
fprintf(out, "hash(%2d):", i);
- for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
- fprintf(out, " %p(%d)", &mem.aPool[j],
- (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
+ for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
+ fprintf(out, " %p(%d)", &mem3.aPool[j],
+ (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
}
fprintf(out, "\n");
}
- fprintf(out, "master=%d\n", mem.iMaster);
- fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster*8);
- fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster*8);
- sqlite3_mutex_leave(mem.mutex);
+ fprintf(out, "master=%d\n", mem3.iMaster);
+ fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
+ fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
+ sqlite3_mutex_leave(mem3.mutex);
if( out==stdout ){
fflush(stdout);
}else{
fclose(out);
}
-#endif
}
+#endif
+/*
+** This routine is the only routine in this file with external
+** linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3Config.m with pointers to the routines in this file. The
+** arguments specify the block of memory to manage.
+**
+** This routine is only called by sqlite3_config(), and therefore
+** is not required to be threadsafe (it is not).
+*/
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
+ static const sqlite3_mem_methods mempoolMethods = {
+ memsys3Malloc,
+ memsys3Free,
+ memsys3Realloc,
+ memsys3Size,
+ memsys3Roundup,
+ memsys3Init,
+ memsys3Shutdown,
+ 0
+ };
+ return &mempoolMethods;
+}
-#endif /* !SQLITE_MEMORY_SIZE */
+#endif /* SQLITE_ENABLE_MEMSYS3 */
/************** End of mem3.c ************************************************/
/************** Begin file mem5.c ********************************************/
** allocation subsystem for use by SQLite.
**
** This version of the memory allocation subsystem omits all
-** use of malloc(). All dynamically allocatable memory is
-** contained in a static array, mem.aPool[]. The size of this
-** fixed memory pool is SQLITE_POW2_MEMORY_SIZE bytes.
+** use of malloc(). The SQLite user supplies a block of memory
+** before calling sqlite3_initialize() from which allocations
+** are made and returned by the xMalloc() and xRealloc()
+** implementations. Once sqlite3_initialize() has been called,
+** the amount of memory available to SQLite is fixed and cannot
+** be changed.
**
-** This version of the memory allocation subsystem is used if
-** and only if SQLITE_POW2_MEMORY_SIZE is defined.
+** This version of the memory allocation subsystem is included
+** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
**
-** $Id: mem5.c,v 1.4 2008/02/19 15:15:16 drh Exp $
+** $Id: mem5.c,v 1.11 2008/07/16 12:25:32 drh Exp $
*/
/*
** This version of the memory allocator is used only when
** SQLITE_POW2_MEMORY_SIZE is defined.
*/
-#ifdef SQLITE_POW2_MEMORY_SIZE
+#ifdef SQLITE_ENABLE_MEMSYS5
/*
** Log2 of the minimum size of an allocation. For example, if
#ifndef SQLITE_POW2_LOGMIN
# define SQLITE_POW2_LOGMIN 6
#endif
-#define POW2_MIN (1<<SQLITE_POW2_LOGMIN)
/*
** Log2 of the maximum size of an allocation.
*/
#ifndef SQLITE_POW2_LOGMAX
-# define SQLITE_POW2_LOGMAX 18
+# define SQLITE_POW2_LOGMAX 20
#endif
#define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)
** Larger allocations are an array of these structures where the
** size of the array is a power of 2.
*/
-typedef struct Mem5Block Mem5Block;
-struct Mem5Block {
- union {
- char aData[POW2_MIN];
- struct {
- int next; /* Index in mem.aPool[] of next free chunk */
- int prev; /* Index in mem.aPool[] of previous free chunk */
- } list;
- } u;
+typedef struct Mem5Link Mem5Link;
+struct Mem5Link {
+ int next; /* Index of next free chunk */
+ int prev; /* Index of previous free chunk */
};
/*
-** Number of blocks of memory available for allocation.
+** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since
+** mem5.nAtom is always at least 8, this is not really a practical
+** limitation.
*/
-#define NBLOCK (SQLITE_POW2_MEMORY_SIZE/POW2_MIN)
+#define LOGMAX 30
/*
-** The size in blocks of an POW2_MAX allocation
-*/
-#define SZ_MAX (1<<(NSIZE-1))
-
-/*
-** Masks used for mem.aCtrl[] elements.
+** Masks used for mem5.aCtrl[] elements.
*/
#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */
#define CTRL_FREE 0x20 /* True if not checked out */
/*
** All of the static variables used by this module are collected
-** into a single structure named "mem". This is to keep the
+** into a single structure named "mem5". This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct {
/*
- ** The alarm callback and its arguments. The mem.mutex lock will
+ ** The alarm callback and its arguments. The mem5.mutex lock will
** be held while the callback is running. Recursive calls into
** the memory subsystem are allowed, but no new callbacks will be
** issued. The alarmBusy variable is set to prevent recursive
/*
** Lists of free blocks of various sizes.
*/
- int aiFreelist[NSIZE];
+ int aiFreelist[LOGMAX+1];
/*
** Space for tracking which blocks are checked out and the size
** of each block. One byte per block.
*/
- u8 aCtrl[NBLOCK];
+ u8 *aCtrl;
/*
** Memory available for allocation
*/
- Mem5Block aPool[NBLOCK];
-} mem;
+ int nAtom; /* Smallest possible allocation in bytes */
+ int nBlock; /* Number of nAtom sized blocks in zPool */
+ u8 *zPool;
+} mem5;
+
+#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom]))
/*
-** Unlink the chunk at mem.aPool[i] from list it is currently
-** on. It should be found on mem.aiFreelist[iLogsize].
+** Unlink the chunk at mem5.aPool[i] from list it is currently
+** on. It should be found on mem5.aiFreelist[iLogsize].
*/
static void memsys5Unlink(int i, int iLogsize){
int next, prev;
- assert( i>=0 && i<NBLOCK );
- assert( iLogsize>=0 && iLogsize<NSIZE );
- assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
- assert( sqlite3_mutex_held(mem.mutex) );
+ assert( i>=0 && i<mem5.nBlock );
+ assert( iLogsize>=0 && iLogsize<=LOGMAX );
+ assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
- next = mem.aPool[i].u.list.next;
- prev = mem.aPool[i].u.list.prev;
+ next = MEM5LINK(i)->next;
+ prev = MEM5LINK(i)->prev;
if( prev<0 ){
- mem.aiFreelist[iLogsize] = next;
+ mem5.aiFreelist[iLogsize] = next;
}else{
- mem.aPool[prev].u.list.next = next;
+ MEM5LINK(prev)->next = next;
}
if( next>=0 ){
- mem.aPool[next].u.list.prev = prev;
+ MEM5LINK(next)->prev = prev;
}
}
/*
-** Link the chunk at mem.aPool[i] so that is on the iLogsize
+** Link the chunk at mem5.aPool[i] so that is on the iLogsize
** free list.
*/
static void memsys5Link(int i, int iLogsize){
int x;
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( i>=0 && i<NBLOCK );
- assert( iLogsize>=0 && iLogsize<NSIZE );
- assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
+ assert( sqlite3_mutex_held(mem5.mutex) );
+ assert( i>=0 && i<mem5.nBlock );
+ assert( iLogsize>=0 && iLogsize<=LOGMAX );
+ assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
- mem.aPool[i].u.list.next = x = mem.aiFreelist[iLogsize];
- mem.aPool[i].u.list.prev = -1;
+ x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
+ MEM5LINK(i)->prev = -1;
if( x>=0 ){
- assert( x<NBLOCK );
- mem.aPool[x].u.list.prev = i;
+ assert( x<mem5.nBlock );
+ MEM5LINK(x)->prev = i;
}
- mem.aiFreelist[iLogsize] = i;
+ mem5.aiFreelist[iLogsize] = i;
}
/*
-** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
-**
-** Also: Initialize the memory allocation subsystem the first time
-** this routine is called.
+** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
+** will already be held (obtained by code in malloc.c) if
+** sqlite3Config.bMemStat is true.
*/
static void memsys5Enter(void){
- if( mem.mutex==0 ){
- int i;
- assert( sizeof(Mem5Block)==POW2_MIN );
- assert( (SQLITE_POW2_MEMORY_SIZE % POW2_MAX)==0 );
- assert( SQLITE_POW2_MEMORY_SIZE>=POW2_MAX );
- mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
- sqlite3_mutex_enter(mem.mutex);
- for(i=0; i<NSIZE; i++) mem.aiFreelist[i] = -1;
- for(i=0; i<=NBLOCK-SZ_MAX; i += SZ_MAX){
- mem.aCtrl[i] = (NSIZE-1) | CTRL_FREE;
- memsys5Link(i, NSIZE-1);
- }
- }else{
- sqlite3_mutex_enter(mem.mutex);
- }
-}
-
-/*
-** Return the amount of memory currently checked out.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
- return mem.currentOut;
-}
-
-/*
-** Return the maximum amount of memory that has ever been
-** checked out since either the beginning of this process
-** or since the most recent reset.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
- sqlite3_int64 n;
- memsys5Enter();
- n = mem.maxOut;
- if( resetFlag ){
- mem.maxOut = mem.currentOut;
+ if( sqlite3Config.bMemstat==0 && mem5.mutex==0 ){
+ mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
}
- sqlite3_mutex_leave(mem.mutex);
- return n;
-}
-
-
-/*
-** Trigger the alarm
-*/
-static void memsys5Alarm(int nByte){
- void (*xCallback)(void*,sqlite3_int64,int);
- sqlite3_int64 nowUsed;
- void *pArg;
- if( mem.alarmCallback==0 || mem.alarmBusy ) return;
- mem.alarmBusy = 1;
- xCallback = mem.alarmCallback;
- nowUsed = mem.currentOut;
- pArg = mem.alarmArg;
- sqlite3_mutex_leave(mem.mutex);
- xCallback(pArg, nowUsed, nByte);
- sqlite3_mutex_enter(mem.mutex);
- mem.alarmBusy = 0;
+ sqlite3_mutex_enter(mem5.mutex);
}
-
-/*
-** Change the alarm callback.
-**
-** This is a no-op for the static memory allocator. The purpose
-** of the memory alarm is to support sqlite3_soft_heap_limit().
-** But with this memory allocator, the soft_heap_limit is really
-** a hard limit that is fixed at SQLITE_POW2_MEMORY_SIZE.
-*/
-SQLITE_API int sqlite3_memory_alarm(
- void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
- void *pArg,
- sqlite3_int64 iThreshold
-){
- memsys5Enter();
- mem.alarmCallback = xCallback;
- mem.alarmArg = pArg;
- mem.alarmThreshold = iThreshold;
- sqlite3_mutex_leave(mem.mutex);
- return SQLITE_OK;
+static void memsys5Leave(void){
+ sqlite3_mutex_leave(mem5.mutex);
}
/*
** size returned omits the 8-byte header overhead. This only
** works for chunks that are currently checked out.
*/
-SQLITE_PRIVATE int sqlite3MallocSize(void *p){
+static int memsys5Size(void *p){
int iSize = 0;
if( p ){
- int i = ((Mem5Block*)p) - mem.aPool;
- assert( i>=0 && i<NBLOCK );
- iSize = 1 << ((mem.aCtrl[i]&CTRL_LOGSIZE) + SQLITE_POW2_LOGMIN);
+ int i = ((u8 *)p-mem5.zPool)/mem5.nAtom;
+ assert( i>=0 && i<mem5.nBlock );
+ iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
}
return iSize;
}
int i;
int iFirst;
- assert( iLogsize>=0 && iLogsize<NSIZE );
- i = iFirst = mem.aiFreelist[iLogsize];
+ assert( iLogsize>=0 && iLogsize<=LOGMAX );
+ i = iFirst = mem5.aiFreelist[iLogsize];
assert( iFirst>=0 );
while( i>0 ){
if( i<iFirst ) iFirst = i;
- i = mem.aPool[i].u.list.next;
+ i = MEM5LINK(i)->next;
}
memsys5Unlink(iFirst, iLogsize);
return iFirst;
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.
*/
-static void *memsys5Malloc(int nByte){
- int i; /* Index of a mem.aPool[] slot */
- int iBin; /* Index into mem.aiFreelist[] */
+static void *memsys5MallocUnsafe(int nByte){
+ int i; /* Index of a mem5.aPool[] slot */
+ int iBin; /* Index into mem5.aiFreelist[] */
int iFullSz; /* Size of allocation rounded up to power of 2 */
int iLogsize; /* Log2 of iFullSz/POW2_MIN */
- assert( sqlite3_mutex_held(mem.mutex) );
-
/* Keep track of the maximum allocation request. Even unfulfilled
** requests are counted */
- if( nByte>mem.maxRequest ){
- mem.maxRequest = nByte;
+ if( nByte>mem5.maxRequest ){
+ mem5.maxRequest = nByte;
}
- /* Simulate a memory allocation fault */
- if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ) return 0;
-
/* Round nByte up to the next valid power of two */
if( nByte>POW2_MAX ) return 0;
- for(iFullSz=POW2_MIN, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
+ for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
- /* If we will be over the memory alarm threshold after this allocation,
- ** then trigger the memory overflow alarm */
- if( mem.alarmCallback!=0 && mem.currentOut+iFullSz>=mem.alarmThreshold ){
- memsys5Alarm(iFullSz);
- }
-
- /* Make sure mem.aiFreelist[iLogsize] contains at least one free
+ /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
** block. If not, then split a block of the next larger power of
** two in order to create a new free block of size iLogsize.
*/
- for(iBin=iLogsize; mem.aiFreelist[iBin]<0 && iBin<NSIZE; iBin++){}
- if( iBin>=NSIZE ) return 0;
+ for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
+ if( iBin>LOGMAX ) return 0;
i = memsys5UnlinkFirst(iBin);
while( iBin>iLogsize ){
int newSize;
iBin--;
newSize = 1 << iBin;
- mem.aCtrl[i+newSize] = CTRL_FREE | iBin;
+ mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
memsys5Link(i+newSize, iBin);
}
- mem.aCtrl[i] = iLogsize;
+ mem5.aCtrl[i] = iLogsize;
/* Update allocator performance statistics. */
- mem.nAlloc++;
- mem.totalAlloc += iFullSz;
- mem.totalExcess += iFullSz - nByte;
- mem.currentCount++;
- mem.currentOut += iFullSz;
- if( mem.maxCount<mem.currentCount ) mem.maxCount = mem.currentCount;
- if( mem.maxOut<mem.currentOut ) mem.maxOut = mem.currentOut;
+ mem5.nAlloc++;
+ mem5.totalAlloc += iFullSz;
+ mem5.totalExcess += iFullSz - nByte;
+ mem5.currentCount++;
+ mem5.currentOut += iFullSz;
+ if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
+ if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
/* Return a pointer to the allocated memory. */
- return (void*)&mem.aPool[i];
+ return (void*)&mem5.zPool[i*mem5.nAtom];
}
/*
** Free an outstanding memory allocation.
*/
-void memsys5Free(void *pOld){
+static void memsys5FreeUnsafe(void *pOld){
u32 size, iLogsize;
- int i;
+ int iBlock;
+
+ /* Set iBlock to the index of the block pointed to by pOld in
+ ** the array of mem5.nAtom byte blocks pointed to by mem5.zPool.
+ */
+ iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom;
+
+ /* Check that the pointer pOld points to a valid, non-free block. */
+ assert( iBlock>=0 && iBlock<mem5.nBlock );
+ assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 );
+ assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
- i = ((Mem5Block*)pOld) - mem.aPool;
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( i>=0 && i<NBLOCK );
- assert( (mem.aCtrl[i] & CTRL_FREE)==0 );
- iLogsize = mem.aCtrl[i] & CTRL_LOGSIZE;
+ iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
size = 1<<iLogsize;
- assert( i+size-1<NBLOCK );
- mem.aCtrl[i] |= CTRL_FREE;
- mem.aCtrl[i+size-1] |= CTRL_FREE;
- assert( mem.currentCount>0 );
- assert( mem.currentOut>=0 );
- mem.currentCount--;
- mem.currentOut -= size*POW2_MIN;
- assert( mem.currentOut>0 || mem.currentCount==0 );
- assert( mem.currentCount>0 || mem.currentOut==0 );
-
- mem.aCtrl[i] = CTRL_FREE | iLogsize;
- while( iLogsize<NSIZE-1 ){
+ assert( iBlock+size-1<mem5.nBlock );
+
+ mem5.aCtrl[iBlock] |= CTRL_FREE;
+ mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
+ assert( mem5.currentCount>0 );
+ assert( mem5.currentOut>=0 );
+ mem5.currentCount--;
+ mem5.currentOut -= size*mem5.nAtom;
+ assert( mem5.currentOut>0 || mem5.currentCount==0 );
+ assert( mem5.currentCount>0 || mem5.currentOut==0 );
+
+ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
+ while( iLogsize<LOGMAX ){
int iBuddy;
-
- if( (i>>iLogsize) & 1 ){
- iBuddy = i - size;
+ if( (iBlock>>iLogsize) & 1 ){
+ iBuddy = iBlock - size;
}else{
- iBuddy = i + size;
+ iBuddy = iBlock + size;
}
- assert( iBuddy>=0 && iBuddy<NBLOCK );
- if( mem.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
+ assert( iBuddy>=0 );
+ if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
+ if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
memsys5Unlink(iBuddy, iLogsize);
iLogsize++;
- if( iBuddy<i ){
- mem.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
- mem.aCtrl[i] = 0;
- i = iBuddy;
+ if( iBuddy<iBlock ){
+ mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
+ mem5.aCtrl[iBlock] = 0;
+ iBlock = iBuddy;
}else{
- mem.aCtrl[i] = CTRL_FREE | iLogsize;
- mem.aCtrl[iBuddy] = 0;
+ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
+ mem5.aCtrl[iBuddy] = 0;
}
size *= 2;
}
- memsys5Link(i, iLogsize);
+ memsys5Link(iBlock, iLogsize);
}
/*
** Allocate nBytes of memory
*/
-SQLITE_API void *sqlite3_malloc(int nBytes){
+static void *memsys5Malloc(int nBytes){
sqlite3_int64 *p = 0;
if( nBytes>0 ){
memsys5Enter();
- p = memsys5Malloc(nBytes);
- sqlite3_mutex_leave(mem.mutex);
+ p = memsys5MallocUnsafe(nBytes);
+ memsys5Leave();
}
return (void*)p;
}
/*
** Free memory.
*/
-SQLITE_API void sqlite3_free(void *pPrior){
+static void memsys5Free(void *pPrior){
if( pPrior==0 ){
+assert(0);
return;
}
- assert( mem.mutex!=0 );
- sqlite3_mutex_enter(mem.mutex);
- memsys5Free(pPrior);
- sqlite3_mutex_leave(mem.mutex);
+ memsys5Enter();
+ memsys5FreeUnsafe(pPrior);
+ memsys5Leave();
}
/*
** Change the size of an existing memory allocation
*/
-SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
+static void *memsys5Realloc(void *pPrior, int nBytes){
int nOld;
void *p;
if( pPrior==0 ){
- return sqlite3_malloc(nBytes);
+ return memsys5Malloc(nBytes);
}
if( nBytes<=0 ){
- sqlite3_free(pPrior);
+ memsys5Free(pPrior);
return 0;
}
- assert( mem.mutex!=0 );
- nOld = sqlite3MallocSize(pPrior);
+ nOld = memsys5Size(pPrior);
if( nBytes<=nOld ){
return pPrior;
}
- sqlite3_mutex_enter(mem.mutex);
- p = memsys5Malloc(nBytes);
+ memsys5Enter();
+ p = memsys5MallocUnsafe(nBytes);
if( p ){
memcpy(p, pPrior, nOld);
- memsys5Free(pPrior);
+ memsys5FreeUnsafe(pPrior);
}
- sqlite3_mutex_leave(mem.mutex);
+ memsys5Leave();
return p;
}
/*
+** Round up a request size to the next valid allocation size.
+*/
+static int memsys5Roundup(int n){
+ int iFullSz;
+ for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2);
+ return iFullSz;
+}
+
+static int memsys5Log(int iValue){
+ int iLog;
+ for(iLog=0; (1<<iLog)<iValue; iLog++);
+ return iLog;
+}
+
+/*
+** Initialize this module.
+*/
+static int memsys5Init(void *NotUsed){
+ int ii;
+ int nByte = sqlite3Config.nHeap;
+ u8 *zByte = (u8 *)sqlite3Config.pHeap;
+ int nMinLog; /* Log of minimum allocation size in bytes*/
+ int iOffset;
+
+ if( !zByte ){
+ return SQLITE_ERROR;
+ }
+
+ nMinLog = memsys5Log(sqlite3Config.mnReq);
+ mem5.nAtom = (1<<nMinLog);
+ while( sizeof(Mem5Link)>mem5.nAtom ){
+ mem5.nAtom = mem5.nAtom << 1;
+ }
+
+ mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8)));
+ mem5.zPool = zByte;
+ mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom];
+
+ for(ii=0; ii<=LOGMAX; ii++){
+ mem5.aiFreelist[ii] = -1;
+ }
+
+ iOffset = 0;
+ for(ii=LOGMAX; ii>=0; ii--){
+ int nAlloc = (1<<ii);
+ if( (iOffset+nAlloc)<=mem5.nBlock ){
+ mem5.aCtrl[iOffset] = ii | CTRL_FREE;
+ memsys5Link(iOffset, ii);
+ iOffset += nAlloc;
+ }
+ assert((iOffset+nAlloc)>mem5.nBlock);
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void memsys5Shutdown(void *NotUsed){
+ return;
+}
+
+/*
** Open the file indicated and write a log of all unfreed memory
** allocations into that log.
*/
-SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
+SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){
#ifdef SQLITE_DEBUG
FILE *out;
int i, j, n;
+ int nMinLog;
if( zFilename==0 || zFilename[0]==0 ){
out = stdout;
}
}
memsys5Enter();
- for(i=0; i<NSIZE; i++){
- for(n=0, j=mem.aiFreelist[i]; j>=0; j = mem.aPool[j].u.list.next, n++){}
- fprintf(out, "freelist items of size %d: %d\n", POW2_MIN << i, n);
- }
- fprintf(out, "mem.nAlloc = %llu\n", mem.nAlloc);
- fprintf(out, "mem.totalAlloc = %llu\n", mem.totalAlloc);
- fprintf(out, "mem.totalExcess = %llu\n", mem.totalExcess);
- fprintf(out, "mem.currentOut = %u\n", mem.currentOut);
- fprintf(out, "mem.currentCount = %u\n", mem.currentCount);
- fprintf(out, "mem.maxOut = %u\n", mem.maxOut);
- fprintf(out, "mem.maxCount = %u\n", mem.maxCount);
- fprintf(out, "mem.maxRequest = %u\n", mem.maxRequest);
- sqlite3_mutex_leave(mem.mutex);
+ nMinLog = memsys5Log(mem5.nAtom);
+ for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
+ for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
+ fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n);
+ }
+ fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
+ fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
+ fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
+ fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
+ fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
+ fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
+ fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
+ fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
+ memsys5Leave();
if( out==stdout ){
fflush(stdout);
}else{
#endif
}
+/*
+** This routine is the only routine in this file with external
+** linkage. It returns a pointer to a static sqlite3_mem_methods
+** struct populated with the memsys5 methods.
+*/
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
+ static const sqlite3_mem_methods memsys5Methods = {
+ memsys5Malloc,
+ memsys5Free,
+ memsys5Realloc,
+ memsys5Size,
+ memsys5Roundup,
+ memsys5Init,
+ memsys5Shutdown,
+ 0
+ };
+ return &memsys5Methods;
+}
-#endif /* !SQLITE_POW2_MEMORY_SIZE */
+#endif /* SQLITE_ENABLE_MEMSYS5 */
/************** End of mem5.c ************************************************/
-/************** Begin file mutex.c *******************************************/
+/************** Begin file mem6.c ********************************************/
/*
-** 2007 August 14
+** 2008 July 24
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
** May you share freely, never taking more than you give.
**
*************************************************************************
-** This file contains the C functions that implement mutexes.
**
-** The implementation in this file does not provide any mutual
-** exclusion and is thus suitable for use only in applications
-** that use SQLite in a single thread. But this implementation
-** does do a lot of error checking on mutexes to make sure they
-** are called correctly and at appropriate times. Hence, this
-** implementation is suitable for testing.
-** debugging purposes
+** This file contains an alternative memory allocation system for SQLite.
+** This system is implemented as a wrapper around the system provided
+** by the operating system - vanilla malloc(), realloc() and free().
+**
+** This system differentiates between requests for "small" allocations
+** (by default those of 128 bytes or less) and "large" allocations (all
+** others). The 256 byte threshhold is configurable at runtime.
**
-** $Id: mutex.c,v 1.17 2008/03/26 18:34:43 danielk1977 Exp $
+** All requests for large allocations are passed through to the
+** default system.
+**
+** Requests for small allocations are met by allocating space within
+** one or more larger "chunks" of memory obtained from the default
+** memory allocation system. Chunks of memory are usually 64KB or
+** larger. The algorithm used to manage space within each chunk is
+** the same as that used by mem5.c.
+**
+** This strategy is designed to prevent the default memory allocation
+** system (usually the system malloc) from suffering from heap
+** fragmentation. On some systems, heap fragmentation can cause a
+** significant real-time slowdown.
+**
+** $Id: mem6.c,v 1.7 2008/07/28 19:34:53 drh Exp $
*/
-#ifdef SQLITE_MUTEX_NOOP_DEBUG
+#ifdef SQLITE_ENABLE_MEMSYS6
+
+
/*
-** In this implementation, mutexes do not provide any mutual exclusion.
-** But the error checking is provided. This implementation is useful
-** for test purposes.
+** Maximum size of any "small" allocation is ((1<<LOGMAX)*Mem6Chunk.nAtom).
+** Mem6Chunk.nAtom is always at least 8, so this is not a practical
+** limitation
*/
+#define LOGMAX 30
/*
-** The mutex object
+** Default value for the "small" allocation size threshold.
*/
-struct sqlite3_mutex {
- int id; /* The mutex type */
- int cnt; /* Number of entries without a matching leave */
+#define SMALL_MALLOC_DEFAULT_THRESHOLD 256
+
+/*
+** Minimum size for a memory chunk.
+*/
+#define MIN_CHUNKSIZE (1<<16)
+
+#define LOG2_MINALLOC 4
+
+
+typedef struct Mem6Chunk Mem6Chunk;
+typedef struct Mem6Link Mem6Link;
+
+/*
+** A minimum allocation is an instance of the following structure.
+** Larger allocations are an array of these structures where the
+** size of the array is a power of 2.
+*/
+struct Mem6Link {
+ int next; /* Index of next free chunk */
+ int prev; /* Index of previous free chunk */
};
/*
-** The sqlite3_mutex_alloc() routine allocates a new
-** mutex and returns a pointer to it. If it returns NULL
-** that means that a mutex could not be allocated.
+** Masks used for mem5.aCtrl[] elements.
*/
-SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
- static sqlite3_mutex aStatic[6];
- sqlite3_mutex *pNew = 0;
- switch( id ){
- case SQLITE_MUTEX_FAST:
- case SQLITE_MUTEX_RECURSIVE: {
- pNew = sqlite3_malloc(sizeof(*pNew));
- if( pNew ){
- pNew->id = id;
- pNew->cnt = 0;
- }
- break;
+#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */
+#define CTRL_FREE 0x20 /* True if not checked out */
+
+struct Mem6Chunk {
+ Mem6Chunk *pNext;
+
+ /*
+ ** Lists of free blocks of various sizes.
+ */
+ int aiFreelist[LOGMAX+1];
+
+ int nCheckedOut; /* Number of currently outstanding allocations */
+
+ /*
+ ** Space for tracking which blocks are checked out and the size
+ ** of each block. One byte per block.
+ */
+ u8 *aCtrl;
+
+ /*
+ ** Memory available for allocation
+ */
+ int nAtom; /* Smallest possible allocation in bytes */
+ int nBlock; /* Number of nAtom sized blocks in zPool */
+ u8 *zPool; /* Pointer to memory chunk from which allocations are made */
+};
+
+#define MEM6LINK(idx) ((Mem6Link *)(&pChunk->zPool[(idx)*pChunk->nAtom]))
+
+struct Mem6Global {
+ int nMinAlloc; /* Minimum allowed allocation size */
+ int nThreshold; /* Allocs larger than this go to malloc() */
+ int nLogThreshold; /* log2 of (nThreshold/nMinAlloc) */
+ sqlite3_mutex *mutex;
+ Mem6Chunk *pChunk; /* Singly linked list of all memory chunks */
+} mem6;
+
+/*
+** Unlink the chunk at pChunk->aPool[i] from list it is currently
+** on. It should be found on pChunk->aiFreelist[iLogsize].
+*/
+static void memsys6Unlink(Mem6Chunk *pChunk, int i, int iLogsize){
+ int next, prev;
+ assert( i>=0 && i<pChunk->nBlock );
+ assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold );
+ assert( (pChunk->aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
+
+ next = MEM6LINK(i)->next;
+ prev = MEM6LINK(i)->prev;
+ if( prev<0 ){
+ pChunk->aiFreelist[iLogsize] = next;
+ }else{
+ MEM6LINK(prev)->next = next;
+ }
+ if( next>=0 ){
+ MEM6LINK(next)->prev = prev;
+ }
+}
+
+/*
+** Link the chunk at mem5.aPool[i] so that is on the iLogsize
+** free list.
+*/
+static void memsys6Link(Mem6Chunk *pChunk, int i, int iLogsize){
+ int x;
+ assert( i>=0 && i<pChunk->nBlock );
+ assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold );
+ assert( (pChunk->aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
+
+ x = MEM6LINK(i)->next = pChunk->aiFreelist[iLogsize];
+ MEM6LINK(i)->prev = -1;
+ if( x>=0 ){
+ assert( x<pChunk->nBlock );
+ MEM6LINK(x)->prev = i;
+ }
+ pChunk->aiFreelist[iLogsize] = i;
+}
+
+
+/*
+** Find the first entry on the freelist iLogsize. Unlink that
+** entry and return its index.
+*/
+static int memsys6UnlinkFirst(Mem6Chunk *pChunk, int iLogsize){
+ int i;
+ int iFirst;
+
+ assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold );
+ i = iFirst = pChunk->aiFreelist[iLogsize];
+ assert( iFirst>=0 );
+ memsys6Unlink(pChunk, iFirst, iLogsize);
+ return iFirst;
+}
+
+static int roundupLog2(int n){
+ static const char LogTable256[256] = {
+ 0, /* 1 */
+ 1, /* 2 */
+ 2, 2, /* 3..4 */
+ 3, 3, 3, 3, /* 5..8 */
+ 4, 4, 4, 4, 4, 4, 4, 4, /* 9..16 */
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, /* 17..32 */
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, /* 33..64 */
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, /* 65..128 */
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, /* 129..256 */
+ };
+
+ assert(n<=(1<<16) && n>0);
+ if( n<=256 ) return LogTable256[n-1];
+ return LogTable256[(n>>8) - ((n&0xFF)?0:1)] + 8;
+}
+
+/*
+** Allocate and return a block of (pChunk->nAtom << iLogsize) bytes from chunk
+** pChunk. If the allocation request cannot be satisfied, return 0.
+*/
+static void *chunkMalloc(Mem6Chunk *pChunk, int iLogsize){
+ int i; /* Index of a mem5.aPool[] slot */
+ int iBin; /* Index into mem5.aiFreelist[] */
+
+ /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
+ ** block. If not, then split a block of the next larger power of
+ ** two in order to create a new free block of size iLogsize.
+ */
+ for(iBin=iLogsize; pChunk->aiFreelist[iBin]<0 && iBin<=mem6.nLogThreshold; iBin++){}
+ if( iBin>mem6.nLogThreshold ) return 0;
+ i = memsys6UnlinkFirst(pChunk, iBin);
+ while( iBin>iLogsize ){
+ int newSize;
+ iBin--;
+ newSize = 1 << iBin;
+ pChunk->aCtrl[i+newSize] = CTRL_FREE | iBin;
+ memsys6Link(pChunk, i+newSize, iBin);
+ }
+ pChunk->aCtrl[i] = iLogsize;
+
+ /* Return a pointer to the allocated memory. */
+ pChunk->nCheckedOut++;
+ return (void*)&pChunk->zPool[i*pChunk->nAtom];
+}
+
+/*
+** Free the allocation pointed to by p, which is guaranteed to be non-zero
+** and a part of chunk object pChunk.
+*/
+static void chunkFree(Mem6Chunk *pChunk, void *pOld){
+ u32 size, iLogsize;
+ int iBlock;
+
+ /* Set iBlock to the index of the block pointed to by pOld in
+ ** the array of pChunk->nAtom byte blocks pointed to by pChunk->zPool.
+ */
+ iBlock = ((u8 *)pOld-pChunk->zPool)/pChunk->nAtom;
+
+ /* Check that the pointer pOld points to a valid, non-free block. */
+ assert( iBlock>=0 && iBlock<pChunk->nBlock );
+ assert( ((u8 *)pOld-pChunk->zPool)%pChunk->nAtom==0 );
+ assert( (pChunk->aCtrl[iBlock] & CTRL_FREE)==0 );
+
+ iLogsize = pChunk->aCtrl[iBlock] & CTRL_LOGSIZE;
+ size = 1<<iLogsize;
+ assert( iBlock+size-1<pChunk->nBlock );
+
+ pChunk->aCtrl[iBlock] |= CTRL_FREE;
+ pChunk->aCtrl[iBlock+size-1] |= CTRL_FREE;
+
+ pChunk->aCtrl[iBlock] = CTRL_FREE | iLogsize;
+ while( iLogsize<mem6.nLogThreshold ){
+ int iBuddy;
+ if( (iBlock>>iLogsize) & 1 ){
+ iBuddy = iBlock - size;
+ }else{
+ iBuddy = iBlock + size;
}
- default: {
- assert( id-2 >= 0 );
- assert( id-2 < sizeof(aStatic)/sizeof(aStatic[0]) );
- pNew = &aStatic[id-2];
- pNew->id = id;
- break;
+ assert( iBuddy>=0 );
+ if( (iBuddy+(1<<iLogsize))>pChunk->nBlock ) break;
+ if( pChunk->aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
+ memsys6Unlink(pChunk, iBuddy, iLogsize);
+ iLogsize++;
+ if( iBuddy<iBlock ){
+ pChunk->aCtrl[iBuddy] = CTRL_FREE | iLogsize;
+ pChunk->aCtrl[iBlock] = 0;
+ iBlock = iBuddy;
+ }else{
+ pChunk->aCtrl[iBlock] = CTRL_FREE | iLogsize;
+ pChunk->aCtrl[iBuddy] = 0;
}
+ size *= 2;
}
- return pNew;
+ pChunk->nCheckedOut--;
+ memsys6Link(pChunk, iBlock, iLogsize);
}
/*
-** This routine deallocates a previously allocated mutex.
+** Return the actual size of the block pointed to by p, which is guaranteed
+** to have been allocated from chunk pChunk.
*/
-SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
- assert( p );
- assert( p->cnt==0 );
- assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
- sqlite3_free(p);
+static int chunkSize(Mem6Chunk *pChunk, void *p){
+ int iSize = 0;
+ if( p ){
+ int i = ((u8 *)p-pChunk->zPool)/pChunk->nAtom;
+ assert( i>=0 && i<pChunk->nBlock );
+ iSize = pChunk->nAtom * (1 << (pChunk->aCtrl[i]&CTRL_LOGSIZE));
+ }
+ return iSize;
}
/*
-** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
-** to enter a mutex. If another thread is already within the mutex,
-** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
-** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
-** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
-** be entered multiple times by the same thread. In such cases the,
-** mutex must be exited an equal number of times before another thread
-** can enter. If the same thread tries to enter any other kind of mutex
-** more than once, the behavior is undefined.
+** Return true if there are currently no outstanding allocations.
*/
-SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
- p->cnt++;
-}
-SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
- p->cnt++;
- return SQLITE_OK;
+static int chunkIsEmpty(Mem6Chunk *pChunk){
+ return (pChunk->nCheckedOut==0);
}
/*
-** The sqlite3_mutex_leave() routine exits a mutex that was
-** previously entered by the same thread. The behavior
-** is undefined if the mutex is not currently entered or
-** is not currently allocated. SQLite will never do either.
+** Initialize the buffer zChunk, which is nChunk bytes in size, as
+** an Mem6Chunk object. Return a copy of the zChunk pointer.
*/
-SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
- assert( p );
- assert( sqlite3_mutex_held(p) );
- p->cnt--;
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+static Mem6Chunk *chunkInit(u8 *zChunk, int nChunk, int nMinAlloc){
+ int ii;
+ int iOffset;
+ Mem6Chunk *pChunk = (Mem6Chunk *)zChunk;
+
+ assert( nChunk>sizeof(Mem6Chunk) );
+ assert( nMinAlloc>sizeof(Mem6Link) );
+
+ memset(pChunk, 0, sizeof(Mem6Chunk));
+ pChunk->nAtom = nMinAlloc;
+ pChunk->nBlock = ((nChunk-sizeof(Mem6Chunk)) / (pChunk->nAtom+sizeof(u8)));
+
+ pChunk->zPool = (u8 *)&pChunk[1];
+ pChunk->aCtrl = &pChunk->zPool[pChunk->nBlock*pChunk->nAtom];
+
+ for(ii=0; ii<=mem6.nLogThreshold; ii++){
+ pChunk->aiFreelist[ii] = -1;
+ }
+
+ iOffset = 0;
+ for(ii=mem6.nLogThreshold; ii>=0; ii--){
+ int nAlloc = (1<<ii);
+ while( (iOffset+nAlloc)<=pChunk->nBlock ){
+ pChunk->aCtrl[iOffset] = ii | CTRL_FREE;
+ memsys6Link(pChunk, iOffset, ii);
+ iOffset += nAlloc;
+ }
+ }
+
+ return pChunk;
+}
+
+
+static void mem6Enter(void){
+ sqlite3_mutex_enter(mem6.mutex);
+}
+
+static void mem6Leave(void){
+ sqlite3_mutex_leave(mem6.mutex);
}
/*
-** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
-** intended for use inside assert() statements.
+** Based on the number and size of the currently allocated chunks, return
+** the size of the next chunk to allocate, in bytes.
*/
-SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
- return p==0 || p->cnt>0;
+static int nextChunkSize(void){
+ int iTotal = MIN_CHUNKSIZE;
+ Mem6Chunk *p;
+ for(p=mem6.pChunk; p; p=p->pNext){
+ iTotal = iTotal*2;
+ }
+ return iTotal;
}
-SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
- return p==0 || p->cnt==0;
+
+static void freeChunk(Mem6Chunk *pChunk){
+ Mem6Chunk **pp = &mem6.pChunk;
+ for( pp=&mem6.pChunk; *pp!=pChunk; pp = &(*pp)->pNext );
+ *pp = (*pp)->pNext;
+ free(pChunk);
+}
+
+static void *memsys6Malloc(int nByte){
+ Mem6Chunk *pChunk;
+ void *p = 0;
+ int nTotal = nByte+8;
+ int iOffset = 0;
+
+ if( nTotal>mem6.nThreshold ){
+ p = malloc(nTotal);
+ }else{
+ int iLogsize = 0;
+ if( nTotal>(1<<LOG2_MINALLOC) ){
+ iLogsize = roundupLog2(nTotal) - LOG2_MINALLOC;
+ }
+ mem6Enter();
+ for(pChunk=mem6.pChunk; pChunk; pChunk=pChunk->pNext){
+ p = chunkMalloc(pChunk, iLogsize);
+ if( p ){
+ break;
+ }
+ }
+ if( !p ){
+ int iSize = nextChunkSize();
+ p = malloc(iSize);
+ if( p ){
+ pChunk = chunkInit((u8 *)p, iSize, mem6.nMinAlloc);
+ pChunk->pNext = mem6.pChunk;
+ mem6.pChunk = pChunk;
+ p = chunkMalloc(pChunk, iLogsize);
+ assert(p);
+ }
+ }
+ iOffset = ((u8*)p - (u8*)pChunk);
+ mem6Leave();
+ }
+
+ if( !p ){
+ return 0;
+ }
+ ((u32 *)p)[0] = iOffset;
+ ((u32 *)p)[1] = nByte;
+ return &((u32 *)p)[2];
+}
+
+static int memsys6Size(void *pPrior){
+ if( pPrior==0 ) return 0;
+ return ((u32*)pPrior)[-1];
+}
+
+static void memsys6Free(void *pPrior){
+ int iSlot;
+ void *p = &((u32 *)pPrior)[-2];
+ iSlot = ((u32 *)p)[0];
+ if( iSlot ){
+ Mem6Chunk *pChunk;
+ mem6Enter();
+ pChunk = (Mem6Chunk *)(&((u8 *)p)[-1 * iSlot]);
+ chunkFree(pChunk, p);
+ if( chunkIsEmpty(pChunk) ){
+ freeChunk(pChunk);
+ }
+ mem6Leave();
+ }else{
+ free(p);
+ }
+}
+
+static void *memsys6Realloc(void *p, int nByte){
+ void *p2;
+
+ if( p && nByte<=memsys6Size(p) ){
+ p2 = p;
+ }else{
+ p2 = memsys6Malloc(nByte);
+ if( p && p2 ){
+ memcpy(p2, p, memsys6Size(p));
+ memsys6Free(p);
+ }
+ }
+
+ return p2;
+}
+
+static int memsys6Roundup(int n){
+ if( n>mem6.nThreshold ){
+ return n;
+ }else{
+ return (1<<roundupLog2(n));
+ }
+}
+
+static int memsys6Init(void *pCtx){
+ u8 bMemstat = sqlite3Config.bMemstat;
+ mem6.nMinAlloc = (1 << LOG2_MINALLOC);
+ mem6.pChunk = 0;
+ mem6.nThreshold = sqlite3Config.nSmall;
+ if( mem6.nThreshold<=0 ){
+ mem6.nThreshold = SMALL_MALLOC_DEFAULT_THRESHOLD;
+ }
+ mem6.nLogThreshold = roundupLog2(mem6.nThreshold) - LOG2_MINALLOC;
+ if( !bMemstat ){
+ mem6.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ return SQLITE_OK;
+}
+
+static void memsys6Shutdown(void *pCtx){
+ memset(&mem6, 0, sizeof(mem6));
}
-#endif /* SQLITE_MUTEX_NOOP_DEBUG */
-/************** End of mutex.c ***********************************************/
-/************** Begin file mutex_os2.c ***************************************/
/*
-** 2007 August 28
+** This routine is the only routine in this file with external
+** linkage. It returns a pointer to a static sqlite3_mem_methods
+** struct populated with the memsys6 methods.
+*/
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys6(void){
+ static const sqlite3_mem_methods memsys6Methods = {
+ memsys6Malloc,
+ memsys6Free,
+ memsys6Realloc,
+ memsys6Size,
+ memsys6Roundup,
+ memsys6Init,
+ memsys6Shutdown,
+ 0
+ };
+ return &memsys6Methods;
+}
+
+#endif
+
+/************** End of mem6.c ************************************************/
+/************** Begin file mutex.c *******************************************/
+/*
+** 2007 August 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
** May you share freely, never taking more than you give.
**
*************************************************************************
-** This file contains the C functions that implement mutexes for OS/2
+** This file contains the C functions that implement mutexes.
+**
+** The implementation in this file does not provide any mutual
+** exclusion and is thus suitable for use only in applications
+** that use SQLite in a single thread. But this implementation
+** does do a lot of error checking on mutexes to make sure they
+** are called correctly and at appropriate times. Hence, this
+** implementation is suitable for testing.
+** debugging purposes
**
-** $Id: mutex_os2.c,v 1.6 2008/03/26 18:34:43 danielk1977 Exp $
+** $Id: mutex.c,v 1.27 2008/06/19 08:51:24 danielk1977 Exp $
*/
+#ifndef SQLITE_MUTEX_NOOP
/*
-** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
-** See the mutex.h file for details.
+** Initialize the mutex system.
*/
-#ifdef SQLITE_MUTEX_OS2
+SQLITE_PRIVATE int sqlite3MutexInit(void){
+ int rc = SQLITE_OK;
+ if( sqlite3Config.bCoreMutex ){
+ if( !sqlite3Config.mutex.xMutexAlloc ){
+ /* If the xMutexAlloc method has not been set, then the user did not
+ ** install a mutex implementation via sqlite3_config() prior to
+ ** sqlite3_initialize() being called. This block copies pointers to
+ ** the default implementation into the sqlite3Config structure.
+ **
+ ** The danger is that although sqlite3_config() is not a threadsafe
+ ** API, sqlite3_initialize() is, and so multiple threads may be
+ ** attempting to run this function simultaneously. To guard write
+ ** access to the sqlite3Config structure, the 'MASTER' static mutex
+ ** is obtained before modifying it.
+ */
+ sqlite3_mutex_methods *p = sqlite3DefaultMutex();
+ sqlite3_mutex *pMaster = 0;
+
+ rc = p->xMutexInit();
+ if( rc==SQLITE_OK ){
+ pMaster = p->xMutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+ assert(pMaster);
+ p->xMutexEnter(pMaster);
+ assert( sqlite3Config.mutex.xMutexAlloc==0
+ || sqlite3Config.mutex.xMutexAlloc==p->xMutexAlloc
+ );
+ if( !sqlite3Config.mutex.xMutexAlloc ){
+ sqlite3Config.mutex = *p;
+ }
+ p->xMutexLeave(pMaster);
+ }
+ }else{
+ rc = sqlite3Config.mutex.xMutexInit();
+ }
+ }
-/********************** OS/2 Mutex Implementation **********************
-**
-** This implementation of mutexes is built using the OS/2 API.
-*/
+ return rc;
+}
/*
-** The mutex object
-** Each recursive mutex is an instance of the following structure.
+** Shutdown the mutex system. This call frees resources allocated by
+** sqlite3MutexInit().
*/
-struct sqlite3_mutex {
- HMTX mutex; /* Mutex controlling the lock */
+SQLITE_PRIVATE int sqlite3MutexEnd(void){
+ int rc = SQLITE_OK;
+ rc = sqlite3Config.mutex.xMutexEnd();
+ return rc;
+}
+
+/*
+** Retrieve a pointer to a static mutex or allocate a new dynamic one.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return sqlite3Config.mutex.xMutexAlloc(id);
+}
+
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
+ if( !sqlite3Config.bCoreMutex ){
+ return 0;
+ }
+ return sqlite3Config.mutex.xMutexAlloc(id);
+}
+
+/*
+** Free a dynamic mutex.
+*/
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
+ if( p ){
+ sqlite3Config.mutex.xMutexFree(p);
+ }
+}
+
+/*
+** Obtain the mutex p. If some other thread already has the mutex, block
+** until it can be obtained.
+*/
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
+ if( p ){
+ sqlite3Config.mutex.xMutexEnter(p);
+ }
+}
+
+/*
+** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
+** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
+*/
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ return sqlite3Config.mutex.xMutexTry(p);
+ }
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was previously
+** entered by the same thread. The behavior is undefined if the mutex
+** is not currently entered. If a NULL pointer is passed as an argument
+** this function is a no-op.
+*/
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
+ if( p ){
+ sqlite3Config.mutex.xMutexLeave(p);
+ }
+}
+
+#ifndef NDEBUG
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use inside assert() statements.
+*/
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
+ return p==0 || sqlite3Config.mutex.xMutexHeld(p);
+}
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
+ return p==0 || sqlite3Config.mutex.xMutexNotheld(p);
+}
+#endif
+
+#endif
+
+#ifdef SQLITE_MUTEX_NOOP_DEBUG
+/*
+** In this implementation, mutexes do not provide any mutual exclusion.
+** But the error checking is provided. This implementation is useful
+** for test purposes.
+*/
+
+/*
+** The mutex object
+*/
+struct sqlite3_mutex {
+ int id; /* The mutex type */
+ int cnt; /* Number of entries without a matching leave */
+};
+
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use inside assert() statements.
+*/
+static int noopMutexHeld(sqlite3_mutex *p){
+ return p==0 || p->cnt>0;
+}
+static int noopMutexNotheld(sqlite3_mutex *p){
+ return p==0 || p->cnt==0;
+}
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int noopMutexInit(void){ return SQLITE_OK; }
+static int noopMutexEnd(void){ return SQLITE_OK; }
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated.
+*/
+static sqlite3_mutex *noopMutexAlloc(int id){
+ static sqlite3_mutex aStatic[6];
+ sqlite3_mutex *pNew = 0;
+ switch( id ){
+ case SQLITE_MUTEX_FAST:
+ case SQLITE_MUTEX_RECURSIVE: {
+ pNew = sqlite3Malloc(sizeof(*pNew));
+ if( pNew ){
+ pNew->id = id;
+ pNew->cnt = 0;
+ }
+ break;
+ }
+ default: {
+ assert( id-2 >= 0 );
+ assert( id-2 < sizeof(aStatic)/sizeof(aStatic[0]) );
+ pNew = &aStatic[id-2];
+ pNew->id = id;
+ break;
+ }
+ }
+ return pNew;
+}
+
+/*
+** This routine deallocates a previously allocated mutex.
+*/
+static void noopMutexFree(sqlite3_mutex *p){
+ assert( p->cnt==0 );
+ assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
+ sqlite3_free(p);
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+static void noopMutexEnter(sqlite3_mutex *p){
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || noopMutexNotheld(p) );
+ p->cnt++;
+}
+static int noopMutexTry(sqlite3_mutex *p){
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || noopMutexNotheld(p) );
+ p->cnt++;
+ return SQLITE_OK;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+static void noopMutexLeave(sqlite3_mutex *p){
+ assert( noopMutexHeld(p) );
+ p->cnt--;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || noopMutexNotheld(p) );
+}
+
+SQLITE_PRIVATE sqlite3_mutex_methods *sqlite3DefaultMutex(void){
+ static sqlite3_mutex_methods sMutex = {
+ noopMutexInit,
+ noopMutexEnd,
+ noopMutexAlloc,
+ noopMutexFree,
+ noopMutexEnter,
+ noopMutexTry,
+ noopMutexLeave,
+
+ noopMutexHeld,
+ noopMutexNotheld
+ };
+
+ return &sMutex;
+}
+#endif /* SQLITE_MUTEX_NOOP_DEBUG */
+
+/************** End of mutex.c ***********************************************/
+/************** Begin file mutex_os2.c ***************************************/
+/*
+** 2007 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes for OS/2
+**
+** $Id: mutex_os2.c,v 1.10 2008/06/23 22:13:28 pweilbacher Exp $
+*/
+
+/*
+** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
+** See the mutex.h file for details.
+*/
+#ifdef SQLITE_MUTEX_OS2
+
+/********************** OS/2 Mutex Implementation **********************
+**
+** This implementation of mutexes is built using the OS/2 API.
+*/
+
+/*
+** The mutex object
+** Each recursive mutex is an instance of the following structure.
+*/
+struct sqlite3_mutex {
+ HMTX mutex; /* Mutex controlling the lock */
int id; /* Mutex type */
int nRef; /* Number of references */
TID owner; /* Thread holding this mutex */
#define OS2_MUTEX_INITIALIZER 0,0,0,0
/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int os2MutexInit(void){ return SQLITE_OK; }
+static int os2MutexEnd(void){ return SQLITE_OK; }
+
+/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated.
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
-SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
+static sqlite3_mutex *os2MutexAlloc(int iType){
sqlite3_mutex *p = NULL;
switch( iType ){
case SQLITE_MUTEX_FAST:
** This routine deallocates a previously allocated mutex.
** SQLite is careful to deallocate every mutex that it allocates.
*/
-SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
- assert( p );
+static void os2MutexFree(sqlite3_mutex *p){
+ if( p==0 ) return;
assert( p->nRef==0 );
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
DosCloseMutexSem( p->mutex );
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
-SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
+static void os2MutexEnter(sqlite3_mutex *p){
TID tid;
PID holder1;
ULONG holder2;
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+ if( p==0 ) return;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT);
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
p->owner = tid;
p->nRef++;
}
-SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
+static int os2MutexTry(sqlite3_mutex *p){
int rc;
TID tid;
PID holder1;
ULONG holder2;
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+ if( p==0 ) return SQLITE_OK;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR) {
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
p->owner = tid;
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
-SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
+static void os2MutexLeave(sqlite3_mutex *p){
TID tid;
PID holder1;
ULONG holder2;
+ if( p==0 ) return;
assert( p->nRef>0 );
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
assert( p->owner==tid );
DosReleaseMutexSem(p->mutex);
}
+#ifdef SQLITE_DEBUG
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
-SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
+static int os2MutexHeld(sqlite3_mutex *p){
TID tid;
PID pid;
ULONG ulCount;
}
return p==0 || (p->nRef!=0 && p->owner==tid);
}
-SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
+static int os2MutexNotheld(sqlite3_mutex *p){
TID tid;
PID pid;
ULONG ulCount;
}
return p==0 || p->nRef==0 || p->owner!=tid;
}
+#endif
+
+SQLITE_PRIVATE sqlite3_mutex_methods *sqlite3DefaultMutex(void){
+ static sqlite3_mutex_methods sMutex = {
+ os2MutexInit,
+ os2MutexEnd,
+ os2MutexAlloc,
+ os2MutexFree,
+ os2MutexEnter,
+ os2MutexTry,
+ os2MutexLeave,
+#ifdef SQLITE_DEBUG
+ os2MutexHeld,
+ os2MutexNotheld
+#endif
+ };
+
+ return &sMutex;
+}
#endif /* SQLITE_MUTEX_OS2 */
/************** End of mutex_os2.c *******************************************/
*************************************************************************
** This file contains the C functions that implement mutexes for pthreads
**
-** $Id: mutex_unix.c,v 1.7 2008/03/29 12:47:27 rse Exp $
+** $Id: mutex_unix.c,v 1.13 2008/07/16 12:33:24 drh Exp $
*/
/*
#endif
/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use only inside assert() statements. On some platforms,
+** there might be race conditions that can cause these routines to
+** deliver incorrect results. In particular, if pthread_equal() is
+** not an atomic operation, then these routines might delivery
+** incorrect results. On most platforms, pthread_equal() is a
+** comparison of two integers and is therefore atomic. But we are
+** told that HPUX is not such a platform. If so, then these routines
+** will not always work correctly on HPUX.
+**
+** On those platforms where pthread_equal() is not atomic, SQLite
+** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
+** make sure no assert() statements are evaluated and hence these
+** routines are never called.
+*/
+#ifndef NDEBUG
+static int pthreadMutexHeld(sqlite3_mutex *p){
+ return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
+}
+static int pthreadMutexNotheld(sqlite3_mutex *p){
+ return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
+}
+#endif
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int pthreadMutexInit(void){ return SQLITE_OK; }
+static int pthreadMutexEnd(void){ return SQLITE_OK; }
+
+/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated. SQLite
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
-SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
+static sqlite3_mutex *pthreadMutexAlloc(int iType){
static sqlite3_mutex staticMutexes[] = {
SQLITE3_MUTEX_INITIALIZER,
SQLITE3_MUTEX_INITIALIZER,
** allocated mutex. SQLite is careful to deallocate every
** mutex that it allocates.
*/
-SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
- assert( p );
+static void pthreadMutexFree(sqlite3_mutex *p){
assert( p->nRef==0 );
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
pthread_mutex_destroy(&p->mutex);
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
-SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+static void pthreadMutexEnter(sqlite3_mutex *p){
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
/* If recursive mutexes are not available, then we have to grow
}
#endif
}
-SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
+static int pthreadMutexTry(sqlite3_mutex *p){
int rc;
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
/* If recursive mutexes are not available, then we have to grow
if( p->nRef>0 && pthread_equal(p->owner, self) ){
p->nRef++;
rc = SQLITE_OK;
- }else if( pthread_mutex_lock(&p->mutex)==0 ){
+ }else if( pthread_mutex_trylock(&p->mutex)==0 ){
assert( p->nRef==0 );
p->owner = self;
p->nRef = 1;
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
-SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
- assert( p );
- assert( sqlite3_mutex_held(p) );
+static void pthreadMutexLeave(sqlite3_mutex *p){
+ assert( pthreadMutexHeld(p) );
p->nRef--;
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
#endif
}
-/*
-** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
-** intended for use only inside assert() statements. On some platforms,
-** there might be race conditions that can cause these routines to
-** deliver incorrect results. In particular, if pthread_equal() is
-** not an atomic operation, then these routines might delivery
-** incorrect results. On most platforms, pthread_equal() is a
-** comparison of two integers and is therefore atomic. But we are
-** told that HPUX is not such a platform. If so, then these routines
-** will not always work correctly on HPUX.
-**
-** On those platforms where pthread_equal() is not atomic, SQLite
-** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
-** make sure no assert() statements are evaluated and hence these
-** routines are never called.
-*/
-#ifndef NDEBUG
-SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
- return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
-}
-SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
- return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
-}
+SQLITE_PRIVATE sqlite3_mutex_methods *sqlite3DefaultMutex(void){
+ static sqlite3_mutex_methods sMutex = {
+ pthreadMutexInit,
+ pthreadMutexEnd,
+ pthreadMutexAlloc,
+ pthreadMutexFree,
+ pthreadMutexEnter,
+ pthreadMutexTry,
+ pthreadMutexLeave,
+#ifdef SQLITE_DEBUG
+ pthreadMutexHeld,
+ pthreadMutexNotheld
#endif
+ };
+
+ return &sMutex;
+}
+
#endif /* SQLITE_MUTEX_PTHREAD */
/************** End of mutex_unix.c ******************************************/
*************************************************************************
** This file contains the C functions that implement mutexes for win32
**
-** $Id: mutex_w32.c,v 1.6 2008/03/26 18:34:43 danielk1977 Exp $
+** $Id: mutex_w32.c,v 1.11 2008/06/26 10:41:19 danielk1977 Exp $
*/
/*
** WinNT/2K/XP so that we will know whether or not we can safely call
** the LockFileEx() API.
*/
-#if OS_WINCE
+#if SQLITE_OS_WINCE
# define mutexIsNT() (1)
#else
static int mutexIsNT(void){
}
return osType==2;
}
-#endif /* OS_WINCE */
+#endif /* SQLITE_OS_WINCE */
+
+
+#ifdef SQLITE_DEBUG
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use only inside assert() statements.
+*/
+static int winMutexHeld(sqlite3_mutex *p){
+ return p->nRef!=0 && p->owner==GetCurrentThreadId();
+}
+static int winMutexNotheld(sqlite3_mutex *p){
+ return p->nRef==0 || p->owner!=GetCurrentThreadId();
+}
+#endif
/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int winMutexInit(void){ return SQLITE_OK; }
+static int winMutexEnd(void){ return SQLITE_OK; }
+
+/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated. SQLite
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
-SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
+static sqlite3_mutex *winMutexAlloc(int iType){
sqlite3_mutex *p;
switch( iType ){
** allocated mutex. SQLite is careful to deallocate every
** mutex that it allocates.
*/
-SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
+static void winMutexFree(sqlite3_mutex *p){
assert( p );
assert( p->nRef==0 );
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
-SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+static void winMutexEnter(sqlite3_mutex *p){
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld(p) );
EnterCriticalSection(&p->mutex);
p->owner = GetCurrentThreadId();
p->nRef++;
}
-SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
+static int winMutexTry(sqlite3_mutex *p){
int rc = SQLITE_BUSY;
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld(p) );
/*
** The sqlite3_mutex_try() routine is very rarely used, and when it
** is used it is merely an optimization. So it is OK for it to always
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
-SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
+static void winMutexLeave(sqlite3_mutex *p){
assert( p->nRef>0 );
assert( p->owner==GetCurrentThreadId() );
p->nRef--;
LeaveCriticalSection(&p->mutex);
}
-/*
-** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
-** intended for use only inside assert() statements.
-*/
-SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
- return p==0 || (p->nRef!=0 && p->owner==GetCurrentThreadId());
-}
-SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
- return p==0 || p->nRef==0 || p->owner!=GetCurrentThreadId();
+SQLITE_PRIVATE sqlite3_mutex_methods *sqlite3DefaultMutex(void){
+ static sqlite3_mutex_methods sMutex = {
+ winMutexInit,
+ winMutexEnd,
+ winMutexAlloc,
+ winMutexFree,
+ winMutexEnter,
+ winMutexTry,
+ winMutexLeave,
+#ifdef SQLITE_DEBUG
+ winMutexHeld,
+ winMutexNotheld
+#endif
+ };
+
+ return &sMutex;
}
#endif /* SQLITE_MUTEX_W32 */
** May you share freely, never taking more than you give.
**
*************************************************************************
-** Memory allocation functions used throughout sqlite.
**
+** Memory allocation functions used throughout sqlite.
**
-** $Id: malloc.c,v 1.15 2008/03/26 18:34:43 danielk1977 Exp $
+** $Id: malloc.c,v 1.34 2008/08/05 17:53:23 drh Exp $
*/
/*
}
/*
-** Set the soft heap-size limit for the current thread. Passing a
-** zero or negative value indicates no limit.
+** Set the soft heap-size limit for the library. Passing a zero or
+** negative value indicates no limit.
*/
SQLITE_API void sqlite3_soft_heap_limit(int n){
sqlite3_uint64 iLimit;
}else{
iLimit = n;
}
+ sqlite3_initialize();
if( iLimit>0 ){
sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
}else{
}
/*
-** Release memory held by SQLite instances created by the current thread.
+** Attempt to release up to n bytes of non-essential memory currently
+** held by SQLite. An example of non-essential memory is memory used to
+** cache database pages that are not currently in use.
*/
SQLITE_API int sqlite3_release_memory(int n){
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
#endif
}
+/*
+** State information local to the memory allocation subsystem.
+*/
+static struct {
+ sqlite3_mutex *mutex; /* Mutex to serialize access */
+
+ /*
+ ** The alarm callback and its arguments. The mem0.mutex lock will
+ ** be held while the callback is running. Recursive calls into
+ ** the memory subsystem are allowed, but no new callbacks will be
+ ** issued. The alarmBusy variable is set to prevent recursive
+ ** callbacks.
+ */
+ sqlite3_int64 alarmThreshold;
+ void (*alarmCallback)(void*, sqlite3_int64,int);
+ void *alarmArg;
+ int alarmBusy;
+
+ /*
+ ** Pointers to the end of sqlite3Config.pScratch and
+ ** sqlite3Config.pPage to a block of memory that records
+ ** which pages are available.
+ */
+ u32 *aScratchFree;
+ u32 *aPageFree;
+
+ /* Number of free pages for scratch and page-cache memory */
+ u32 nScratchFree;
+ u32 nPageFree;
+} mem0;
+
+/*
+** Initialize the memory allocation subsystem.
+*/
+SQLITE_PRIVATE int sqlite3MallocInit(void){
+ if( sqlite3Config.m.xMalloc==0 ){
+ sqlite3MemSetDefault();
+ }
+ memset(&mem0, 0, sizeof(mem0));
+ if( sqlite3Config.bCoreMutex ){
+ mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ if( sqlite3Config.pScratch && sqlite3Config.szScratch>=100
+ && sqlite3Config.nScratch>=0 ){
+ int i;
+ sqlite3Config.szScratch -= 4;
+ mem0.aScratchFree = (u32*)&((char*)sqlite3Config.pScratch)
+ [sqlite3Config.szScratch*sqlite3Config.nScratch];
+ for(i=0; i<sqlite3Config.nScratch; i++){ mem0.aScratchFree[i] = i; }
+ mem0.nScratchFree = sqlite3Config.nScratch;
+ }else{
+ sqlite3Config.pScratch = 0;
+ sqlite3Config.szScratch = 0;
+ }
+ if( sqlite3Config.pPage && sqlite3Config.szPage>=512
+ && sqlite3Config.nPage>=1 ){
+ int i;
+ int overhead;
+ int sz = sqlite3Config.szPage;
+ int n = sqlite3Config.nPage;
+ overhead = (4*n + sz - 1)/sz;
+ sqlite3Config.nPage -= overhead;
+ mem0.aPageFree = (u32*)&((char*)sqlite3Config.pPage)
+ [sqlite3Config.szPage*sqlite3Config.nPage];
+ for(i=0; i<sqlite3Config.nPage; i++){ mem0.aPageFree[i] = i; }
+ mem0.nPageFree = sqlite3Config.nPage;
+ }else{
+ sqlite3Config.pPage = 0;
+ sqlite3Config.szPage = 0;
+ }
+ return sqlite3Config.m.xInit(sqlite3Config.m.pAppData);
+}
+
+/*
+** Deinitialize the memory allocation subsystem.
+*/
+SQLITE_PRIVATE void sqlite3MallocEnd(void){
+ sqlite3Config.m.xShutdown(sqlite3Config.m.pAppData);
+ memset(&mem0, 0, sizeof(mem0));
+}
+
+/*
+** Return the amount of memory currently checked out.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
+ int n, mx;
+ sqlite3_int64 res;
+ sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
+ res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
+ return res;
+}
+
+/*
+** Return the maximum amount of memory that has ever been
+** checked out since either the beginning of this process
+** or since the most recent reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
+ int n, mx;
+ sqlite3_int64 res;
+ sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
+ res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
+ return res;
+}
+
+/*
+** Change the alarm callback
+*/
+SQLITE_API int sqlite3_memory_alarm(
+ void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+ void *pArg,
+ sqlite3_int64 iThreshold
+){
+ sqlite3_mutex_enter(mem0.mutex);
+ mem0.alarmCallback = xCallback;
+ mem0.alarmArg = pArg;
+ mem0.alarmThreshold = iThreshold;
+ sqlite3_mutex_leave(mem0.mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Trigger the alarm
+*/
+static void sqlite3MallocAlarm(int nByte){
+ void (*xCallback)(void*,sqlite3_int64,int);
+ sqlite3_int64 nowUsed;
+ void *pArg;
+ if( mem0.alarmCallback==0 || mem0.alarmBusy ) return;
+ mem0.alarmBusy = 1;
+ xCallback = mem0.alarmCallback;
+ nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+ pArg = mem0.alarmArg;
+ sqlite3_mutex_leave(mem0.mutex);
+ xCallback(pArg, nowUsed, nByte);
+ sqlite3_mutex_enter(mem0.mutex);
+ mem0.alarmBusy = 0;
+}
+
+/*
+** Do a memory allocation with statistics and alarms. Assume the
+** lock is already held.
+*/
+static int mallocWithAlarm(int n, void **pp){
+ int nFull;
+ void *p;
+ assert( sqlite3_mutex_held(mem0.mutex) );
+ nFull = sqlite3Config.m.xRoundup(n);
+ sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
+ if( mem0.alarmCallback!=0 ){
+ int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+ if( nUsed+nFull >= mem0.alarmThreshold ){
+ sqlite3MallocAlarm(nFull);
+ }
+ }
+ p = sqlite3Config.m.xMalloc(nFull);
+ if( p==0 && mem0.alarmCallback ){
+ sqlite3MallocAlarm(nFull);
+ p = sqlite3Config.m.xMalloc(nFull);
+ }
+ if( p ){
+ nFull = sqlite3MallocSize(p);
+ sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
+ }
+ *pp = p;
+ return nFull;
+}
+
+/*
+** Allocate memory. This routine is like sqlite3_malloc() except that it
+** assumes the memory subsystem has already been initialized.
+*/
+SQLITE_PRIVATE void *sqlite3Malloc(int n){
+ void *p;
+ if( n<=0 ){
+ p = 0;
+ }else if( sqlite3Config.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ mallocWithAlarm(n, &p);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ p = sqlite3Config.m.xMalloc(n);
+ }
+ return p;
+}
+
+/*
+** This version of the memory allocation is for use by the application.
+** First make sure the memory subsystem is initialized, then do the
+** allocation.
+*/
+SQLITE_API void *sqlite3_malloc(int n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return sqlite3Malloc(n);
+}
+
+/*
+** Each thread may only have a single outstanding allocation from
+** xScratchMalloc(). We verify this constraint in the single-threaded
+** case by setting scratchAllocOut to 1 when an allocation
+** is outstanding clearing it when the allocation is freed.
+*/
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+static int scratchAllocOut = 0;
+#endif
+
+
+/*
+** Allocate memory that is to be used and released right away.
+** This routine is similar to alloca() in that it is not intended
+** for situations where the memory might be held long-term. This
+** routine is intended to get memory to old large transient data
+** structures that would not normally fit on the stack of an
+** embedded processor.
+*/
+SQLITE_PRIVATE void *sqlite3ScratchMalloc(int n){
+ void *p;
+ assert( n>0 );
+
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+ /* Verify that no more than one scratch allocation per thread
+ ** is outstanding at one time. (This is only checked in the
+ ** single-threaded case since checking in the multi-threaded case
+ ** would be much more complicated.) */
+ assert( scratchAllocOut==0 );
+#endif
+
+ if( sqlite3Config.szScratch<n ){
+ goto scratch_overflow;
+ }else{
+ sqlite3_mutex_enter(mem0.mutex);
+ if( mem0.nScratchFree==0 ){
+ sqlite3_mutex_leave(mem0.mutex);
+ goto scratch_overflow;
+ }else{
+ int i;
+ i = mem0.aScratchFree[--mem0.nScratchFree];
+ sqlite3_mutex_leave(mem0.mutex);
+ i *= sqlite3Config.szScratch;
+ sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
+ sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
+ p = (void*)&((char*)sqlite3Config.pScratch)[i];
+ }
+ }
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+ scratchAllocOut = p!=0;
+#endif
+
+ return p;
+
+scratch_overflow:
+ if( sqlite3Config.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
+ n = mallocWithAlarm(n, &p);
+ if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ p = sqlite3Config.m.xMalloc(n);
+ }
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+ scratchAllocOut = p!=0;
+#endif
+ return p;
+}
+SQLITE_PRIVATE void sqlite3ScratchFree(void *p){
+ if( p ){
+
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+ /* Verify that no more than one scratch allocation per thread
+ ** is outstanding at one time. (This is only checked in the
+ ** single-threaded case since checking in the multi-threaded case
+ ** would be much more complicated.) */
+ assert( scratchAllocOut==1 );
+ scratchAllocOut = 0;
+#endif
+
+ if( sqlite3Config.pScratch==0
+ || p<sqlite3Config.pScratch
+ || p>=(void*)mem0.aScratchFree ){
+ if( sqlite3Config.bMemstat ){
+ int iSize = sqlite3MallocSize(p);
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
+ sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
+ sqlite3Config.m.xFree(p);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ sqlite3Config.m.xFree(p);
+ }
+ }else{
+ int i;
+ i = (u8 *)p - (u8 *)sqlite3Config.pScratch;
+ i /= sqlite3Config.szScratch;
+ assert( i>=0 && i<sqlite3Config.nScratch );
+ sqlite3_mutex_enter(mem0.mutex);
+ assert( mem0.nScratchFree<sqlite3Config.nScratch );
+ mem0.aScratchFree[mem0.nScratchFree++] = i;
+ sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
+ sqlite3_mutex_leave(mem0.mutex);
+ }
+ }
+}
+
+/*
+** Allocate memory to be used by the page cache. Make use of the
+** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one
+** and that memory is of the right size and is not completely
+** consumed. Otherwise, failover to sqlite3Malloc().
+*/
+SQLITE_PRIVATE void *sqlite3PageMalloc(int n){
+ void *p;
+ assert( n>0 );
+ assert( (n & (n-1))==0 );
+ assert( n>=512 && n<=32768 );
+
+ if( sqlite3Config.szPage<n ){
+ goto page_overflow;
+ }else{
+ sqlite3_mutex_enter(mem0.mutex);
+ if( mem0.nPageFree==0 ){
+ sqlite3_mutex_leave(mem0.mutex);
+ goto page_overflow;
+ }else{
+ int i;
+ i = mem0.aPageFree[--mem0.nPageFree];
+ sqlite3_mutex_leave(mem0.mutex);
+ i *= sqlite3Config.szPage;
+ sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
+ p = (void*)&((char*)sqlite3Config.pPage)[i];
+ }
+ }
+ return p;
+
+page_overflow:
+ if( sqlite3Config.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
+ n = mallocWithAlarm(n, &p);
+ if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ p = sqlite3Config.m.xMalloc(n);
+ }
+ return p;
+}
+SQLITE_PRIVATE void sqlite3PageFree(void *p){
+ if( p ){
+ if( sqlite3Config.pPage==0
+ || p<sqlite3Config.pPage
+ || p>=(void*)mem0.aPageFree ){
+ /* In this case, the page allocation was obtained from a regular
+ ** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory
+ ** "overflow"). Free the block with sqlite3_mem_methods.xFree().
+ */
+ if( sqlite3Config.bMemstat ){
+ int iSize = sqlite3MallocSize(p);
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
+ sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
+ sqlite3Config.m.xFree(p);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ sqlite3Config.m.xFree(p);
+ }
+ }else{
+ /* The page allocation was allocated from the sqlite3Config.pPage
+ ** buffer. In this case all that is add the index of the page in
+ ** the sqlite3Config.pPage array to the set of free indexes stored
+ ** in the mem0.aPageFree[] array.
+ */
+ int i;
+ i = (u8 *)p - (u8 *)sqlite3Config.pPage;
+ i /= sqlite3Config.szPage;
+ assert( i>=0 && i<sqlite3Config.nPage );
+ sqlite3_mutex_enter(mem0.mutex);
+ assert( mem0.nPageFree<sqlite3Config.nPage );
+ mem0.aPageFree[mem0.nPageFree++] = i;
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
+ sqlite3_mutex_leave(mem0.mutex);
+#if !defined(NDEBUG) && 0
+ /* Assert that a duplicate was not just inserted into aPageFree[]. */
+ for(i=0; i<mem0.nPageFree-1; i++){
+ assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] );
+ }
+#endif
+ }
+ }
+}
+
+/*
+** TRUE if p is a lookaside memory allocation from db
+*/
+static int isLookaside(sqlite3 *db, void *p){
+ return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
+}
+
+/*
+** Return the size of a memory allocation previously obtained from
+** sqlite3Malloc() or sqlite3_malloc().
+*/
+SQLITE_PRIVATE int sqlite3MallocSize(void *p){
+ return sqlite3Config.m.xSize(p);
+}
+SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, void *p){
+ if( isLookaside(db, p) ){
+ return db->lookaside.sz;
+ }else{
+ return sqlite3Config.m.xSize(p);
+ }
+}
+
+/*
+** Free memory previously obtained from sqlite3Malloc().
+*/
+SQLITE_API void sqlite3_free(void *p){
+ if( p==0 ) return;
+ if( sqlite3Config.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
+ sqlite3Config.m.xFree(p);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ sqlite3Config.m.xFree(p);
+ }
+}
+
+/*
+** Free memory that might be associated with a particular database
+** connection.
+*/
+SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){
+ if( isLookaside(db, p) ){
+ LookasideSlot *pBuf = (LookasideSlot*)p;
+ pBuf->pNext = db->lookaside.pFree;
+ db->lookaside.pFree = pBuf;
+ db->lookaside.nOut--;
+ }else{
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, int nBytes){
+ int nOld, nNew;
+ void *pNew;
+ if( pOld==0 ){
+ return sqlite3Malloc(nBytes);
+ }
+ if( nBytes<=0 ){
+ sqlite3_free(pOld);
+ return 0;
+ }
+ nOld = sqlite3MallocSize(pOld);
+ if( sqlite3Config.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
+ nNew = sqlite3Config.m.xRoundup(nBytes);
+ if( nOld==nNew ){
+ pNew = pOld;
+ }else{
+ if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
+ mem0.alarmThreshold ){
+ sqlite3MallocAlarm(nNew-nOld);
+ }
+ pNew = sqlite3Config.m.xRealloc(pOld, nNew);
+ if( pNew==0 && mem0.alarmCallback ){
+ sqlite3MallocAlarm(nBytes);
+ pNew = sqlite3Config.m.xRealloc(pOld, nNew);
+ }
+ if( pNew ){
+ nNew = sqlite3MallocSize(pNew);
+ sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
+ }
+ }
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ pNew = sqlite3Config.m.xRealloc(pOld, nBytes);
+ }
+ return pNew;
+}
+
+/*
+** The public interface to sqlite3Realloc. Make sure that the memory
+** subsystem is initialized prior to invoking sqliteRealloc.
+*/
+SQLITE_API void *sqlite3_realloc(void *pOld, int n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return sqlite3Realloc(pOld, n);
+}
+
/*
** Allocate and zero memory.
*/
-SQLITE_PRIVATE void *sqlite3MallocZero(unsigned n){
- void *p = sqlite3_malloc(n);
+SQLITE_PRIVATE void *sqlite3MallocZero(int n){
+ void *p = sqlite3Malloc(n);
if( p ){
memset(p, 0, n);
}
** Allocate and zero memory. If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
-SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, unsigned n){
+SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, int n){
void *p = sqlite3DbMallocRaw(db, n);
if( p ){
memset(p, 0, n);
** Allocate and zero memory. If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
-SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, unsigned n){
- void *p = 0;
- if( !db || db->mallocFailed==0 ){
- p = sqlite3_malloc(n);
- if( !p && db ){
- db->mallocFailed = 1;
+SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, int n){
+ void *p;
+ if( db ){
+ LookasideSlot *pBuf;
+ if( db->mallocFailed ){
+ return 0;
}
+ if( db->lookaside.bEnabled && n<=db->lookaside.sz
+ && (pBuf = db->lookaside.pFree)!=0 ){
+ db->lookaside.pFree = pBuf->pNext;
+ db->lookaside.nOut++;
+ if( db->lookaside.nOut>db->lookaside.mxOut ){
+ db->lookaside.mxOut = db->lookaside.nOut;
+ }
+ return (void*)pBuf;
+ }
+ }
+ p = sqlite3Malloc(n);
+ if( !p && db ){
+ db->mallocFailed = 1;
}
return p;
}
/*
** Resize the block of memory pointed to by p to n bytes. If the
-** resize fails, set the mallocFailed flag inthe connection object.
+** resize fails, set the mallocFailed flag in the connection object.
*/
SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
void *pNew = 0;
if( db->mallocFailed==0 ){
- pNew = sqlite3_realloc(p, n);
- if( !pNew ){
- db->mallocFailed = 1;
+ if( p==0 ){
+ return sqlite3DbMallocRaw(db, n);
+ }
+ if( isLookaside(db, p) ){
+ if( n<=db->lookaside.sz ){
+ return p;
+ }
+ pNew = sqlite3DbMallocRaw(db, n);
+ if( pNew ){
+ memcpy(pNew, p, db->lookaside.sz);
+ sqlite3DbFree(db, p);
+ }
+ }else{
+ pNew = sqlite3_realloc(p, n);
+ if( !pNew ){
+ db->mallocFailed = 1;
+ }
}
}
return pNew;
void *pNew;
pNew = sqlite3DbRealloc(db, p, n);
if( !pNew ){
- sqlite3_free(p);
+ sqlite3DbFree(db, p);
}
return pNew;
}
** called via macros that record the current file and line number in the
** ThreadData structure.
*/
-SQLITE_PRIVATE char *sqlite3StrDup(const char *z){
+SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){
char *zNew;
- int n;
- if( z==0 ) return 0;
+ size_t n;
+ if( z==0 ){
+ return 0;
+ }
n = strlen(z)+1;
- zNew = sqlite3_malloc(n);
- if( zNew ) memcpy(zNew, z, n);
- return zNew;
-}
-SQLITE_PRIVATE char *sqlite3StrNDup(const char *z, int n){
- char *zNew;
- if( z==0 ) return 0;
- zNew = sqlite3_malloc(n+1);
+ assert( (n&0x7fffffff)==n );
+ zNew = sqlite3DbMallocRaw(db, (int)n);
if( zNew ){
memcpy(zNew, z, n);
- zNew[n] = 0;
- }
- return zNew;
-}
-
-SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){
- char *zNew = sqlite3StrDup(z);
- if( z && !zNew ){
- db->mallocFailed = 1;
}
return zNew;
}
SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
- char *zNew = sqlite3StrNDup(z, n);
- if( z && !zNew ){
- db->mallocFailed = 1;
+ char *zNew;
+ if( z==0 ){
+ return 0;
+ }
+ assert( (n&0x7fffffff)==n );
+ zNew = sqlite3DbMallocRaw(db, n+1);
+ if( zNew ){
+ memcpy(zNew, z, n);
+ zNew[n] = 0;
}
return zNew;
}
/*
-** Create a string from the 2nd and subsequent arguments (up to the
-** first NULL argument), store the string in memory obtained from
-** sqliteMalloc() and make the pointer indicated by the 1st argument
-** point to that string. The 1st argument must either be NULL or
-** point to memory obtained from sqliteMalloc().
+** Create a string from the zFromat argument and the va_list that follows.
+** Store the string in memory obtained from sqliteMalloc() and make *pz
+** point to that string.
*/
-SQLITE_PRIVATE void sqlite3SetString(char **pz, ...){
+SQLITE_PRIVATE void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
va_list ap;
- int nByte;
- const char *z;
- char *zResult;
+ char *z;
- assert( pz!=0 );
- nByte = 1;
- va_start(ap, pz);
- while( (z = va_arg(ap, const char*))!=0 ){
- nByte += strlen(z);
- }
- va_end(ap);
- sqlite3_free(*pz);
- *pz = zResult = sqlite3_malloc(nByte);
- if( zResult==0 ){
- return;
- }
- *zResult = 0;
- va_start(ap, pz);
- while( (z = va_arg(ap, const char*))!=0 ){
- int n = strlen(z);
- memcpy(zResult, z, n);
- zResult += n;
- }
- zResult[0] = 0;
+ va_start(ap, zFormat);
+ z = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
+ sqlite3DbFree(db, *pz);
+ *pz = z;
}
** an historical reference. Most of the "enhancements" have been backed
** out so that the functionality is now the same as standard printf().
**
+** $Id: printf.c,v 1.93 2008/07/28 19:34:53 drh Exp $
+**
**************************************************************************
**
** The following modules is an enhanced replacement for the "printf" subroutines
#define etPERCENT 8 /* Percent symbol. %% */
#define etCHARX 9 /* Characters. %c */
/* The rest are extensions, not normally found in printf() */
-#define etCHARLIT 10 /* Literal characters. %' */
-#define etSQLESCAPE 11 /* Strings with '\'' doubled. %q */
-#define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '',
+#define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */
+#define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '',
NULL pointers replaced by SQL NULL. %Q */
-#define etTOKEN 13 /* a pointer to a Token structure */
-#define etSRCLIST 14 /* a pointer to a SrcList */
-#define etPOINTER 15 /* The %p conversion */
-#define etSQLESCAPE3 16 /* %w -> Strings with '\"' doubled */
-#define etORDINAL 17 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
+#define etTOKEN 12 /* a pointer to a Token structure */
+#define etSRCLIST 13 /* a pointer to a SrcList */
+#define etPOINTER 14 /* The %p conversion */
+#define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */
+#define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
/*
** seems to make a big difference in determining how fast this beast
** will run.
*/
-static void vxprintf(
+SQLITE_PRIVATE void sqlite3VXPrintf(
StrAccum *pAccum, /* Accumulate results here */
int useExtended, /* Allow extended %-conversions */
const char *fmt, /* Format string */
const char *pre;
char x;
pre = &aPrefix[infop->prefix];
- if( *bufpt!=pre[0] ){
- for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
- }
+ for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
}
length = &buf[etBUFSIZE-1]-bufpt;
break;
while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; }
while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
- while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
- while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
- if( exp>350 || exp<-350 ){
+ while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; }
+ while( realvalue<1.0 ){ realvalue *= 10.0; exp--; }
+ if( exp>350 ){
if( prefix=='-' ){
bufpt = "-Inf";
}else if( prefix=='+' ){
}
/* "0" digits after the decimal point but before the first
** significant digit of the number */
- for(e2++; e2<0 && precision>0; precision--, e2++){
+ for(e2++; e2<0; precision--, e2++){
+ assert( precision>0 );
*(bufpt++) = '0';
}
/* Significant digits after the decimal point */
}
}
/* Add the "eNNN" suffix */
- if( flag_exp || (xtype==etEXP && exp) ){
+ if( flag_exp || xtype==etEXP ){
*(bufpt++) = aDigits[infop->charset];
if( exp<0 ){
*(bufpt++) = '-'; exp = -exp;
bufpt = buf;
length = 1;
break;
- case etCHARLIT:
case etCHARX:
- c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
+ c = buf[0] = va_arg(ap,int);
if( precision>=0 ){
for(idx=1; idx<precision; idx++) buf[idx] = c;
length = precision;
needQuote = !isnull && xtype==etSQLESCAPE2;
n += i + 1 + needQuote*2;
if( n>etBUFSIZE ){
- bufpt = zExtra = sqlite3_malloc( n );
+ bufpt = zExtra = sqlite3Malloc( n );
if( bufpt==0 ) return;
}else{
bufpt = buf;
}
case etTOKEN: {
Token *pToken = va_arg(ap, Token*);
- if( pToken && pToken->z ){
+ if( pToken ){
sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
}
length = width = 0;
int k = va_arg(ap, int);
struct SrcList_item *pItem = &pSrc->a[k];
assert( k>=0 && k<pSrc->nSrc );
- if( pItem->zDatabase && pItem->zDatabase[0] ){
+ if( pItem->zDatabase ){
sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1);
sqlite3StrAccumAppend(pAccum, ".", 1);
}
return;
}
}else{
- i64 szNew = p->nAlloc;
+ i64 szNew = p->nChar;
szNew += N + 1;
if( szNew > p->mxAlloc ){
- p->nAlloc = p->mxAlloc;
- if( ((i64)p->nChar)+((i64)N) >= p->nAlloc ){
- sqlite3StrAccumReset(p);
- p->tooBig = 1;
- return;
- }
+ sqlite3StrAccumReset(p);
+ p->tooBig = 1;
+ return;
}else{
p->nAlloc = szNew;
}
- zNew = sqlite3_malloc( p->nAlloc );
+ zNew = sqlite3DbMallocRaw(p->db, p->nAlloc );
if( zNew ){
memcpy(zNew, p->zText, p->nChar);
sqlite3StrAccumReset(p);
if( p->zText ){
p->zText[p->nChar] = 0;
if( p->useMalloc && p->zText==p->zBase ){
- p->zText = sqlite3_malloc( p->nChar+1 );
+ p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
if( p->zText ){
memcpy(p->zText, p->zBase, p->nChar+1);
}else{
*/
SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
if( p->zText!=p->zBase ){
- sqlite3_free(p->zText);
- p->zText = 0;
+ sqlite3DbFree(p->db, p->zText);
}
+ p->zText = 0;
}
/*
** Initialize a string accumulator
*/
-static void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
+SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
p->zText = p->zBase = zBase;
+ p->db = 0;
p->nChar = 0;
p->nAlloc = n;
p->mxAlloc = mx;
StrAccum acc;
sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH);
- vxprintf(&acc, 1, zFormat, ap);
+ acc.db = db;
+ sqlite3VXPrintf(&acc, 1, zFormat, ap);
z = sqlite3StrAccumFinish(&acc);
if( acc.mallocFailed && db ){
db->mallocFailed = 1;
}
/*
+** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting
+** the string and before returnning. This routine is intended to be used
+** to modify an existing string. For example:
+**
+** x = sqlite3MPrintf(db, x, "prefix %s suffix", x);
+**
+*/
+SQLITE_PRIVATE char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){
+ va_list ap;
+ char *z;
+ va_start(ap, zFormat);
+ z = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ sqlite3DbFree(db, zStr);
+ return z;
+}
+
+/*
** Print into memory obtained from sqlite3_malloc(). Omit the internal
** %-conversion extensions.
*/
char *z;
char zBase[SQLITE_PRINT_BUF_SIZE];
StrAccum acc;
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
- vxprintf(&acc, 0, zFormat, ap);
+ sqlite3VXPrintf(&acc, 0, zFormat, ap);
z = sqlite3StrAccumFinish(&acc);
return z;
}
SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){
va_list ap;
char *z;
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
va_start(ap, zFormat);
z = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
sqlite3StrAccumInit(&acc, zBuf, n, 0);
acc.useMalloc = 0;
va_start(ap,zFormat);
- vxprintf(&acc, 0, zFormat, ap);
+ sqlite3VXPrintf(&acc, 0, zFormat, ap);
va_end(ap);
z = sqlite3StrAccumFinish(&acc);
return z;
}
-#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) || defined(SQLITE_MEMDEBUG)
+#if defined(SQLITE_DEBUG)
/*
** A version of printf() that understands %lld. Used for debugging.
** The printf() built into some versions of windows does not understand %lld
sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0);
acc.useMalloc = 0;
va_start(ap,zFormat);
- vxprintf(&acc, 0, zFormat, ap);
+ sqlite3VXPrintf(&acc, 0, zFormat, ap);
va_end(ap);
sqlite3StrAccumFinish(&acc);
fprintf(stdout,"%s", zBuf);
** Random numbers are used by some of the database backends in order
** to generate random integer keys for tables or random filenames.
**
-** $Id: random.c,v 1.23 2008/03/21 16:45:47 drh Exp $
+** $Id: random.c,v 1.25 2008/06/19 01:03:18 drh Exp $
*/
*/
SQLITE_API void sqlite3_randomness(int N, void *pBuf){
unsigned char *zBuf = pBuf;
- static sqlite3_mutex *mutex = 0;
- if( mutex==0 ){
- mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PRNG);
- }
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
+#endif
sqlite3_mutex_enter(mutex);
while( N-- ){
*(zBuf++) = randomByte();
** This file contains routines used to translate between UTF-8,
** UTF-16, UTF-16BE, and UTF-16LE.
**
-** $Id: utf.c,v 1.61 2008/03/28 15:44:10 danielk1977 Exp $
+** $Id: utf.c,v 1.63 2008/07/29 11:25:14 danielk1977 Exp $
**
** Notes on UTF-8:
**
** source code file "vdbe.c". When that file became too big (over
** 6000 lines long) it was split up into several smaller files and
** this header information was factored out.
+**
+** $Id: vdbeInt.h,v 1.153 2008/08/02 03:50:39 drh Exp $
*/
#ifndef _VDBEINT_H_
#define _VDBEINT_H_
typedef struct Fifo Fifo;
struct Fifo {
int nEntry; /* Total number of entries */
+ sqlite3 *db; /* The associated database connection */
FifoPage *pFirst; /* First page on the list */
FifoPage *pLast; /* Last page on the list */
};
unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
int errorAction; /* Recovery action to do in case of an error */
int inTempTrans; /* True if temp database is transactioned */
- int returnStack[25]; /* Return address stack for OP_Gosub & OP_Return */
- int returnDepth; /* Next unused element in returnStack[] */
int nResColumn; /* Number of columns in one row of the result set */
char **azResColumn; /* Values for one row of result */
char *zErrMsg; /* Error message written here */
Mem *pResultSet; /* Pointer to an array of results */
u8 explain; /* True if EXPLAIN present on SQL command */
u8 changeCntOn; /* True to update the change-counter */
- u8 aborted; /* True if ROLLBACK in another VM causes an abort */
u8 expired; /* True if the VM needs to be recompiled */
u8 minWriteFileFormat; /* Minimum file format for writable database files */
u8 inVtabMethod; /* See comments above */
SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(Cursor*,UnpackedRecord *,int,const unsigned char*,int*);
SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
-SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8*);
+SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8*, int, int*);
SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int);
SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
#endif
SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
-SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo*);
+SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo*, sqlite3*);
SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo*, i64);
SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo*, i64*);
SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo*);
** for unicode values 0x80 and greater. It do not change over-length
** encodings to 0xfffd as some systems recommend.
*/
+#define READ_UTF8(zIn, zTerm, c) \
+ c = *(zIn++); \
+ if( c>=0xc0 ){ \
+ c = sqlite3UtfTrans1[c-0xc0]; \
+ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
+ c = (c<<6) + (0x3f & *(zIn++)); \
+ } \
+ if( c<0x80 \
+ || (c&0xFFFFF800)==0xD800 \
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
+ }
SQLITE_PRIVATE int sqlite3Utf8Read(
const unsigned char *z, /* First byte of UTF-8 character */
const unsigned char *zTerm, /* Pretend this byte is 0x00 */
const unsigned char **pzNext /* Write first byte past UTF-8 char here */
){
- int c = *(z++);
- if( c>=0xc0 ){
- c = sqlite3UtfTrans1[c-0xc0];
- while( z!=zTerm && (*z & 0xc0)==0x80 ){
- c = (c<<6) + (0x3f & *(z++));
- }
- if( c<0x80
- || (c&0xFFFFF800)==0xD800
- || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
- }
+ int c;
+ READ_UTF8(z, zTerm, c);
*pzNext = z;
return c;
}
+
/*
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
if( desiredEnc==SQLITE_UTF16LE ){
/* UTF-8 -> UTF-16 Little-endian */
while( zIn<zTerm ){
- c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
+ /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
+ READ_UTF8(zIn, zTerm, c);
WRITE_UTF16LE(z, c);
}
}else{
assert( desiredEnc==SQLITE_UTF16BE );
/* UTF-8 -> UTF-16 Big-endian */
while( zIn<zTerm ){
- c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
+ /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
+ READ_UTF8(zIn, zTerm, c);
WRITE_UTF16BE(z, c);
}
}
WRITE_UTF8(z, c);
}
}else{
- /* UTF-16 Little-endian -> UTF-8 */
+ /* UTF-16 Big-endian -> UTF-8 */
while( zIn<zTerm ){
READ_UTF16BE(zIn, c);
WRITE_UTF8(z, c);
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
-** $Id: util.c,v 1.229 2008/05/13 16:41:50 drh Exp $
+** $Id: util.c,v 1.241 2008/07/28 19:34:54 drh Exp $
*/
/*
-** Return true if the floating point value is Not a Number.
+** Return true if the floating point value is Not a Number (NaN).
*/
SQLITE_PRIVATE int sqlite3IsNaN(double x){
/* This NaN test sometimes fails if compiled on GCC with -ffast-math.
** -O option since it can result in incorrect output for programs
** which depend on an exact implementation of IEEE or ISO
** rules/specifications for math functions.
+ **
+ ** Under MSVC, this NaN test may fail if compiled with a floating-
+ ** point precision mode other than /fp:precise. From the MSDN
+ ** documentation:
+ **
+ ** The compiler [with /fp:precise] will properly handle comparisons
+ ** involving NaN. For example, x != x evaluates to true if x is NaN
+ ** ...
*/
+#ifdef __FAST_MATH__
+# error SQLite will not work correctly with the -ffast-math option of GCC.
+#endif
volatile double y = x;
- return x!=y;
+ volatile double z = y;
+ return y!=z;
+}
+
+/*
+** Return the length of a string, except do not allow the string length
+** to exceed the SQLITE_LIMIT_LENGTH setting.
+*/
+SQLITE_PRIVATE int sqlite3Strlen(sqlite3 *db, const char *z){
+ const char *z2 = z;
+ int len;
+ size_t x;
+ while( *z2 ){ z2++; }
+ x = z2 - z;
+ len = 0x7fffffff & x;
+ if( len!=x || len > db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ return db->aLimit[SQLITE_LIMIT_LENGTH];
+ }else{
+ return len;
+ }
}
/*
va_start(ap, zFormat);
z = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
- sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3_free);
+ sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
}else{
sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
}
*/
SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
va_list ap;
+ sqlite3 *db = pParse->db;
pParse->nErr++;
- sqlite3_free(pParse->zErrMsg);
+ sqlite3DbFree(db, pParse->zErrMsg);
va_start(ap, zFormat);
- pParse->zErrMsg = sqlite3VMPrintf(pParse->db, zFormat, ap);
+ pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
if( pParse->rc==SQLITE_OK ){
pParse->rc = SQLITE_ERROR;
** Clear the error message in pParse, if any
*/
SQLITE_PRIVATE void sqlite3ErrorClear(Parse *pParse){
- sqlite3_free(pParse->zErrMsg);
+ sqlite3DbFree(pParse->db, pParse->zErrMsg);
pParse->zErrMsg = 0;
pParse->nErr = 0;
}
}
}
-/* An array to map all upper-case characters into their corresponding
-** lower-case character.
-*/
-SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
-#ifdef SQLITE_ASCII
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
- 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
- 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
- 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
- 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
- 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
- 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
- 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
- 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
- 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
- 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
- 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
- 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
- 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
- 252,253,254,255
-#endif
-#ifdef SQLITE_EBCDIC
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
- 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
- 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
- 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
- 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
- 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
- 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
- 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
- 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
- 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
- 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
- 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
- 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
- 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
- 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
-#endif
-};
+/* Convenient short-hand */
#define UpperToLower sqlite3UpperToLower
/*
i64 v = 0;
int neg;
int i, c;
+ const char *zStart;
while( isspace(*(u8*)zNum) ) zNum++;
if( *zNum=='-' ){
neg = 1;
}else{
neg = 0;
}
+ zStart = zNum;
while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
v = v*10 + c - '0';
}
*pNum = neg ? -v : v;
- if( c!=0 || i==0 || i>19 ){
+ if( c!=0 || (i==0 && zStart==zNum) || i>19 ){
/* zNum is empty or contains non-numeric text or is longer
** than 19 digits (thus guaranting that it is too large) */
return 0;
u32 a,b,s;
a = *p;
- // a: p0 (unmasked)
+ /* a: p0 (unmasked) */
if (!(a&0x80))
{
*v = a;
p++;
b = *p;
- // b: p1 (unmasked)
+ /* b: p1 (unmasked) */
if (!(b&0x80))
{
a &= 0x7f;
p++;
a = a<<14;
a |= *p;
- // a: p0<<14 | p2 (unmasked)
+ /* a: p0<<14 | p2 (unmasked) */
if (!(a&0x80))
{
a &= (0x7f<<14)|(0x7f);
return 3;
}
- // CSE1 from below
+ /* CSE1 from below */
a &= (0x7f<<14)|(0x7f);
p++;
b = b<<14;
b |= *p;
- // b: p1<<14 | p3 (unmasked)
+ /* b: p1<<14 | p3 (unmasked) */
if (!(b&0x80))
{
b &= (0x7f<<14)|(0x7f);
- // moved CSE1 up
- // a &= (0x7f<<14)|(0x7f);
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
a = a<<7;
a |= b;
*v = a;
return 4;
}
- // a: p0<<14 | p2 (masked)
- // b: p1<<14 | p3 (unmasked)
- // 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked)
- // moved CSE1 up
- // a &= (0x7f<<14)|(0x7f);
+ /* a: p0<<14 | p2 (masked) */
+ /* b: p1<<14 | p3 (unmasked) */
+ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
b &= (0x7f<<14)|(0x7f);
s = a;
- // s: p0<<14 | p2 (masked)
+ /* s: p0<<14 | p2 (masked) */
p++;
a = a<<14;
a |= *p;
- // a: p0<<28 | p2<<14 | p4 (unmasked)
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */
if (!(a&0x80))
{
- // we can skip these cause they were (effectively) done above in calc'ing s
- // a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
- // b &= (0x7f<<14)|(0x7f);
+ /* we can skip these cause they were (effectively) done above in calc'ing s */
+ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ /* b &= (0x7f<<14)|(0x7f); */
b = b<<7;
a |= b;
s = s>>18;
return 5;
}
- // 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked)
+ /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
s = s<<7;
s |= b;
- // s: p0<<21 | p1<<14 | p2<<7 | p3 (masked)
+ /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
p++;
b = b<<14;
b |= *p;
- // b: p1<<28 | p3<<14 | p5 (unmasked)
+ /* b: p1<<28 | p3<<14 | p5 (unmasked) */
if (!(b&0x80))
{
- // we can skip this cause it was (effectively) done above in calc'ing s
- // b &= (0x7f<<28)|(0x7f<<14)|(0x7f);
+ /* we can skip this cause it was (effectively) done above in calc'ing s */
+ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
a &= (0x7f<<14)|(0x7f);
a = a<<7;
a |= b;
p++;
a = a<<14;
a |= *p;
- // a: p2<<28 | p4<<14 | p6 (unmasked)
+ /* a: p2<<28 | p4<<14 | p6 (unmasked) */
if (!(a&0x80))
{
a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
return 7;
}
- // CSE2 from below
+ /* CSE2 from below */
a &= (0x7f<<14)|(0x7f);
p++;
b = b<<14;
b |= *p;
- // b: p3<<28 | p5<<14 | p7 (unmasked)
+ /* b: p3<<28 | p5<<14 | p7 (unmasked) */
if (!(b&0x80))
{
b &= (0x7f<<28)|(0x7f<<14)|(0x7f);
- // moved CSE2 up
- // a &= (0x7f<<14)|(0x7f);
+ /* moved CSE2 up */
+ /* a &= (0x7f<<14)|(0x7f); */
a = a<<7;
a |= b;
s = s>>4;
p++;
a = a<<15;
a |= *p;
- // a: p4<<29 | p6<<15 | p8 (unmasked)
+ /* a: p4<<29 | p6<<15 | p8 (unmasked) */
- // moved CSE2 up
- // a &= (0x7f<<29)|(0x7f<<15)|(0xff);
+ /* moved CSE2 up */
+ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
b &= (0x7f<<14)|(0x7f);
b = b<<8;
a |= b;
u32 a,b;
a = *p;
- // a: p0 (unmasked)
+ /* a: p0 (unmasked) */
#ifndef getVarint32
if (!(a&0x80))
{
p++;
b = *p;
- // b: p1 (unmasked)
+ /* b: p1 (unmasked) */
if (!(b&0x80))
{
a &= 0x7f;
p++;
a = a<<14;
a |= *p;
- // a: p0<<14 | p2 (unmasked)
+ /* a: p0<<14 | p2 (unmasked) */
if (!(a&0x80))
{
a &= (0x7f<<14)|(0x7f);
p++;
b = b<<14;
b |= *p;
- // b: p1<<14 | p3 (unmasked)
+ /* b: p1<<14 | p3 (unmasked) */
if (!(b&0x80))
{
b &= (0x7f<<14)|(0x7f);
p++;
a = a<<14;
a |= *p;
- // a: p0<<28 | p2<<14 | p4 (unmasked)
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */
if (!(a&0x80))
{
a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
** This is the implementation of generic hash-tables
** used in SQLite.
**
-** $Id: hash.c,v 1.28 2008/05/13 13:27:34 drh Exp $
+** $Id: hash.c,v 1.30 2008/06/20 14:59:51 danielk1977 Exp $
*/
/* Turn bulk memory into a hash table object by initializing the
** is benign (since failing to resize a hash table is a performance
** hit only, not a fatal error).
*/
- if( pH->htsize>0 ) sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ if( pH->htsize>0 ) sqlite3BeginBenignMalloc();
new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
- if( pH->htsize>0 ) sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ if( pH->htsize>0 ) sqlite3EndBenignMalloc();
if( new_ht==0 ) return;
sqlite3_free(pH->ht);
}
}
if( data==0 ) return 0;
- new_elem = (HashElem*)sqlite3_malloc( sizeof(HashElem) );
+ new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) );
if( new_elem==0 ) return data;
if( pH->copyKey && pKey!=0 ){
- new_elem->pKey = sqlite3_malloc( nKey );
+ new_elem->pKey = sqlite3Malloc( nKey );
if( new_elem->pKey==0 ){
sqlite3_free(new_elem);
return data;
/* 14 */ "Expire",
/* 15 */ "AutoCommit",
/* 16 */ "Not",
- /* 17 */ "IntegrityCk",
- /* 18 */ "Sort",
- /* 19 */ "Copy",
- /* 20 */ "Trace",
- /* 21 */ "Function",
- /* 22 */ "IfNeg",
- /* 23 */ "Noop",
- /* 24 */ "Return",
- /* 25 */ "NewRowid",
- /* 26 */ "Variable",
- /* 27 */ "String",
- /* 28 */ "RealAffinity",
- /* 29 */ "VRename",
- /* 30 */ "ParseSchema",
- /* 31 */ "VOpen",
- /* 32 */ "Close",
- /* 33 */ "CreateIndex",
- /* 34 */ "IsUnique",
- /* 35 */ "NotFound",
- /* 36 */ "Int64",
- /* 37 */ "MustBeInt",
- /* 38 */ "Halt",
- /* 39 */ "Rowid",
- /* 40 */ "IdxLT",
- /* 41 */ "AddImm",
- /* 42 */ "Statement",
- /* 43 */ "RowData",
- /* 44 */ "MemMax",
- /* 45 */ "NotExists",
- /* 46 */ "Gosub",
- /* 47 */ "Integer",
- /* 48 */ "Prev",
- /* 49 */ "VColumn",
- /* 50 */ "CreateTable",
- /* 51 */ "Last",
- /* 52 */ "IncrVacuum",
- /* 53 */ "IdxRowid",
- /* 54 */ "ResetCount",
- /* 55 */ "FifoWrite",
- /* 56 */ "ContextPush",
- /* 57 */ "DropTrigger",
- /* 58 */ "DropIndex",
- /* 59 */ "IdxGE",
+ /* 17 */ "Pagecount",
+ /* 18 */ "IntegrityCk",
+ /* 19 */ "Sort",
+ /* 20 */ "Copy",
+ /* 21 */ "Trace",
+ /* 22 */ "Function",
+ /* 23 */ "IfNeg",
+ /* 24 */ "Noop",
+ /* 25 */ "Return",
+ /* 26 */ "NewRowid",
+ /* 27 */ "Variable",
+ /* 28 */ "String",
+ /* 29 */ "RealAffinity",
+ /* 30 */ "VRename",
+ /* 31 */ "ParseSchema",
+ /* 32 */ "VOpen",
+ /* 33 */ "Close",
+ /* 34 */ "CreateIndex",
+ /* 35 */ "IsUnique",
+ /* 36 */ "NotFound",
+ /* 37 */ "Int64",
+ /* 38 */ "MustBeInt",
+ /* 39 */ "Halt",
+ /* 40 */ "Rowid",
+ /* 41 */ "IdxLT",
+ /* 42 */ "AddImm",
+ /* 43 */ "Statement",
+ /* 44 */ "RowData",
+ /* 45 */ "MemMax",
+ /* 46 */ "NotExists",
+ /* 47 */ "Gosub",
+ /* 48 */ "Integer",
+ /* 49 */ "Prev",
+ /* 50 */ "VColumn",
+ /* 51 */ "CreateTable",
+ /* 52 */ "Last",
+ /* 53 */ "IncrVacuum",
+ /* 54 */ "IdxRowid",
+ /* 55 */ "ResetCount",
+ /* 56 */ "FifoWrite",
+ /* 57 */ "ContextPush",
+ /* 58 */ "Yield",
+ /* 59 */ "DropTrigger",
/* 60 */ "Or",
/* 61 */ "And",
- /* 62 */ "IdxDelete",
- /* 63 */ "Vacuum",
- /* 64 */ "MoveLe",
+ /* 62 */ "DropIndex",
+ /* 63 */ "IdxGE",
+ /* 64 */ "IdxDelete",
/* 65 */ "IsNull",
/* 66 */ "NotNull",
/* 67 */ "Ne",
/* 70 */ "Le",
/* 71 */ "Lt",
/* 72 */ "Ge",
- /* 73 */ "IfNot",
+ /* 73 */ "Vacuum",
/* 74 */ "BitAnd",
/* 75 */ "BitOr",
/* 76 */ "ShiftLeft",
/* 81 */ "Divide",
/* 82 */ "Remainder",
/* 83 */ "Concat",
- /* 84 */ "DropTable",
- /* 85 */ "MakeRecord",
- /* 86 */ "ResultRow",
+ /* 84 */ "MoveLe",
+ /* 85 */ "IfNot",
+ /* 86 */ "DropTable",
/* 87 */ "BitNot",
/* 88 */ "String8",
- /* 89 */ "Delete",
- /* 90 */ "AggFinal",
- /* 91 */ "Goto",
- /* 92 */ "TableLock",
- /* 93 */ "FifoRead",
- /* 94 */ "Clear",
- /* 95 */ "MoveLt",
- /* 96 */ "VerifyCookie",
- /* 97 */ "AggStep",
- /* 98 */ "SetNumColumns",
- /* 99 */ "Transaction",
- /* 100 */ "VFilter",
- /* 101 */ "VDestroy",
- /* 102 */ "ContextPop",
- /* 103 */ "Next",
- /* 104 */ "IdxInsert",
- /* 105 */ "Insert",
- /* 106 */ "Destroy",
- /* 107 */ "ReadCookie",
- /* 108 */ "ForceInt",
- /* 109 */ "LoadAnalysis",
- /* 110 */ "Explain",
- /* 111 */ "OpenPseudo",
- /* 112 */ "OpenEphemeral",
- /* 113 */ "Null",
- /* 114 */ "Move",
- /* 115 */ "Blob",
- /* 116 */ "Rewind",
- /* 117 */ "MoveGe",
- /* 118 */ "VBegin",
- /* 119 */ "VUpdate",
- /* 120 */ "IfZero",
- /* 121 */ "VCreate",
- /* 122 */ "Found",
- /* 123 */ "IfPos",
- /* 124 */ "NullRow",
+ /* 89 */ "MakeRecord",
+ /* 90 */ "ResultRow",
+ /* 91 */ "Delete",
+ /* 92 */ "AggFinal",
+ /* 93 */ "Compare",
+ /* 94 */ "Goto",
+ /* 95 */ "TableLock",
+ /* 96 */ "FifoRead",
+ /* 97 */ "Clear",
+ /* 98 */ "MoveLt",
+ /* 99 */ "VerifyCookie",
+ /* 100 */ "AggStep",
+ /* 101 */ "SetNumColumns",
+ /* 102 */ "Transaction",
+ /* 103 */ "VFilter",
+ /* 104 */ "VDestroy",
+ /* 105 */ "ContextPop",
+ /* 106 */ "Next",
+ /* 107 */ "IdxInsert",
+ /* 108 */ "Insert",
+ /* 109 */ "Destroy",
+ /* 110 */ "ReadCookie",
+ /* 111 */ "ForceInt",
+ /* 112 */ "LoadAnalysis",
+ /* 113 */ "Explain",
+ /* 114 */ "OpenPseudo",
+ /* 115 */ "OpenEphemeral",
+ /* 116 */ "Null",
+ /* 117 */ "Move",
+ /* 118 */ "Blob",
+ /* 119 */ "Rewind",
+ /* 120 */ "MoveGe",
+ /* 121 */ "VBegin",
+ /* 122 */ "VUpdate",
+ /* 123 */ "IfZero",
+ /* 124 */ "VCreate",
/* 125 */ "Real",
- /* 126 */ "NotUsed_126",
- /* 127 */ "NotUsed_127",
- /* 128 */ "NotUsed_128",
- /* 129 */ "NotUsed_129",
- /* 130 */ "NotUsed_130",
+ /* 126 */ "Found",
+ /* 127 */ "IfPos",
+ /* 128 */ "NullRow",
+ /* 129 */ "Jump",
+ /* 130 */ "Permutation",
/* 131 */ "NotUsed_131",
/* 132 */ "NotUsed_132",
/* 133 */ "NotUsed_133",
******************************************************************************
**
** This file contains code that is specific to OS/2.
+**
+** $Id: os_os2.c,v 1.55 2008/07/29 18:49:29 pweilbacher Exp $
*/
-#if OS_OS2
+#if SQLITE_OS_OS2
/*
** A Note About Memory Allocation:
**
** This file should be #included by the os_*.c files only. It is not a
** general purpose header file.
+**
+** $Id: os_common.h,v 1.37 2008/05/29 20:22:37 shane Exp $
*/
+#ifndef _OS_COMMON_H_
+#define _OS_COMMON_H_
/*
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE
-__inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
-}
-static unsigned long long int g_start;
-static unsigned int elapse;
-#define TIMER_START g_start=hwtime()
-#define TIMER_END elapse=hwtime()-g_start
-#define TIMER_ELAPSED elapse
+
+/*
+** hwtime.h contains inline assembler code for implementing
+** high-performance timing routines.
+*/
+/************** Include hwtime.h in the middle of os_common.h ****************/
+/************** Begin file hwtime.h ******************************************/
+/*
+** 2008 May 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains inline asm code for retrieving "high-performance"
+** counters for x86 class CPUs.
+**
+** $Id: hwtime.h,v 1.3 2008/08/01 14:33:15 shane Exp $
+*/
+#ifndef _HWTIME_H_
+#define _HWTIME_H_
+
+/*
+** The following routine only works on pentium-class (or newer) processors.
+** It uses the RDTSC opcode to read the cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+#if (defined(__GNUC__) || defined(_MSC_VER)) && \
+ (defined(i386) || defined(__i386__) || defined(_M_IX86))
+
+ #if defined(__GNUC__)
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned int lo, hi;
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (sqlite_uint64)hi << 32 | lo;
+ }
+
+ #elif defined(_MSC_VER)
+
+ __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
+ __asm {
+ rdtsc
+ ret ; return value at EDX:EAX
+ }
+ }
+
+ #endif
+
+#elif (defined(__GNUC__) && defined(__x86_64__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long val;
+ __asm__ __volatile__ ("rdtsc" : "=A" (val));
+ return val;
+ }
+
+#elif (defined(__GNUC__) && defined(__ppc__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long long retval;
+ unsigned long junk;
+ __asm__ __volatile__ ("\n\
+ 1: mftbu %1\n\
+ mftb %L0\n\
+ mftbu %0\n\
+ cmpw %0,%1\n\
+ bne 1b"
+ : "=r" (retval), "=r" (junk));
+ return retval;
+ }
+
+#else
+
+ #error Need implementation of sqlite3Hwtime() for your platform.
+
+ /*
+ ** To compile without implementing sqlite3Hwtime() for your platform,
+ ** you can remove the above #error and use the following
+ ** stub function. You will lose timing support for many
+ ** of the debugging and testing utilities, but it should at
+ ** least compile and run.
+ */
+SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
+
+#endif
+
+#endif /* !defined(_HWTIME_H_) */
+
+/************** End of hwtime.h **********************************************/
+/************** Continuing where we left off in os_common.h ******************/
+
+static sqlite_uint64 g_start;
+static sqlite_uint64 g_elapsed;
+#define TIMER_START g_start=sqlite3Hwtime()
+#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
+#define TIMER_ELAPSED g_elapsed
#else
#define TIMER_START
#define TIMER_END
-#define TIMER_ELAPSED 0
+#define TIMER_ELAPSED ((sqlite_uint64)0)
#endif
/*
#define OpenCounter(X)
#endif
+#endif /* !defined(_OS_COMMON_H_) */
+
/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_os2.c *********************/
/*
** Close a file.
*/
-int os2Close( sqlite3_file *id ){
+static int os2Close( sqlite3_file *id ){
APIRET rc = NO_ERROR;
os2File *pFile;
if( id && (pFile = (os2File*)id) != 0 ){
** bytes were read successfully and SQLITE_IOERR if anything goes
** wrong.
*/
-int os2Read(
+static int os2Read(
sqlite3_file *id, /* File to read from */
void *pBuf, /* Write content into this buffer */
int amt, /* Number of bytes to read */
** Write data from a buffer into a file. Return SQLITE_OK on success
** or some other error code on failure.
*/
-int os2Write(
+static int os2Write(
sqlite3_file *id, /* File to write into */
const void *pBuf, /* The bytes to be written */
int amt, /* Number of bytes to write */
/*
** Truncate an open file to a specified size
*/
-int os2Truncate( sqlite3_file *id, i64 nByte ){
+static int os2Truncate( sqlite3_file *id, i64 nByte ){
APIRET rc = NO_ERROR;
os2File *pFile = (os2File*)id;
OSTRACE3( "TRUNCATE %d %lld\n", pFile->h, nByte );
/*
** Make sure all writes to a particular file are committed to disk.
*/
-int os2Sync( sqlite3_file *id, int flags ){
+static int os2Sync( sqlite3_file *id, int flags ){
os2File *pFile = (os2File*)id;
OSTRACE3( "SYNC %d lock=%d\n", pFile->h, pFile->locktype );
#ifdef SQLITE_TEST
/*
** Determine the current size of a file in bytes
*/
-int os2FileSize( sqlite3_file *id, sqlite3_int64 *pSize ){
+static int os2FileSize( sqlite3_file *id, sqlite3_int64 *pSize ){
APIRET rc = NO_ERROR;
FILESTATUS3 fsts3FileInfo;
memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo));
** It is not possible to lower the locking level one step at a time. You
** must go straight to locking level 0.
*/
-int os2Lock( sqlite3_file *id, int locktype ){
+static int os2Lock( sqlite3_file *id, int locktype ){
int rc = SQLITE_OK; /* Return code from subroutines */
APIRET res = NO_ERROR; /* Result of an OS/2 lock call */
int newLocktype; /* Set pFile->locktype to this value before exiting */
** file by this or any other process. If such a lock is held, return
** non-zero, otherwise zero.
*/
-int os2CheckReservedLock( sqlite3_file *id ){
+static int os2CheckReservedLock( sqlite3_file *id, int *pOut ){
int r = 0;
os2File *pFile = (os2File*)id;
assert( pFile!=0 );
r = !(rc == NO_ERROR);
OSTRACE3( "TEST WR-LOCK %d %d (remote)\n", pFile->h, r );
}
- return r;
+ *pOut = r;
+ return SQLITE_OK;
}
/*
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
** might return SQLITE_IOERR;
*/
-int os2Unlock( sqlite3_file *id, int locktype ){
+static int os2Unlock( sqlite3_file *id, int locktype ){
int type;
os2File *pFile = (os2File*)id;
APIRET rc = SQLITE_OK;
return 0;
}
+
+/*
+** Character set conversion objects used by conversion routines.
+*/
+static UconvObject ucUtf8 = NULL; /* convert between UTF-8 and UCS-2 */
+static UconvObject uclCp = NULL; /* convert between local codepage and UCS-2 */
+
+/*
+** Helper function to initialize the conversion objects from and to UTF-8.
+*/
+static void initUconvObjects( void ){
+ if( UniCreateUconvObject( UTF_8, &ucUtf8 ) != ULS_SUCCESS )
+ ucUtf8 = NULL;
+ if ( UniCreateUconvObject( (UniChar *)L"@path=yes", &uclCp ) != ULS_SUCCESS )
+ uclCp = NULL;
+}
+
+/*
+** Helper function to free the conversion objects from and to UTF-8.
+*/
+static void freeUconvObjects( void ){
+ if ( ucUtf8 )
+ UniFreeUconvObject( ucUtf8 );
+ if ( uclCp )
+ UniFreeUconvObject( uclCp );
+ ucUtf8 = NULL;
+ uclCp = NULL;
+}
+
/*
** Helper function to convert UTF-8 filenames to local OS/2 codepage.
** The two-step process: first convert the incoming UTF-8 string
** into UCS-2 and then from UCS-2 to the current codepage.
** The returned char pointer has to be freed.
*/
-char *convertUtf8PathToCp(const char *in)
-{
- UconvObject uconv;
- UniChar ucsUtf8Cp[12],
- tempPath[CCHMAXPATH];
- char *out;
- int rc = 0;
+static char *convertUtf8PathToCp( const char *in ){
+ UniChar tempPath[CCHMAXPATH];
+ char *out = (char *)calloc( CCHMAXPATH, 1 );
+
+ if( !out )
+ return NULL;
- out = (char *)calloc(CCHMAXPATH, 1);
+ if( !ucUtf8 || !uclCp )
+ initUconvObjects();
/* determine string for the conversion of UTF-8 which is CP1208 */
- rc = UniMapCpToUcsCp(1208, ucsUtf8Cp, 12);
- rc = UniCreateUconvObject(ucsUtf8Cp, &uconv);
- rc = UniStrToUcs(uconv, tempPath, (char *)in, CCHMAXPATH);
- rc = UniFreeUconvObject(uconv);
+ if( UniStrToUcs( ucUtf8, tempPath, (char *)in, CCHMAXPATH ) != ULS_SUCCESS )
+ return out; /* if conversion fails, return the empty string */
/* conversion for current codepage which can be used for paths */
- rc = UniCreateUconvObject((UniChar *)L"@path=yes", &uconv);
- rc = UniStrFromUcs(uconv, out, tempPath, CCHMAXPATH);
- rc = UniFreeUconvObject(uconv);
+ UniStrFromUcs( uclCp, out, tempPath, CCHMAXPATH );
return out;
}
** The two-step process: first convert the incoming codepage-specific
** string into UCS-2 and then from UCS-2 to the codepage of UTF-8.
** The returned char pointer has to be freed.
+**
+** This function is non-static to be able to use this in shell.c and
+** similar applications that take command line arguments.
*/
-char *convertCpPathToUtf8(const char *in)
-{
- UconvObject uconv;
- UniChar ucsUtf8Cp[12],
- tempPath[CCHMAXPATH];
- char *out;
- int rc = 0;
+char *convertCpPathToUtf8( const char *in ){
+ UniChar tempPath[CCHMAXPATH];
+ char *out = (char *)calloc( CCHMAXPATH, 1 );
- out = (char *)calloc(CCHMAXPATH, 1);
+ if( !out )
+ return NULL;
+
+ if( !ucUtf8 || !uclCp )
+ initUconvObjects();
/* conversion for current codepage which can be used for paths */
- rc = UniCreateUconvObject((UniChar *)L"@path=yes", &uconv);
- rc = UniStrToUcs(uconv, tempPath, (char *)in, CCHMAXPATH);
- rc = UniFreeUconvObject(uconv);
+ if( UniStrToUcs( uclCp, tempPath, (char *)in, CCHMAXPATH ) != ULS_SUCCESS )
+ return out; /* if conversion fails, return the empty string */
/* determine string for the conversion of UTF-8 which is CP1208 */
- rc = UniMapCpToUcsCp(1208, ucsUtf8Cp, 12);
- rc = UniCreateUconvObject(ucsUtf8Cp, &uconv);
- rc = UniStrFromUcs(uconv, out, tempPath, CCHMAXPATH);
- rc = UniFreeUconvObject(uconv);
+ UniStrFromUcs( ucUtf8, out, tempPath, CCHMAXPATH );
return out;
}
****************************************************************************/
/*
+** Create a temporary file name in zBuf. zBuf must be big enough to
+** hold at pVfs->mxPathname characters.
+*/
+static int getTempname(int nBuf, char *zBuf ){
+ static const unsigned char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ char zTempPathBuf[3];
+ PSZ zTempPath = (PSZ)&zTempPathBuf;
+ if( sqlite3_temp_directory ){
+ zTempPath = sqlite3_temp_directory;
+ }else{
+ if( DosScanEnv( (PSZ)"TEMP", &zTempPath ) ){
+ if( DosScanEnv( (PSZ)"TMP", &zTempPath ) ){
+ if( DosScanEnv( (PSZ)"TMPDIR", &zTempPath ) ){
+ ULONG ulDriveNum = 0, ulDriveMap = 0;
+ DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
+ sprintf( (char*)zTempPath, "%c:", (char)( 'A' + ulDriveNum - 1 ) );
+ }
+ }
+ }
+ }
+ /* Strip off a trailing slashes or backslashes, otherwise we would get *
+ * multiple (back)slashes which causes DosOpen() to fail. *
+ * Trailing spaces are not allowed, either. */
+ j = strlen(zTempPath);
+ while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/'
+ || zTempPath[j-1] == ' ' ) ){
+ j--;
+ }
+ zTempPath[j] = '\0';
+ if( !sqlite3_temp_directory ){
+ char *zTempPathUTF = convertCpPathToUtf8( zTempPath );
+ sqlite3_snprintf( nBuf-30, zBuf,
+ "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPathUTF );
+ free( zTempPathUTF );
+ }else{
+ sqlite3_snprintf( nBuf-30, zBuf,
+ "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath );
+ }
+ j = strlen( zBuf );
+ sqlite3_randomness( 20, &zBuf[j] );
+ for( i = 0; i < 20; i++, j++ ){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ OSTRACE2( "TEMP FILENAME: %s\n", zBuf );
+ return SQLITE_OK;
+}
+
+
+/*
+** Turn a relative pathname into a full pathname. Write the full
+** pathname into zFull[]. zFull[] will be at least pVfs->mxPathname
+** bytes in size.
+*/
+static int os2FullPathname(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zRelative, /* Possibly relative input path */
+ int nFull, /* Size of output buffer in bytes */
+ char *zFull /* Output buffer */
+){
+ char *zRelativeCp = convertUtf8PathToCp( zRelative );
+ char zFullCp[CCHMAXPATH] = "\0";
+ char *zFullUTF;
+ APIRET rc = DosQueryPathInfo( zRelativeCp, FIL_QUERYFULLNAME, zFullCp,
+ CCHMAXPATH );
+ free( zRelativeCp );
+ zFullUTF = convertCpPathToUtf8( zFullCp );
+ sqlite3_snprintf( nFull, zFull, zFullUTF );
+ free( zFullUTF );
+ return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
+}
+
+
+/*
** Open a file.
*/
static int os2Open(
os2File *pFile = (os2File*)id;
APIRET rc = NO_ERROR;
ULONG ulAction;
+ char *zNameCp;
+ char zTmpname[CCHMAXPATH+1]; /* Buffer to hold name of temp file */
+
+ /* If the second argument to this function is NULL, generate a
+ ** temporary file name to use
+ */
+ if( !zName ){
+ int rc = getTempname(CCHMAXPATH+1, zTmpname);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ zName = zTmpname;
+ }
+
memset( pFile, 0, sizeof(*pFile) );
OSTRACE2( "OPEN want %d\n", flags );
- //ulOpenMode = flags & SQLITE_OPEN_READWRITE ? OPEN_ACCESS_READWRITE : OPEN_ACCESS_READONLY;
+ /*ulOpenMode = flags & SQLITE_OPEN_READWRITE ? OPEN_ACCESS_READWRITE : OPEN_ACCESS_READONLY;*/
if( flags & SQLITE_OPEN_READWRITE ){
ulOpenMode |= OPEN_ACCESS_READWRITE;
OSTRACE1( "OPEN read/write\n" );
OSTRACE1( "OPEN read only\n" );
}
- //ulOpenFlags = flags & SQLITE_OPEN_CREATE ? OPEN_ACTION_CREATE_IF_NEW : OPEN_ACTION_FAIL_IF_NEW;
+ /*ulOpenFlags = flags & SQLITE_OPEN_CREATE ? OPEN_ACTION_CREATE_IF_NEW : OPEN_ACTION_FAIL_IF_NEW;*/
if( flags & SQLITE_OPEN_CREATE ){
ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW;
OSTRACE1( "OPEN open new/create\n" );
OSTRACE1( "OPEN open existing\n" );
}
- //ulOpenMode |= flags & SQLITE_OPEN_MAIN_DB ? OPEN_SHARE_DENYNONE : OPEN_SHARE_DENYWRITE;
+ /*ulOpenMode |= flags & SQLITE_OPEN_MAIN_DB ? OPEN_SHARE_DENYNONE : OPEN_SHARE_DENYWRITE;*/
if( flags & SQLITE_OPEN_MAIN_DB ){
ulOpenMode |= OPEN_SHARE_DENYNONE;
OSTRACE1( "OPEN share read/write\n" );
if( flags & (SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_TEMP_JOURNAL
| SQLITE_OPEN_SUBJOURNAL) ){
char pathUtf8[CCHMAXPATH];
- //ulFileAttribute = FILE_HIDDEN; //for debugging, we want to make sure it is deleted
+#ifdef NDEBUG /* when debugging we want to make sure it is deleted */
+ ulFileAttribute = FILE_HIDDEN;
+#endif
ulFileAttribute = FILE_NORMAL;
- sqlite3OsFullPathname( pVfs, zName, CCHMAXPATH, pathUtf8 );
+ os2FullPathname( pVfs, zName, CCHMAXPATH, pathUtf8 );
pFile->pathToDel = convertUtf8PathToCp( pathUtf8 );
OSTRACE1( "OPEN hidden/delete on close file attributes\n" );
}else{
ulOpenMode |= OPEN_FLAGS_FAIL_ON_ERROR;
ulOpenMode |= OPEN_FLAGS_NOINHERIT;
- char *zNameCp = convertUtf8PathToCp( zName );
+ zNameCp = convertUtf8PathToCp( zName );
rc = DosOpen( (PSZ)zNameCp,
&h,
&ulAction,
if( rc != NO_ERROR ){
OSTRACE7( "OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulAttr=%#lx, ulFlags=%#lx, ulMode=%#lx\n",
rc, zName, ulAction, ulFileAttribute, ulOpenFlags, ulOpenMode );
- free( pFile->pathToDel );
+ if( pFile->pathToDel )
+ free( pFile->pathToDel );
pFile->pathToDel = NULL;
if( flags & SQLITE_OPEN_READWRITE ){
OSTRACE2( "OPEN %d Invalid handle\n", ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE) );
- return os2Open( 0, zName, id,
+ return os2Open( pVfs, zName, id,
((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE),
pOutFlags );
}else{
/*
** Delete the named file.
*/
-int os2Delete(
+static int os2Delete(
sqlite3_vfs *pVfs, /* Not used on os2 */
const char *zFilename, /* Name of file to delete */
int syncDir /* Not used on os2 */
){
APIRET rc = NO_ERROR;
- SimulateIOError(return SQLITE_IOERR_DELETE);
char *zFilenameCp = convertUtf8PathToCp( zFilename );
+ SimulateIOError( return SQLITE_IOERR_DELETE );
rc = DosDelete( (PSZ)zFilenameCp );
free( zFilenameCp );
OSTRACE2( "DELETE \"%s\"\n", zFilename );
static int os2Access(
sqlite3_vfs *pVfs, /* Not used on os2 */
const char *zFilename, /* Name of file to check */
- int flags /* Type of test to make on this file */
+ int flags, /* Type of test to make on this file */
+ int *pOut /* Write results here */
){
FILESTATUS3 fsts3ConfigInfo;
APIRET rc = NO_ERROR;
+ char *zFilenameCp = convertUtf8PathToCp( zFilename );
memset( &fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo) );
- char *zFilenameCp = convertUtf8PathToCp( zFilename );
rc = DosQueryPathInfo( (PSZ)zFilenameCp, FIL_STANDARD,
&fsts3ConfigInfo, sizeof(FILESTATUS3) );
free( zFilenameCp );
OSTRACE3( "ACCESS %s access of read and exists rc=%d\n", zFilename, rc );
break;
case SQLITE_ACCESS_READWRITE:
- rc = (fsts3ConfigInfo.attrFile & FILE_READONLY) == 0;
+ rc = (rc == NO_ERROR) && ( (fsts3ConfigInfo.attrFile & FILE_READONLY) == 0 );
OSTRACE3( "ACCESS %s access of read/write rc=%d\n", zFilename, rc );
break;
default:
assert( !"Invalid flags argument" );
}
- return rc;
-}
-
-
-/*
-** Create a temporary file name in zBuf. zBuf must be big enough to
-** hold at pVfs->mxPathname characters.
-*/
-static int os2GetTempname( sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
- static const unsigned char zChars[] =
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "0123456789";
- int i, j;
- char zTempPathBuf[3];
- PSZ zTempPath = (PSZ)&zTempPathBuf;
- char *zTempPathUTF;
- if( DosScanEnv( (PSZ)"TEMP", &zTempPath ) ){
- if( DosScanEnv( (PSZ)"TMP", &zTempPath ) ){
- if( DosScanEnv( (PSZ)"TMPDIR", &zTempPath ) ){
- ULONG ulDriveNum = 0, ulDriveMap = 0;
- DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
- sprintf( (char*)zTempPath, "%c:", (char)( 'A' + ulDriveNum - 1 ) );
- }
- }
- }
- /* strip off a trailing slashes or backslashes, otherwise we would get *
- * multiple (back)slashes which causes DosOpen() to fail */
- j = strlen(zTempPath);
- while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/' ) ){
- j--;
- }
- zTempPath[j] = '\0';
- zTempPathUTF = convertCpPathToUtf8( zTempPath );
- sqlite3_snprintf( nBuf-30, zBuf,
- "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPathUTF );
- free( zTempPathUTF );
- j = strlen( zBuf );
- sqlite3_randomness( 20, &zBuf[j] );
- for( i = 0; i < 20; i++, j++ ){
- zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
- }
- zBuf[j] = 0;
- OSTRACE2( "TEMP FILENAME: %s\n", zBuf );
+ *pOut = rc;
return SQLITE_OK;
}
-/*
-** Turn a relative pathname into a full pathname. Write the full
-** pathname into zFull[]. zFull[] will be at least pVfs->mxPathname
-** bytes in size.
-*/
-static int os2FullPathname(
- sqlite3_vfs *pVfs, /* Pointer to vfs object */
- const char *zRelative, /* Possibly relative input path */
- int nFull, /* Size of output buffer in bytes */
- char *zFull /* Output buffer */
-){
- char *zRelativeCp = convertUtf8PathToCp( zRelative );
- char zFullCp[CCHMAXPATH];
- char *zFullUTF;
- APIRET rc = DosQueryPathInfo( zRelativeCp, FIL_QUERYFULLNAME, zFullCp,
- CCHMAXPATH );
- free( zRelativeCp );
- zFullUTF = convertCpPathToUtf8( zFullCp );
- sqlite3_snprintf( nFull, zFull, zFullUTF );
- free( zFullUTF );
- return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
-}
-
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
static void os2DlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
/* no-op */
}
-void *os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
+static void *os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
PFN pfn;
APIRET rc;
rc = DosQueryProcAddr((HMODULE)pHandle, 0L, zSymbol, &pfn);
}
return rc != NO_ERROR ? 0 : (void*)pfn;
}
-void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){
+static void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){
DosFreeModule((HMODULE)pHandle);
}
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
return 0;
}
+static int os2GetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+ return 0;
+}
+
/*
-** Return a pointer to the sqlite3DefaultVfs structure. We use
-** a function rather than give the structure global scope because
-** some compilers (MSVC) do not allow forward declarations of
-** initialized structures.
+** Initialize and deinitialize the operating system interface.
*/
-SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
+SQLITE_API int sqlite3_os_init(void){
static sqlite3_vfs os2Vfs = {
1, /* iVersion */
sizeof(os2File), /* szOsFile */
os2Open, /* xOpen */
os2Delete, /* xDelete */
os2Access, /* xAccess */
- os2GetTempname, /* xGetTempname */
os2FullPathname, /* xFullPathname */
os2DlOpen, /* xDlOpen */
os2DlError, /* xDlError */
os2DlClose, /* xDlClose */
os2Randomness, /* xRandomness */
os2Sleep, /* xSleep */
- os2CurrentTime /* xCurrentTime */
+ os2CurrentTime, /* xCurrentTime */
+ os2GetLastError /* xGetLastError */
};
-
- return &os2Vfs;
+ sqlite3_vfs_register(&os2Vfs, 1);
+ initUconvObjects();
+ return SQLITE_OK;
+}
+SQLITE_API int sqlite3_os_end(void){
+ freeUconvObjects();
+ return SQLITE_OK;
}
-#endif /* OS_OS2 */
+#endif /* SQLITE_OS_OS2 */
/************** End of os_os2.c **********************************************/
/************** Begin file os_unix.c *****************************************/
******************************************************************************
**
** This file contains code that is specific to Unix systems.
+**
+** $Id: os_unix.c,v 1.195 2008/07/30 17:28:04 drh Exp $
*/
-#if OS_UNIX /* This file is used on unix only */
+#if SQLITE_OS_UNIX /* This file is used on unix only */
+/*
+** If SQLITE_ENABLE_LOCKING_STYLE is defined, then several different
+** locking implementations are provided:
+**
+** * POSIX locking (the default),
+** * No locking,
+** * Dot-file locking,
+** * flock() locking,
+** * AFP locking (OSX only).
+*/
/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
/*
#include <unistd.h>
#include <sys/time.h>
#include <errno.h>
+
#ifdef SQLITE_ENABLE_LOCKING_STYLE
#include <sys/ioctl.h>
#include <sys/param.h>
struct lockInfo *pLock; /* Info about locks on this inode */
#ifdef SQLITE_ENABLE_LOCKING_STYLE
void *lockingContext; /* Locking style specific state */
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+#endif
int h; /* The file descriptor */
unsigned char locktype; /* The type of lock held on this fd */
int dirfd; /* File descriptor for the directory */
**
** This file should be #included by the os_*.c files only. It is not a
** general purpose header file.
+**
+** $Id: os_common.h,v 1.37 2008/05/29 20:22:37 shane Exp $
*/
+#ifndef _OS_COMMON_H_
+#define _OS_COMMON_H_
/*
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE
-__inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
-}
-static unsigned long long int g_start;
-static unsigned int elapse;
-#define TIMER_START g_start=hwtime()
-#define TIMER_END elapse=hwtime()-g_start
-#define TIMER_ELAPSED elapse
+
+/*
+** hwtime.h contains inline assembler code for implementing
+** high-performance timing routines.
+*/
+/************** Include hwtime.h in the middle of os_common.h ****************/
+/************** Begin file hwtime.h ******************************************/
+/*
+** 2008 May 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains inline asm code for retrieving "high-performance"
+** counters for x86 class CPUs.
+**
+** $Id: hwtime.h,v 1.3 2008/08/01 14:33:15 shane Exp $
+*/
+#ifndef _HWTIME_H_
+#define _HWTIME_H_
+
+/*
+** The following routine only works on pentium-class (or newer) processors.
+** It uses the RDTSC opcode to read the cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+#if (defined(__GNUC__) || defined(_MSC_VER)) && \
+ (defined(i386) || defined(__i386__) || defined(_M_IX86))
+
+ #if defined(__GNUC__)
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned int lo, hi;
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (sqlite_uint64)hi << 32 | lo;
+ }
+
+ #elif defined(_MSC_VER)
+
+ __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
+ __asm {
+ rdtsc
+ ret ; return value at EDX:EAX
+ }
+ }
+
+ #endif
+
+#elif (defined(__GNUC__) && defined(__x86_64__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long val;
+ __asm__ __volatile__ ("rdtsc" : "=A" (val));
+ return val;
+ }
+
+#elif (defined(__GNUC__) && defined(__ppc__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long long retval;
+ unsigned long junk;
+ __asm__ __volatile__ ("\n\
+ 1: mftbu %1\n\
+ mftb %L0\n\
+ mftbu %0\n\
+ cmpw %0,%1\n\
+ bne 1b"
+ : "=r" (retval), "=r" (junk));
+ return retval;
+ }
+
+#else
+
+ #error Need implementation of sqlite3Hwtime() for your platform.
+
+ /*
+ ** To compile without implementing sqlite3Hwtime() for your platform,
+ ** you can remove the above #error and use the following
+ ** stub function. You will lose timing support for many
+ ** of the debugging and testing utilities, but it should at
+ ** least compile and run.
+ */
+SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
+
+#endif
+
+#endif /* !defined(_HWTIME_H_) */
+
+/************** End of hwtime.h **********************************************/
+/************** Continuing where we left off in os_common.h ******************/
+
+static sqlite_uint64 g_start;
+static sqlite_uint64 g_elapsed;
+#define TIMER_START g_start=sqlite3Hwtime()
+#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
+#define TIMER_ELAPSED g_elapsed
#else
#define TIMER_START
#define TIMER_END
-#define TIMER_ELAPSED 0
+#define TIMER_ELAPSED ((sqlite_uint64)0)
#endif
/*
#define OpenCounter(X)
#endif
+#endif /* !defined(_OS_COMMON_H_) */
+
/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_unix.c ********************/
** by the same process. It does not explicitly say so, but this implies
** that it overrides locks set by the same process using a different
** file descriptor. Consider this test case:
-**
-** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
**
** Suppose ./file1 and ./file2 are really the same file (because
int cnt; /* Number of SHARED locks held */
int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
int nRef; /* Number of pointers to this structure */
+ struct lockInfo *pNext, *pPrev; /* List of all lockInfo objects */
};
/*
int nLock; /* Number of outstanding locks */
int nPending; /* Number of pending close() operations */
int *aPending; /* Malloced space holding fd's awaiting a close() */
+ struct openCnt *pNext, *pPrev; /* List of all openCnt objects */
};
-/*
-** These hash tables map inodes and file descriptors (really, lockKey and
-** openKey structures) into lockInfo and openCnt structures. Access to
-** these hash tables must be protected by a mutex.
+/*
+** List of all lockInfo and openCnt objects. This used to be a hash
+** table. But the number of objects is rarely more than a dozen and
+** never exceeds a few thousand. And lookup is not on a critical
+** path oo a simple linked list will suffice.
*/
-static Hash lockHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0};
-static Hash openHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0};
+static struct lockInfo *lockList = 0;
+static struct openCnt *openList = 0;
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
/*
** The locking styles are associated with the different file locking
** capabilities supported by different file systems.
**
** POSIX locking style fully supports shared and exclusive byte-range locks
-** ADP locking only supports exclusive byte-range locks
+** AFP locking only supports exclusive byte-range locks
** FLOCK only supports a single file-global exclusive lock
** DOTLOCK isn't a true locking style, it refers to the use of a special
** file named the same as the database file with a '.lock' extension, this
** UNSUPPORTED means that no locking will be attempted, this is only used for
** file systems that are known to be unsupported
*/
-typedef enum {
- posixLockingStyle = 0, /* standard posix-advisory locks */
- afpLockingStyle, /* use afp locks */
- flockLockingStyle, /* use flock() */
- dotlockLockingStyle, /* use <file>.lock files */
- noLockingStyle, /* useful for read-only file system */
- unsupportedLockingStyle /* indicates unsupported file system */
-} sqlite3LockingStyle;
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+#define LOCKING_STYLE_POSIX 1
+#define LOCKING_STYLE_NONE 2
+#define LOCKING_STYLE_DOTFILE 3
+#define LOCKING_STYLE_FLOCK 4
+#define LOCKING_STYLE_AFP 5
/*
** Helper functions to obtain and relinquish the global mutex.
*/
static void enterMutex(){
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
static void leaveMutex(){
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
#if SQLITE_THREADSAFE
** Release a lockInfo structure previously allocated by findLockInfo().
*/
static void releaseLockInfo(struct lockInfo *pLock){
- if (pLock == NULL)
- return;
- pLock->nRef--;
- if( pLock->nRef==0 ){
- sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
- sqlite3_free(pLock);
+ if( pLock ){
+ pLock->nRef--;
+ if( pLock->nRef==0 ){
+ if( pLock->pPrev ){
+ assert( pLock->pPrev->pNext==pLock );
+ pLock->pPrev->pNext = pLock->pNext;
+ }else{
+ assert( lockList==pLock );
+ lockList = pLock->pNext;
+ }
+ if( pLock->pNext ){
+ assert( pLock->pNext->pPrev==pLock );
+ pLock->pNext->pPrev = pLock->pPrev;
+ }
+ sqlite3_free(pLock);
+ }
}
}
** Release a openCnt structure previously allocated by findLockInfo().
*/
static void releaseOpenCnt(struct openCnt *pOpen){
- if (pOpen == NULL)
- return;
- pOpen->nRef--;
- if( pOpen->nRef==0 ){
- sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
- free(pOpen->aPending);
- sqlite3_free(pOpen);
+ if( pOpen ){
+ pOpen->nRef--;
+ if( pOpen->nRef==0 ){
+ if( pOpen->pPrev ){
+ assert( pOpen->pPrev->pNext==pOpen );
+ pOpen->pPrev->pNext = pOpen->pNext;
+ }else{
+ assert( openList==pOpen );
+ openList = pOpen->pNext;
+ }
+ if( pOpen->pNext ){
+ assert( pOpen->pNext->pPrev==pOpen );
+ pOpen->pNext->pPrev = pOpen->pPrev;
+ }
+ sqlite3_free(pOpen->aPending);
+ sqlite3_free(pOpen);
+ }
}
}
** Tests a byte-range locking query to see if byte range locks are
** supported, if not we fall back to dotlockLockingStyle.
*/
-static sqlite3LockingStyle sqlite3TestLockingStyle(
- const char *filePath,
- int fd
-){
- /* test byte-range lock using fcntl */
+static int testLockingStyle(int fd){
struct flock lockInfo;
-
+
+ /* Test byte-range lock using fcntl(). If the call succeeds,
+ ** assume that the file-system supports POSIX style locks.
+ */
lockInfo.l_len = 1;
lockInfo.l_start = 0;
lockInfo.l_whence = SEEK_SET;
lockInfo.l_type = F_RDLCK;
-
if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {
- return posixLockingStyle;
- }
+ return LOCKING_STYLE_POSIX;
+ }
- /* testing for flock can give false positives. So if if the above test
- ** fails, then we fall back to using dot-lock style locking.
+ /* Testing for flock() can give false positives. So if if the above
+ ** test fails, then we fall back to using dot-file style locking.
*/
- return dotlockLockingStyle;
+ return LOCKING_STYLE_DOTFILE;
}
+#endif
/*
-** Examines the f_fstypename entry in the statfs structure as returned by
-** stat() for the file system hosting the database file, assigns the
-** appropriate locking style based on its value. These values and
-** assignments are based on Darwin/OSX behavior and have not been tested on
+** If SQLITE_ENABLE_LOCKING_STYLE is defined, this function Examines the
+** f_fstypename entry in the statfs structure as returned by stat() for
+** the file system hosting the database file and selects the appropriate
+** locking style based on its value. These values and assignments are
+** based on Darwin/OSX behavior and have not been thoroughly tested on
** other systems.
+**
+** If SQLITE_ENABLE_LOCKING_STYLE is not defined, this function always
+** returns LOCKING_STYLE_POSIX.
*/
-static sqlite3LockingStyle sqlite3DetectLockingStyle(
+static int detectLockingStyle(
+ sqlite3_vfs *pVfs,
const char *filePath,
int fd
){
-
-#ifdef SQLITE_FIXED_LOCKING_STYLE
- return (sqlite3LockingStyle)SQLITE_FIXED_LOCKING_STYLE;
-#else
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+ struct Mapping {
+ const char *zFilesystem;
+ int eLockingStyle;
+ } aMap[] = {
+ { "hfs", LOCKING_STYLE_POSIX },
+ { "ufs", LOCKING_STYLE_POSIX },
+ { "afpfs", LOCKING_STYLE_AFP },
+ { "smbfs", LOCKING_STYLE_FLOCK },
+ { "msdos", LOCKING_STYLE_DOTFILE },
+ { "webdav", LOCKING_STYLE_NONE },
+ { 0, 0 }
+ };
+ int i;
struct statfs fsInfo;
- if( statfs(filePath, &fsInfo) == -1 ){
- return sqlite3TestLockingStyle(filePath, fd);
- }
- if( fsInfo.f_flags & MNT_RDONLY ){
- return noLockingStyle;
- }
- if( strcmp(fsInfo.f_fstypename, "hfs")==0 ||
- strcmp(fsInfo.f_fstypename, "ufs")==0 ){
- return posixLockingStyle;
- }
- if( strcmp(fsInfo.f_fstypename, "afpfs")==0 ){
- return afpLockingStyle;
- }
- if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
- return sqlite3TestLockingStyle(filePath, fd);
+ if( !filePath ){
+ return LOCKING_STYLE_NONE;
}
- if( strcmp(fsInfo.f_fstypename, "smbfs")==0 ){
- return flockLockingStyle;
+ if( pVfs->pAppData ){
+ return (int)pVfs->pAppData;
}
- if( strcmp(fsInfo.f_fstypename, "msdos")==0 ){
- return dotlockLockingStyle;
- }
- if( strcmp(fsInfo.f_fstypename, "webdav")==0 ){
- return unsupportedLockingStyle;
+
+ if( statfs(filePath, &fsInfo) != -1 ){
+ if( fsInfo.f_flags & MNT_RDONLY ){
+ return LOCKING_STYLE_NONE;
+ }
+ for(i=0; aMap[i].zFilesystem; i++){
+ if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
+ return aMap[i].eLockingStyle;
+ }
+ }
}
- return sqlite3TestLockingStyle(filePath, fd);
-#endif /* SQLITE_FIXED_LOCKING_STYLE */
-}
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+ /* Default case. Handles, amongst others, "nfs". */
+ return testLockingStyle(fd);
+#endif
+ return LOCKING_STYLE_POSIX;
+}
/*
** Given a file descriptor, locate lockInfo and openCnt structures that
return SQLITE_IOERR;
}
+ /* On OS X on an msdos filesystem, the inode number is reported
+ ** incorrectly for zero-size files. See ticket #3260. To work
+ ** around this problem (we consider it a bug in OS X, not SQLite)
+ ** we always increase the file size to 1 by writing a single byte
+ ** prior to accessing the inode number. The one byte written is
+ ** an ASCII 'S' character which also happens to be the first byte
+ ** in the header of every SQLite database. In this way, if there
+ ** is a race condition such that another thread has already populated
+ ** the first page of the database, no damage is done.
+ */
+ if( statbuf.st_size==0 ){
+ write(fd, "S", 1);
+ rc = fstat(fd, &statbuf);
+ if( rc!=0 ){
+ return SQLITE_IOERR;
+ }
+ }
+
memset(&key1, 0, sizeof(key1));
key1.dev = statbuf.st_dev;
key1.ino = statbuf.st_ino;
memset(&key2, 0, sizeof(key2));
key2.dev = statbuf.st_dev;
key2.ino = statbuf.st_ino;
- pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
+ pLock = lockList;
+ while( pLock && memcmp(&key1, &pLock->key, sizeof(key1)) ){
+ pLock = pLock->pNext;
+ }
if( pLock==0 ){
- struct lockInfo *pOld;
pLock = sqlite3_malloc( sizeof(*pLock) );
if( pLock==0 ){
rc = SQLITE_NOMEM;
pLock->nRef = 1;
pLock->cnt = 0;
pLock->locktype = 0;
- pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
- if( pOld!=0 ){
- assert( pOld==pLock );
- sqlite3_free(pLock);
- rc = SQLITE_NOMEM;
- goto exit_findlockinfo;
- }
+ pLock->pNext = lockList;
+ pLock->pPrev = 0;
+ if( lockList ) lockList->pPrev = pLock;
+ lockList = pLock;
}else{
pLock->nRef++;
}
*ppLock = pLock;
if( ppOpen!=0 ){
- pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
+ pOpen = openList;
+ while( pOpen && memcmp(&key2, &pOpen->key, sizeof(key2)) ){
+ pOpen = pOpen->pNext;
+ }
if( pOpen==0 ){
- struct openCnt *pOld;
pOpen = sqlite3_malloc( sizeof(*pOpen) );
if( pOpen==0 ){
releaseLockInfo(pLock);
pOpen->nLock = 0;
pOpen->nPending = 0;
pOpen->aPending = 0;
- pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
- if( pOld!=0 ){
- assert( pOld==pOpen );
- sqlite3_free(pOpen);
- releaseLockInfo(pLock);
- rc = SQLITE_NOMEM;
- goto exit_findlockinfo;
- }
+ pOpen->pNext = openList;
+ pOpen->pPrev = 0;
+ if( openList ) openList->pPrev = pOpen;
+ openList = pOpen;
}else{
pOpen->nRef++;
}
got = read(id->h, pBuf, cnt);
#endif
TIMER_END;
- OSTRACE5("READ %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
+ OSTRACE5("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
return got;
}
got = write(id->h, pBuf, cnt);
#endif
TIMER_END;
- OSTRACE5("WRITE %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
+ OSTRACE5("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
return got;
}
return SQLITE_IOERR_FSTAT;
}
*pSize = buf.st_size;
+
+ /* When opening a zero-size database, the findLockInfo() procedure
+ ** writes a single byte into that file in order to work around a bug
+ ** in the OS-X msdos filesystem. In order to avoid problems with upper
+ ** layers, we need to report this file size as zero even though it is
+ ** really 1. Ticket #3260.
+ */
+ if( *pSize==1 ) *pSize = 0;
+
+
return SQLITE_OK;
}
** non-zero. If the file is unlocked or holds only SHARED locks, then
** return zero.
*/
-static int unixCheckReservedLock(sqlite3_file *id){
+static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
int r = 0;
unixFile *pFile = (unixFile*)id;
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
assert( pFile );
enterMutex(); /* Because pFile->pLock is shared across threads */
leaveMutex();
OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
- return r;
+ *pResOut = r;
+ return SQLITE_OK;
}
/*
for(i=0; i<pOpen->nPending; i++){
close(pOpen->aPending[i]);
}
- free(pOpen->aPending);
+ sqlite3_free(pOpen->aPending);
pOpen->nPending = 0;
pOpen->aPending = 0;
}
}
/*
+** This function performs the parts of the "close file" operation
+** common to all locking schemes. It closes the directory and file
+** handles, if they are valid, and sets all fields of the unixFile
+** structure to 0.
+*/
+static int closeUnixFile(sqlite3_file *id){
+ unixFile *pFile = (unixFile*)id;
+ if( pFile ){
+ if( pFile->dirfd>=0 ){
+ close(pFile->dirfd);
+ }
+ if( pFile->h>=0 ){
+ close(pFile->h);
+ }
+ OSTRACE2("CLOSE %-3d\n", pFile->h);
+ OpenCounter(-1);
+ memset(pFile, 0, sizeof(unixFile));
+ }
+ return SQLITE_OK;
+}
+
+/*
** Close a file.
*/
static int unixClose(sqlite3_file *id){
- unixFile *pFile = (unixFile *)id;
- if( !pFile ) return SQLITE_OK;
- unixUnlock(id, NO_LOCK);
- if( pFile->dirfd>=0 ) close(pFile->dirfd);
- pFile->dirfd = -1;
- enterMutex();
-
- if( pFile->pOpen->nLock ){
- /* If there are outstanding locks, do not actually close the file just
- ** yet because that would clear those locks. Instead, add the file
- ** descriptor to pOpen->aPending. It will be automatically closed when
- ** the last lock is cleared.
- */
- int *aNew;
- struct openCnt *pOpen = pFile->pOpen;
- aNew = realloc( pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
- if( aNew==0 ){
- /* If a malloc fails, just leak the file descriptor */
- }else{
- pOpen->aPending = aNew;
- pOpen->aPending[pOpen->nPending] = pFile->h;
- pOpen->nPending++;
+ if( id ){
+ unixFile *pFile = (unixFile *)id;
+ unixUnlock(id, NO_LOCK);
+ enterMutex();
+ if( pFile->pOpen && pFile->pOpen->nLock ){
+ /* If there are outstanding locks, do not actually close the file just
+ ** yet because that would clear those locks. Instead, add the file
+ ** descriptor to pOpen->aPending. It will be automatically closed when
+ ** the last lock is cleared.
+ */
+ int *aNew;
+ struct openCnt *pOpen = pFile->pOpen;
+ aNew = sqlite3_realloc(pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
+ if( aNew==0 ){
+ /* If a malloc fails, just leak the file descriptor */
+ }else{
+ pOpen->aPending = aNew;
+ pOpen->aPending[pOpen->nPending] = pFile->h;
+ pOpen->nPending++;
+ pFile->h = -1;
+ }
}
- }else{
- /* There are no outstanding locks so we can close the file immediately */
- close(pFile->h);
+ releaseLockInfo(pFile->pLock);
+ releaseOpenCnt(pFile->pOpen);
+ closeUnixFile(id);
+ leaveMutex();
}
- releaseLockInfo(pFile->pLock);
- releaseOpenCnt(pFile->pOpen);
-
- leaveMutex();
- OSTRACE2("CLOSE %-3d\n", pFile->h);
- OpenCounter(-1);
- memset(pFile, 0, sizeof(unixFile));
return SQLITE_OK;
}
** non-zero. If the file is unlocked or holds only SHARED locks, then
** return zero.
*/
-static int afpUnixCheckReservedLock(sqlite3_file *id){
+static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
int r = 0;
unixFile *pFile = (unixFile*)id;
}
OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
- return r;
+ *pResOut = r;
+ return SQLITE_OK;
}
/* AFP-style locking following the behavior of unixLock, see the unixLock
** function comments for details of lock management. */
-static int afpUnixLock(sqlite3_file *id, int locktype){
+static int afpLock(sqlite3_file *id, int locktype){
int rc = SQLITE_OK;
unixFile *pFile = (unixFile*)id;
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
- int gotPendingLock = 0;
assert( pFile );
OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h,
*/
if( locktype==SHARED_LOCK ){
int lk, failed;
- int tries = 0;
/* Now get the read-lock */
/* note that the quality of the randomness doesn't matter that much */
/* Acquire an EXCLUSIVE lock */
/* Remove the shared lock before trying the range. we'll need to
- ** reestablish the shared lock if we can't get the afpUnixUnlock
+ ** reestablish the shared lock if we can't get the afpUnlock
*/
if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
context->sharedLockByte, 1, 0)) {
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
-static int afpUnixUnlock(sqlite3_file *id, int locktype) {
- struct flock lock;
+static int afpUnlock(sqlite3_file *id, int locktype) {
int rc = SQLITE_OK;
unixFile *pFile = (unixFile*)id;
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
/*
** Close a file & cleanup AFP specific locking context
*/
-static int afpUnixClose(sqlite3_file *id) {
- unixFile *pFile = (unixFile*)id;
-
- if( !pFile ) return SQLITE_OK;
- afpUnixUnlock(id, NO_LOCK);
- sqlite3_free(pFile->lockingContext);
- if( pFile->dirfd>=0 ) close(pFile->dirfd);
- pFile->dirfd = -1;
- enterMutex();
- close(pFile->h);
- leaveMutex();
- OSTRACE2("CLOSE %-3d\n", pFile->h);
- OpenCounter(-1);
- memset(pFile, 0, sizeof(unixFile));
- return SQLITE_OK;
+static int afpClose(sqlite3_file *id) {
+ if( id ){
+ unixFile *pFile = (unixFile*)id;
+ afpUnlock(id, NO_LOCK);
+ sqlite3_free(pFile->lockingContext);
+ }
+ return closeUnixFile(id);
}
*/
typedef void flockLockingContext;
-static int flockUnixCheckReservedLock(sqlite3_file *id){
+static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int r = 1;
unixFile *pFile = (unixFile*)id;
- if (pFile->locktype == RESERVED_LOCK) {
- return 1; /* already have a reserved lock */
- } else {
+ if (pFile->locktype != RESERVED_LOCK) {
/* attempt to get the lock */
int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
if (!rc) {
/* got the lock, unlock it */
flock(pFile->h, LOCK_UN);
- return 0; /* no one has it reserved */
+ r = 0; /* no one has it reserved */
}
- return 1; /* someone else might have it reserved */
}
+
+ *pResOut = r;
+ return SQLITE_OK;
}
-static int flockUnixLock(sqlite3_file *id, int locktype) {
+static int flockLock(sqlite3_file *id, int locktype) {
unixFile *pFile = (unixFile*)id;
/* if we already have a lock, it is exclusive.
}
}
-static int flockUnixUnlock(sqlite3_file *id, int locktype) {
+static int flockUnlock(sqlite3_file *id, int locktype) {
unixFile *pFile = (unixFile*)id;
assert( locktype<=SHARED_LOCK );
/*
** Close a file.
*/
-static int flockUnixClose(sqlite3_file *id) {
- unixFile *pFile = (unixFile*)id;
-
- if( !pFile ) return SQLITE_OK;
- flockUnixUnlock(id, NO_LOCK);
-
- if( pFile->dirfd>=0 ) close(pFile->dirfd);
- pFile->dirfd = -1;
-
- enterMutex();
- close(pFile->h);
- leaveMutex();
- OSTRACE2("CLOSE %-3d\n", pFile->h);
- OpenCounter(-1);
- memset(pFile, 0, sizeof(unixFile));
- return SQLITE_OK;
+static int flockClose(sqlite3_file *id) {
+ if( id ){
+ flockUnlock(id, NO_LOCK);
+ }
+ return closeUnixFile(id);
}
#pragma mark Old-School .lock file based locking
-/*
-** The dotlockLockingContext structure contains all dotlock (.lock) lock
-** specific state
-*/
-typedef struct dotlockLockingContext dotlockLockingContext;
-struct dotlockLockingContext {
- char *lockPath;
-};
-
-
-static int dotlockUnixCheckReservedLock(sqlite3_file *id) {
+static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
+ int r = 1;
unixFile *pFile = (unixFile*)id;
- dotlockLockingContext *context;
+ char *zLockFile = (char *)pFile->lockingContext;
- context = (dotlockLockingContext*)pFile->lockingContext;
- if (pFile->locktype == RESERVED_LOCK) {
- return 1; /* already have a reserved lock */
- } else {
+ if (pFile->locktype != RESERVED_LOCK) {
struct stat statBuf;
- if (lstat(context->lockPath,&statBuf) == 0){
- /* file exists, someone else has the lock */
- return 1;
- }else{
+ if (lstat(zLockFile, &statBuf) != 0){
/* file does not exist, we could have it if we want it */
- return 0;
+ r = 0;
}
}
+
+ *pResOut = r;
+ return SQLITE_OK;
}
-static int dotlockUnixLock(sqlite3_file *id, int locktype) {
+static int dotlockLock(sqlite3_file *id, int locktype) {
unixFile *pFile = (unixFile*)id;
- dotlockLockingContext *context;
int fd;
+ char *zLockFile = (char *)pFile->lockingContext;
- context = (dotlockLockingContext*)pFile->lockingContext;
-
/* if we already have a lock, it is exclusive.
** Just adjust level and punt on outta here. */
if (pFile->locktype > NO_LOCK) {
pFile->locktype = locktype;
/* Always update the timestamp on the old file */
- utimes(context->lockPath,NULL);
+ utimes(zLockFile, NULL);
return SQLITE_OK;
}
/* check to see if lock file already exists */
struct stat statBuf;
- if (lstat(context->lockPath,&statBuf) == 0){
+ if (lstat(zLockFile,&statBuf) == 0){
return SQLITE_BUSY; /* it does, busy */
}
/* grab an exclusive lock */
- fd = open(context->lockPath,O_RDONLY|O_CREAT|O_EXCL,0600);
+ fd = open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
if( fd<0 ){
/* failed to open/create the file, someone else may have stolen the lock */
return SQLITE_BUSY;
return SQLITE_OK;
}
-static int dotlockUnixUnlock(sqlite3_file *id, int locktype) {
+static int dotlockUnlock(sqlite3_file *id, int locktype) {
unixFile *pFile = (unixFile*)id;
- dotlockLockingContext *context;
+ char *zLockFile = (char *)pFile->lockingContext;
- context = (dotlockLockingContext*)pFile->lockingContext;
-
assert( locktype<=SHARED_LOCK );
/* no-op if possible */
}
/* no, really, unlock. */
- unlink(context->lockPath);
+ unlink(zLockFile);
pFile->locktype = NO_LOCK;
return SQLITE_OK;
}
/*
** Close a file.
*/
-static int dotlockUnixClose(sqlite3_file *id) {
- unixFile *pFile = (unixFile*)id;
-
- if( !pFile ) return SQLITE_OK;
- dotlockUnixUnlock(id, NO_LOCK);
- sqlite3_free(pFile->lockingContext);
- if( pFile->dirfd>=0 ) close(pFile->dirfd);
- pFile->dirfd = -1;
- enterMutex();
- close(pFile->h);
- leaveMutex();
- OSTRACE2("CLOSE %-3d\n", pFile->h);
- OpenCounter(-1);
- memset(pFile, 0, sizeof(unixFile));
- return SQLITE_OK;
+static int dotlockClose(sqlite3_file *id) {
+ if( id ){
+ unixFile *pFile = (unixFile*)id;
+ dotlockUnlock(id, NO_LOCK);
+ sqlite3_free(pFile->lockingContext);
+ }
+ return closeUnixFile(id);
}
-#pragma mark No locking
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
/*
** The nolockLockingContext is void
*/
typedef void nolockLockingContext;
-static int nolockUnixCheckReservedLock(sqlite3_file *id) {
- return 0;
+static int nolockCheckReservedLock(sqlite3_file *id, int *pResOut) {
+ *pResOut = 0;
+ return SQLITE_OK;
}
-static int nolockUnixLock(sqlite3_file *id, int locktype) {
+static int nolockLock(sqlite3_file *id, int locktype) {
return SQLITE_OK;
}
-static int nolockUnixUnlock(sqlite3_file *id, int locktype) {
+static int nolockUnlock(sqlite3_file *id, int locktype) {
return SQLITE_OK;
}
/*
** Close a file.
*/
-static int nolockUnixClose(sqlite3_file *id) {
- unixFile *pFile = (unixFile*)id;
-
- if( !pFile ) return SQLITE_OK;
- if( pFile->dirfd>=0 ) close(pFile->dirfd);
- pFile->dirfd = -1;
- enterMutex();
- close(pFile->h);
- leaveMutex();
- OSTRACE2("CLOSE %-3d\n", pFile->h);
- OpenCounter(-1);
- memset(pFile, 0, sizeof(unixFile));
- return SQLITE_OK;
+static int nolockClose(sqlite3_file *id) {
+ return closeUnixFile(id);
}
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
-
/*
** Information and control of an open file handle.
}
/*
-** This vector defines all the methods that can operate on an sqlite3_file
-** for unix.
-*/
-static const sqlite3_io_methods sqlite3UnixIoMethod = {
- 1, /* iVersion */
- unixClose,
- unixRead,
- unixWrite,
- unixTruncate,
- unixSync,
- unixFileSize,
- unixLock,
- unixUnlock,
- unixCheckReservedLock,
- unixFileControl,
- unixSectorSize,
- unixDeviceCharacteristics
-};
-
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
-/*
-** This vector defines all the methods that can operate on an sqlite3_file
-** for unix with AFP style file locking.
-*/
-static const sqlite3_io_methods sqlite3AFPLockingUnixIoMethod = {
- 1, /* iVersion */
- afpUnixClose,
- unixRead,
- unixWrite,
- unixTruncate,
- unixSync,
- unixFileSize,
- afpUnixLock,
- afpUnixUnlock,
- afpUnixCheckReservedLock,
- unixFileControl,
- unixSectorSize,
- unixDeviceCharacteristics
-};
-
-/*
-** This vector defines all the methods that can operate on an sqlite3_file
-** for unix with flock() style file locking.
-*/
-static const sqlite3_io_methods sqlite3FlockLockingUnixIoMethod = {
- 1, /* iVersion */
- flockUnixClose,
- unixRead,
- unixWrite,
- unixTruncate,
- unixSync,
- unixFileSize,
- flockUnixLock,
- flockUnixUnlock,
- flockUnixCheckReservedLock,
- unixFileControl,
- unixSectorSize,
- unixDeviceCharacteristics
-};
-
-/*
-** This vector defines all the methods that can operate on an sqlite3_file
-** for unix with dotlock style file locking.
-*/
-static const sqlite3_io_methods sqlite3DotlockLockingUnixIoMethod = {
- 1, /* iVersion */
- dotlockUnixClose,
- unixRead,
- unixWrite,
- unixTruncate,
- unixSync,
- unixFileSize,
- dotlockUnixLock,
- dotlockUnixUnlock,
- dotlockUnixCheckReservedLock,
- unixFileControl,
- unixSectorSize,
- unixDeviceCharacteristics
-};
-
-/*
-** This vector defines all the methods that can operate on an sqlite3_file
-** for unix with nolock style file locking.
-*/
-static const sqlite3_io_methods sqlite3NolockLockingUnixIoMethod = {
- 1, /* iVersion */
- nolockUnixClose,
- unixRead,
- unixWrite,
- unixTruncate,
- unixSync,
- unixFileSize,
- nolockUnixLock,
- nolockUnixUnlock,
- nolockUnixCheckReservedLock,
- unixFileControl,
- unixSectorSize,
- unixDeviceCharacteristics
-};
-
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
-
-/*
-** Allocate memory for a new unixFile and initialize that unixFile.
-** Write a pointer to the new unixFile into *pId.
-** If we run out of memory, close the file and return an error.
-*/
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
-/*
+** Initialize the contents of the unixFile structure pointed to by pId.
+**
** When locking extensions are enabled, the filepath and locking style
** are needed to determine the unixFile pMethod to use for locking operations.
** The locking-style specific lockingContext data structure is created
** and assigned here also.
*/
static int fillInUnixFile(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
int h, /* Open file descriptor of file being opened */
int dirfd, /* Directory file descriptor */
sqlite3_file *pId, /* Write to the unixFile structure here */
- const char *zFilename /* Name of the file being opened */
+ const char *zFilename, /* Name of the file being opened */
+ int noLock /* Omit locking if true */
){
- sqlite3LockingStyle lockingStyle;
+ int eLockingStyle;
unixFile *pNew = (unixFile *)pId;
- int rc;
+ int rc = SQLITE_OK;
-#ifdef FD_CLOEXEC
- fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC);
+ /* Macro to define the static contents of an sqlite3_io_methods
+ ** structure for a unix backend file. Different locking methods
+ ** require different functions for the xClose, xLock, xUnlock and
+ ** xCheckReservedLock methods.
+ */
+ #define IOMETHODS(xClose, xLock, xUnlock, xCheckReservedLock) { \
+ 1, /* iVersion */ \
+ xClose, /* xClose */ \
+ unixRead, /* xRead */ \
+ unixWrite, /* xWrite */ \
+ unixTruncate, /* xTruncate */ \
+ unixSync, /* xSync */ \
+ unixFileSize, /* xFileSize */ \
+ xLock, /* xLock */ \
+ xUnlock, /* xUnlock */ \
+ xCheckReservedLock, /* xCheckReservedLock */ \
+ unixFileControl, /* xFileControl */ \
+ unixSectorSize, /* xSectorSize */ \
+ unixDeviceCharacteristics /* xDeviceCapabilities */ \
+ }
+ static sqlite3_io_methods aIoMethod[] = {
+ IOMETHODS(unixClose, unixLock, unixUnlock, unixCheckReservedLock)
+ ,IOMETHODS(nolockClose, nolockLock, nolockUnlock, nolockCheckReservedLock)
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+ ,IOMETHODS(dotlockClose, dotlockLock, dotlockUnlock,dotlockCheckReservedLock)
+ ,IOMETHODS(flockClose, flockLock, flockUnlock, flockCheckReservedLock)
+ ,IOMETHODS(afpClose, afpLock, afpUnlock, afpCheckReservedLock)
#endif
+ };
+ /* The order of the IOMETHODS macros above is important. It must be the
+ ** same order as the LOCKING_STYLE numbers
+ */
+ assert(LOCKING_STYLE_POSIX==1);
+ assert(LOCKING_STYLE_NONE==2);
+ assert(LOCKING_STYLE_DOTFILE==3);
+ assert(LOCKING_STYLE_FLOCK==4);
+ assert(LOCKING_STYLE_AFP==5);
- lockingStyle = sqlite3DetectLockingStyle(zFilename, h);
- if ( lockingStyle==posixLockingStyle ){
- enterMutex();
- rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
- leaveMutex();
- if( rc ){
- if( dirfd>=0 ) close(dirfd);
- close(h);
- return rc;
- }
- } else {
- /* pLock and pOpen are only used for posix advisory locking */
- pNew->pLock = NULL;
- pNew->pOpen = NULL;
- }
+ assert( pNew->pLock==NULL );
+ assert( pNew->pOpen==NULL );
OSTRACE3("OPEN %-3d %s\n", h, zFilename);
- pNew->dirfd = -1;
pNew->h = h;
pNew->dirfd = dirfd;
SET_THREADID(pNew);
-
- switch(lockingStyle) {
- case afpLockingStyle: {
- /* afp locking uses the file path so it needs to be included in
- ** the afpLockingContext */
- afpLockingContext *context;
- pNew->pMethod = &sqlite3AFPLockingUnixIoMethod;
- pNew->lockingContext = context = sqlite3_malloc( sizeof(*context) );
- if( context==0 ){
- close(h);
- if( dirfd>=0 ) close(dirfd);
- return SQLITE_NOMEM;
- }
- /* NB: zFilename exists and remains valid until the file is closed
- ** according to requirement F11141. So we do not need to make a
- ** copy of the filename. */
- context->filePath = zFilename;
- srandomdev();
+ if( noLock ){
+ eLockingStyle = LOCKING_STYLE_NONE;
+ }else{
+ eLockingStyle = detectLockingStyle(pVfs, zFilename, h);
+ }
+
+ switch( eLockingStyle ){
+
+ case LOCKING_STYLE_POSIX: {
+ enterMutex();
+ rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
+ leaveMutex();
break;
}
- case flockLockingStyle:
- /* flock locking doesn't need additional lockingContext information */
- pNew->pMethod = &sqlite3FlockLockingUnixIoMethod;
+
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+ case LOCKING_STYLE_AFP: {
+ /* AFP locking uses the file path so it needs to be included in
+ ** the afpLockingContext.
+ */
+ afpLockingContext *pCtx;
+ pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
+ if( pCtx==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ /* NB: zFilename exists and remains valid until the file is closed
+ ** according to requirement F11141. So we do not need to make a
+ ** copy of the filename. */
+ pCtx->filePath = zFilename;
+ srandomdev();
+ }
break;
- case dotlockLockingStyle: {
- /* dotlock locking uses the file path so it needs to be included in
- ** the dotlockLockingContext */
- dotlockLockingContext *context;
+ }
+
+ case LOCKING_STYLE_DOTFILE: {
+ /* Dotfile locking uses the file path so it needs to be included in
+ ** the dotlockLockingContext
+ */
+ char *zLockFile;
int nFilename;
- nFilename = strlen(zFilename);
- pNew->pMethod = &sqlite3DotlockLockingUnixIoMethod;
- pNew->lockingContext = context =
- sqlite3_malloc( sizeof(*context) + nFilename + 6 );
- if( context==0 ){
- close(h);
- if( dirfd>=0 ) close(dirfd);
- return SQLITE_NOMEM;
+ nFilename = strlen(zFilename) + 6;
+ zLockFile = (char *)sqlite3_malloc(nFilename);
+ if( zLockFile==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_snprintf(nFilename, zLockFile, "%s.lock", zFilename);
}
- context->lockPath = (char*)&context[1];
- sqlite3_snprintf(nFilename, context->lockPath,
- "%s.lock", zFilename);
+ pNew->lockingContext = zLockFile;
break;
}
- case posixLockingStyle:
- /* posix locking doesn't need additional lockingContext information */
- pNew->pMethod = &sqlite3UnixIoMethod;
- break;
- case noLockingStyle:
- case unsupportedLockingStyle:
- default:
- pNew->pMethod = &sqlite3NolockLockingUnixIoMethod;
- }
- OpenCounter(+1);
- return SQLITE_OK;
-}
-#else /* SQLITE_ENABLE_LOCKING_STYLE */
-static int fillInUnixFile(
- int h, /* Open file descriptor on file being opened */
- int dirfd,
- sqlite3_file *pId, /* Write to the unixFile structure here */
- const char *zFilename /* Name of the file being opened */
-){
- unixFile *pNew = (unixFile *)pId;
- int rc;
-#ifdef FD_CLOEXEC
- fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC);
+ case LOCKING_STYLE_FLOCK:
+ case LOCKING_STYLE_NONE:
+ break;
#endif
+ }
- enterMutex();
- rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
- leaveMutex();
- if( rc ){
+ if( rc!=SQLITE_OK ){
if( dirfd>=0 ) close(dirfd);
close(h);
- return rc;
+ }else{
+ pNew->pMethod = &aIoMethod[eLockingStyle-1];
+ OpenCounter(+1);
}
-
- OSTRACE3("OPEN %-3d %s\n", h, zFilename);
- pNew->dirfd = -1;
- pNew->h = h;
- pNew->dirfd = dirfd;
- SET_THREADID(pNew);
-
- pNew->pMethod = &sqlite3UnixIoMethod;
- OpenCounter(+1);
- return SQLITE_OK;
+ return rc;
}
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
/*
** Open a file descriptor to the directory containing file zFilename.
}
/*
+** Create a temporary file name in zBuf. zBuf must be allocated
+** by the calling process and must be big enough to hold at least
+** pVfs->mxPathname bytes.
+*/
+static int getTempname(int nBuf, char *zBuf){
+ static const char *azDirs[] = {
+ 0,
+ "/var/tmp",
+ "/usr/tmp",
+ "/tmp",
+ ".",
+ };
+ static const unsigned char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ struct stat buf;
+ const char *zDir = ".";
+
+ /* It's odd to simulate an io-error here, but really this is just
+ ** using the io-error infrastructure to test that SQLite handles this
+ ** function failing.
+ */
+ SimulateIOError( return SQLITE_IOERR );
+
+ azDirs[0] = sqlite3_temp_directory;
+ for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
+ if( azDirs[i]==0 ) continue;
+ if( stat(azDirs[i], &buf) ) continue;
+ if( !S_ISDIR(buf.st_mode) ) continue;
+ if( access(azDirs[i], 07) ) continue;
+ zDir = azDirs[i];
+ break;
+ }
+
+ /* Check that the output buffer is large enough for the temporary file
+ ** name. If it is not, return SQLITE_ERROR.
+ */
+ if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){
+ return SQLITE_ERROR;
+ }
+
+ do{
+ sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
+ j = strlen(zBuf);
+ sqlite3_randomness(15, &zBuf[j]);
+ for(i=0; i<15; i++, j++){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ }while( access(zBuf,0)==0 );
+ return SQLITE_OK;
+}
+
+
+/*
** Open the file zPath.
**
** Previously, the SQLite OS layer used three functions in place of this
int dirfd = -1; /* Directory file descriptor */
int oflags = 0; /* Flags to pass to open() */
int eType = flags&0xFFFFFF00; /* Type of file to open */
+ int noLock; /* True to omit locking primitives */
int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
(eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
);
+ /* If argument zPath is a NULL pointer, this function is required to open
+ ** a temporary file. Use this buffer to store the file name in.
+ */
+ char zTmpname[MAX_PATHNAME+1];
+ const char *zName = zPath;
+
/* Check the following statements are true:
**
** (a) Exactly one of the READWRITE and READONLY flags must be set, and
assert(isExclusive==0 || isCreate);
assert(isDelete==0 || isCreate);
-
/* The main DB, main journal, and master journal are never automatically
** deleted
*/
|| eType==SQLITE_OPEN_TRANSIENT_DB
);
+ memset(pFile, 0, sizeof(unixFile));
+
+ if( !zName ){
+ int rc;
+ assert(isDelete && !isOpenDirectory);
+ rc = getTempname(MAX_PATHNAME+1, zTmpname);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ zName = zTmpname;
+ }
+
if( isReadonly ) oflags |= O_RDONLY;
if( isReadWrite ) oflags |= O_RDWR;
if( isCreate ) oflags |= O_CREAT;
if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW);
oflags |= (O_LARGEFILE|O_BINARY);
- memset(pFile, 0, sizeof(unixFile));
- fd = open(zPath, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
+ fd = open(zName, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
/* Failed to open the file for read/write access. Try read-only. */
flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
return SQLITE_CANTOPEN;
}
if( isDelete ){
- unlink(zPath);
+ unlink(zName);
}
if( pOutFlags ){
*pOutFlags = flags;
return rc;
}
}
- return fillInUnixFile(fd, dirfd, pFile, zPath);
+
+#ifdef FD_CLOEXEC
+ fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
+#endif
+
+ noLock = eType!=SQLITE_OPEN_MAIN_DB;
+ return fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock);
}
/*
**
** Otherwise return 0.
*/
-static int unixAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){
+static int unixAccess(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int flags,
+ int *pResOut
+){
int amode = 0;
+ SimulateIOError( return SQLITE_IOERR_ACCESS; );
switch( flags ){
case SQLITE_ACCESS_EXISTS:
amode = F_OK;
default:
assert(!"Invalid flags argument");
}
- return (access(zPath, amode)==0);
-}
-
-/*
-** Create a temporary file name in zBuf. zBuf must be allocated
-** by the calling process and must be big enough to hold at least
-** pVfs->mxPathname bytes.
-*/
-static int unixGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
- static const char *azDirs[] = {
- 0,
- "/var/tmp",
- "/usr/tmp",
- "/tmp",
- ".",
- };
- static const unsigned char zChars[] =
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "0123456789";
- int i, j;
- struct stat buf;
- const char *zDir = ".";
-
- /* It's odd to simulate an io-error here, but really this is just
- ** using the io-error infrastructure to test that SQLite handles this
- ** function failing.
- */
- SimulateIOError( return SQLITE_ERROR );
-
- azDirs[0] = sqlite3_temp_directory;
- for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
- if( azDirs[i]==0 ) continue;
- if( stat(azDirs[i], &buf) ) continue;
- if( !S_ISDIR(buf.st_mode) ) continue;
- if( access(azDirs[i], 07) ) continue;
- zDir = azDirs[i];
- break;
- }
-
- /* Check that the output buffer is large enough for the temporary file
- ** name. If it is not, return SQLITE_ERROR.
- */
- if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){
- return SQLITE_ERROR;
- }
-
- do{
- assert( pVfs->mxPathname==MAX_PATHNAME );
- sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
- j = strlen(zBuf);
- sqlite3_randomness(15, &zBuf[j]);
- for(i=0; i<15; i++, j++){
- zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
- }
- zBuf[j] = 0;
- }while( access(zBuf,0)==0 );
+ *pResOut = (access(zPath, amode)==0);
return SQLITE_OK;
}
return 0;
}
+static int unixGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+ return 0;
+}
+
/*
-** Return a pointer to the sqlite3DefaultVfs structure. We use
-** a function rather than give the structure global scope because
-** some compilers (MSVC) do not allow forward declarations of
-** initialized structures.
+** Initialize the operating system interface.
*/
-SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
- static sqlite3_vfs unixVfs = {
- 1, /* iVersion */
- sizeof(unixFile), /* szOsFile */
- MAX_PATHNAME, /* mxPathname */
- 0, /* pNext */
- "unix", /* zName */
- 0, /* pAppData */
-
- unixOpen, /* xOpen */
- unixDelete, /* xDelete */
- unixAccess, /* xAccess */
- unixGetTempname, /* xGetTempName */
- unixFullPathname, /* xFullPathname */
- unixDlOpen, /* xDlOpen */
- unixDlError, /* xDlError */
- unixDlSym, /* xDlSym */
- unixDlClose, /* xDlClose */
- unixRandomness, /* xRandomness */
- unixSleep, /* xSleep */
- unixCurrentTime /* xCurrentTime */
+SQLITE_API int sqlite3_os_init(void){
+ /* Macro to define the static contents of an sqlite3_vfs structure for
+ ** the unix backend. The two parameters are the values to use for
+ ** the sqlite3_vfs.zName and sqlite3_vfs.pAppData fields, respectively.
+ **
+ */
+ #define UNIXVFS(zVfsName, pVfsAppData) { \
+ 1, /* iVersion */ \
+ sizeof(unixFile), /* szOsFile */ \
+ MAX_PATHNAME, /* mxPathname */ \
+ 0, /* pNext */ \
+ zVfsName, /* zName */ \
+ (void *)pVfsAppData, /* pAppData */ \
+ unixOpen, /* xOpen */ \
+ unixDelete, /* xDelete */ \
+ unixAccess, /* xAccess */ \
+ unixFullPathname, /* xFullPathname */ \
+ unixDlOpen, /* xDlOpen */ \
+ unixDlError, /* xDlError */ \
+ unixDlSym, /* xDlSym */ \
+ unixDlClose, /* xDlClose */ \
+ unixRandomness, /* xRandomness */ \
+ unixSleep, /* xSleep */ \
+ unixCurrentTime, /* xCurrentTime */ \
+ unixGetLastError /* xGetLastError */ \
+ }
+
+ static sqlite3_vfs unixVfs = UNIXVFS("unix", 0);
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+#if 0
+ int i;
+ static sqlite3_vfs aVfs[] = {
+ UNIXVFS("unix-posix", LOCKING_STYLE_POSIX),
+ UNIXVFS("unix-afp", LOCKING_STYLE_AFP),
+ UNIXVFS("unix-flock", LOCKING_STYLE_FLOCK),
+ UNIXVFS("unix-dotfile", LOCKING_STYLE_DOTFILE),
+ UNIXVFS("unix-none", LOCKING_STYLE_NONE)
};
-
- return &unixVfs;
+ for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
+ sqlite3_vfs_register(&aVfs[i], 0);
+ }
+#endif
+#endif
+ sqlite3_vfs_register(&unixVfs, 1);
+ return SQLITE_OK;
+}
+
+/*
+** Shutdown the operating system interface. This is a no-op for unix.
+*/
+SQLITE_API int sqlite3_os_end(void){
+ return SQLITE_OK;
}
-#endif /* OS_UNIX */
+#endif /* SQLITE_OS_UNIX */
/************** End of os_unix.c *********************************************/
/************** Begin file os_win.c ******************************************/
******************************************************************************
**
** This file contains code that is specific to windows.
+**
+** $Id: os_win.c,v 1.132 2008/07/31 01:34:34 shane Exp $
*/
-#if OS_WIN /* This file is used for windows only */
+#if SQLITE_OS_WIN /* This file is used for windows only */
/*
**
** This file should be #included by the os_*.c files only. It is not a
** general purpose header file.
+**
+** $Id: os_common.h,v 1.37 2008/05/29 20:22:37 shane Exp $
*/
+#ifndef _OS_COMMON_H_
+#define _OS_COMMON_H_
/*
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE
-__inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
-}
-static unsigned long long int g_start;
-static unsigned int elapse;
-#define TIMER_START g_start=hwtime()
-#define TIMER_END elapse=hwtime()-g_start
-#define TIMER_ELAPSED elapse
+
+/*
+** hwtime.h contains inline assembler code for implementing
+** high-performance timing routines.
+*/
+/************** Include hwtime.h in the middle of os_common.h ****************/
+/************** Begin file hwtime.h ******************************************/
+/*
+** 2008 May 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains inline asm code for retrieving "high-performance"
+** counters for x86 class CPUs.
+**
+** $Id: hwtime.h,v 1.3 2008/08/01 14:33:15 shane Exp $
+*/
+#ifndef _HWTIME_H_
+#define _HWTIME_H_
+
+/*
+** The following routine only works on pentium-class (or newer) processors.
+** It uses the RDTSC opcode to read the cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+#if (defined(__GNUC__) || defined(_MSC_VER)) && \
+ (defined(i386) || defined(__i386__) || defined(_M_IX86))
+
+ #if defined(__GNUC__)
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned int lo, hi;
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (sqlite_uint64)hi << 32 | lo;
+ }
+
+ #elif defined(_MSC_VER)
+
+ __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
+ __asm {
+ rdtsc
+ ret ; return value at EDX:EAX
+ }
+ }
+
+ #endif
+
+#elif (defined(__GNUC__) && defined(__x86_64__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long val;
+ __asm__ __volatile__ ("rdtsc" : "=A" (val));
+ return val;
+ }
+
+#elif (defined(__GNUC__) && defined(__ppc__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long long retval;
+ unsigned long junk;
+ __asm__ __volatile__ ("\n\
+ 1: mftbu %1\n\
+ mftb %L0\n\
+ mftbu %0\n\
+ cmpw %0,%1\n\
+ bne 1b"
+ : "=r" (retval), "=r" (junk));
+ return retval;
+ }
+
+#else
+
+ #error Need implementation of sqlite3Hwtime() for your platform.
+
+ /*
+ ** To compile without implementing sqlite3Hwtime() for your platform,
+ ** you can remove the above #error and use the following
+ ** stub function. You will lose timing support for many
+ ** of the debugging and testing utilities, but it should at
+ ** least compile and run.
+ */
+SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
+
+#endif
+
+#endif /* !defined(_HWTIME_H_) */
+
+/************** End of hwtime.h **********************************************/
+/************** Continuing where we left off in os_common.h ******************/
+
+static sqlite_uint64 g_start;
+static sqlite_uint64 g_elapsed;
+#define TIMER_START g_start=sqlite3Hwtime()
+#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
+#define TIMER_ELAPSED g_elapsed
#else
#define TIMER_START
#define TIMER_END
-#define TIMER_ELAPSED 0
+#define TIMER_ELAPSED ((sqlite_uint64)0)
#endif
/*
#define OpenCounter(X)
#endif
+#endif /* !defined(_OS_COMMON_H_) */
+
/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_win.c *********************/
** Determine if we are dealing with WindowsCE - which has a much
** reduced API.
*/
-#if defined(_WIN32_WCE)
-# define OS_WINCE 1
+#if defined(SQLITE_OS_WINCE)
# define AreFileApisANSI() 1
-#else
-# define OS_WINCE 0
#endif
/*
** WinCE lacks native support for file locking so we have to fake it
** with some code of our own.
*/
-#if OS_WINCE
+#if SQLITE_OS_WINCE
typedef struct winceLock {
int nReaders; /* Number of reader locks obtained */
BOOL bPending; /* Indicates a pending lock has been obtained */
HANDLE h; /* Handle for accessing the file */
unsigned char locktype; /* Type of lock currently held on this file */
short sharedLockByte; /* Randomly chosen byte used as a shared lock */
-#if OS_WINCE
+#if SQLITE_OS_WINCE
WCHAR *zDeleteOnClose; /* Name of file to delete when closing */
HANDLE hMutex; /* Mutex used to control access to shared lock */
HANDLE hShared; /* Shared memory segment used for locking */
** WinNT/2K/XP so that we will know whether or not we can safely call
** the LockFileEx() API.
*/
-#if OS_WINCE
+#if SQLITE_OS_WINCE
# define isNT() (1)
#else
static int isNT(void){
}
return sqlite3_os_type==2;
}
-#endif /* OS_WINCE */
+#endif /* SQLITE_OS_WINCE */
/*
** Convert a UTF-8 string to microsoft unicode (UTF-16?).
return zFilenameMbcs;
}
-#if OS_WINCE
+#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
*/
/*
** End of the special code for wince
*****************************************************************************/
-#endif /* OS_WINCE */
+#endif /* SQLITE_OS_WINCE */
/*****************************************************************************
** The next group of routines implement the I/O methods specified
do{
rc = CloseHandle(pFile->h);
}while( rc==0 && cnt++ < MX_CLOSE_ATTEMPT && (Sleep(100), 1) );
-#if OS_WINCE
+#if SQLITE_OS_WINCE
#define WINCE_DELETION_ATTEMPTS 3
winceDestroyLock(pFile);
if( pFile->zDeleteOnClose ){
** file by this or any other process. If such a lock is held, return
** non-zero, otherwise zero.
*/
-static int winCheckReservedLock(sqlite3_file *id){
+static int winCheckReservedLock(sqlite3_file *id, int *pResOut){
int rc;
winFile *pFile = (winFile*)id;
assert( pFile!=0 );
rc = !rc;
OSTRACE3("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc);
}
- return rc;
+ *pResOut = rc;
+ return SQLITE_OK;
}
/*
}
/*
+** Create a temporary file name in zBuf. zBuf must be big enough to
+** hold at pVfs->mxPathname characters.
+*/
+static int getTempname(int nBuf, char *zBuf){
+ static char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ size_t i, j;
+ char zTempPath[MAX_PATH+1];
+ if( sqlite3_temp_directory ){
+ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory);
+ }else if( isNT() ){
+ char *zMulti;
+ WCHAR zWidePath[MAX_PATH];
+ GetTempPathW(MAX_PATH-30, zWidePath);
+ zMulti = unicodeToUtf8(zWidePath);
+ if( zMulti ){
+ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti);
+ free(zMulti);
+ }else{
+ return SQLITE_NOMEM;
+ }
+ }else{
+ char *zUtf8;
+ char zMbcsPath[MAX_PATH];
+ GetTempPathA(MAX_PATH-30, zMbcsPath);
+ zUtf8 = mbcsToUtf8(zMbcsPath);
+ if( zUtf8 ){
+ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8);
+ free(zUtf8);
+ }else{
+ return SQLITE_NOMEM;
+ }
+ }
+ for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
+ zTempPath[i] = 0;
+ sqlite3_snprintf(nBuf-30, zBuf,
+ "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
+ j = strlen(zBuf);
+ sqlite3_randomness(20, &zBuf[j]);
+ for(i=0; i<20; i++, j++){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ OSTRACE2("TEMP FILENAME: %s\n", zBuf);
+ return SQLITE_OK;
+}
+
+/*
+** The return value of getLastErrorMsg
+** is zero if the error message fits in the buffer, or non-zero
+** otherwise (if the message was truncated).
+*/
+static int getLastErrorMsg(int nBuf, char *zBuf){
+ DWORD error = GetLastError();
+
+#if SQLITE_OS_WINCE
+ sqlite3_snprintf(nBuf, zBuf, "OsError 0x%x (%u)", error, error);
+#else
+ /* FormatMessage returns 0 on failure. Otherwise it
+ ** returns the number of TCHARs written to the output
+ ** buffer, excluding the terminating null char.
+ */
+ if (!FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM,
+ NULL,
+ error,
+ 0,
+ zBuf,
+ nBuf-1,
+ 0))
+ {
+ sqlite3_snprintf(nBuf, zBuf, "OsError 0x%x (%u)", error, error);
+ }
+#endif
+
+ return 0;
+}
+
+
+/*
** Open a file.
*/
static int winOpen(
DWORD dwFlagsAndAttributes = 0;
int isTemp;
winFile *pFile = (winFile*)id;
- void *zConverted = convertUtf8Filename(zName);
+ void *zConverted; /* Filename in OS encoding */
+ const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
+ char zTmpname[MAX_PATH+1]; /* Buffer used to create temp filename */
+
+ /* If the second argument to this function is NULL, generate a
+ ** temporary file name to use
+ */
+ if( !zUtf8Name ){
+ int rc = getTempname(MAX_PATH+1, zTmpname);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ zUtf8Name = zTmpname;
+ }
+
+ /* Convert the filename to the system encoding. */
+ zConverted = convertUtf8Filename(zUtf8Name);
if( zConverted==0 ){
return SQLITE_NOMEM;
}
dwShareMode = 0;
}
if( flags & SQLITE_OPEN_DELETEONCLOSE ){
-#if OS_WINCE
+#if SQLITE_OS_WINCE
dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
#else
dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
NULL
);
}else{
-#if OS_WINCE
- return SQLITE_NOMEM;
-#else
h = CreateFileA((char*)zConverted,
dwDesiredAccess,
dwShareMode,
dwFlagsAndAttributes,
NULL
);
-#endif
}
if( h==INVALID_HANDLE_VALUE ){
free(zConverted);
memset(pFile, 0, sizeof(*pFile));
pFile->pMethod = &winIoMethod;
pFile->h = h;
-#if OS_WINCE
+#if SQLITE_OS_WINCE
if( (flags & (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)) ==
(SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)
&& !winceCreateLock(zName, pFile)
** Note that windows does not allow a file to be deleted if some other
** process has it open. Sometimes a virus scanner or indexing program
** will open a journal file shortly after it is created in order to do
-** whatever does. While this other process is holding the
+** whatever it does. While this other process is holding the
** file open, we will be unable to delete it. To work around this
** problem, we delay 100 milliseconds and try to delete again. Up
** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
){
int cnt = 0;
int rc;
+ DWORD error;
void *zConverted = convertUtf8Filename(zFilename);
if( zConverted==0 ){
return SQLITE_NOMEM;
if( isNT() ){
do{
DeleteFileW(zConverted);
- }while( (rc = GetFileAttributesW(zConverted))!=0xffffffff
- && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
+ }while( ( ((rc = GetFileAttributesW(zConverted)) != INVALID_FILE_ATTRIBUTES)
+ || ((error = GetLastError()) == ERROR_ACCESS_DENIED))
+ && (cnt++ < MX_DELETION_ATTEMPTS)
+ && (Sleep(100), 1) );
}else{
-#if OS_WINCE
- return SQLITE_NOMEM;
-#else
do{
DeleteFileA(zConverted);
- }while( (rc = GetFileAttributesA(zConverted))!=0xffffffff
- && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
-#endif
+ }while( ( ((rc = GetFileAttributesA(zConverted)) != INVALID_FILE_ATTRIBUTES)
+ || ((error = GetLastError()) == ERROR_ACCESS_DENIED))
+ && (cnt++ < MX_DELETION_ATTEMPTS)
+ && (Sleep(100), 1) );
}
free(zConverted);
OSTRACE2("DELETE \"%s\"\n", zFilename);
- return rc==0xffffffff ? SQLITE_OK : SQLITE_IOERR_DELETE;
+ return ( (rc==INVALID_FILE_ATTRIBUTES)
+ && (error == ERROR_FILE_NOT_FOUND)) ? SQLITE_OK : SQLITE_IOERR_DELETE;
}
/*
static int winAccess(
sqlite3_vfs *pVfs, /* Not used on win32 */
const char *zFilename, /* Name of file to check */
- int flags /* Type of test to make on this file */
+ int flags, /* Type of test to make on this file */
+ int *pResOut /* OUT: Result */
){
DWORD attr;
int rc;
if( isNT() ){
attr = GetFileAttributesW((WCHAR*)zConverted);
}else{
-#if OS_WINCE
- return SQLITE_NOMEM;
-#else
attr = GetFileAttributesA((char*)zConverted);
-#endif
}
free(zConverted);
switch( flags ){
case SQLITE_ACCESS_READ:
case SQLITE_ACCESS_EXISTS:
- rc = attr!=0xffffffff;
+ rc = attr!=INVALID_FILE_ATTRIBUTES;
break;
case SQLITE_ACCESS_READWRITE:
rc = (attr & FILE_ATTRIBUTE_READONLY)==0;
default:
assert(!"Invalid flags argument");
}
- return rc;
+ *pResOut = rc;
+ return SQLITE_OK;
}
/*
-** Create a temporary file name in zBuf. zBuf must be big enough to
-** hold at pVfs->mxPathname characters.
-*/
-static int winGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
- static char zChars[] =
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "0123456789";
- int i, j;
- char zTempPath[MAX_PATH+1];
- if( sqlite3_temp_directory ){
- sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory);
- }else if( isNT() ){
- char *zMulti;
- WCHAR zWidePath[MAX_PATH];
- GetTempPathW(MAX_PATH-30, zWidePath);
- zMulti = unicodeToUtf8(zWidePath);
- if( zMulti ){
- sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti);
- free(zMulti);
- }else{
- return SQLITE_NOMEM;
- }
- }else{
- char *zUtf8;
- char zMbcsPath[MAX_PATH];
- GetTempPathA(MAX_PATH-30, zMbcsPath);
- zUtf8 = mbcsToUtf8(zMbcsPath);
- if( zUtf8 ){
- sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8);
- free(zUtf8);
- }else{
- return SQLITE_NOMEM;
- }
- }
- for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
- zTempPath[i] = 0;
- sqlite3_snprintf(nBuf-30, zBuf,
- "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
- j = strlen(zBuf);
- sqlite3_randomness(20, &zBuf[j]);
- for(i=0; i<20; i++, j++){
- zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
- }
- zBuf[j] = 0;
- OSTRACE2("TEMP FILENAME: %s\n", zBuf);
- return SQLITE_OK;
-}
-
-/*
** Turn a relative pathname into a full pathname. Write the full
** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
** bytes in size.
return SQLITE_OK;
#endif
-#if OS_WINCE
+#if SQLITE_OS_WINCE
/* WinCE has no concept of a relative pathname, or so I am told. */
sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative);
return SQLITE_OK;
#endif
-#if !OS_WINCE && !defined(__CYGWIN__)
+#if !SQLITE_OS_WINCE && !defined(__CYGWIN__)
int nByte;
void *zConverted;
char *zOut;
if( isNT() ){
h = LoadLibraryW((WCHAR*)zConverted);
}else{
-#if OS_WINCE
- return 0;
-#else
h = LoadLibraryA((char*)zConverted);
-#endif
}
free(zConverted);
return (void*)h;
}
static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
-#if OS_WINCE
- int error = GetLastError();
- if( error>0x7FFFFFF ){
- sqlite3_snprintf(nBuf, zBufOut, "OsError 0x%x", error);
- }else{
- sqlite3_snprintf(nBuf, zBufOut, "OsError %d", error);
- }
-#else
- FormatMessageA(
- FORMAT_MESSAGE_FROM_SYSTEM,
- NULL,
- GetLastError(),
- 0,
- zBufOut,
- nBuf-1,
- 0
- );
-#endif
+ getLastErrorMsg(nBuf, zBufOut);
}
void *winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
-#if OS_WINCE
+#if SQLITE_OS_WINCE
/* The GetProcAddressA() routine is only available on wince. */
return GetProcAddressA((HANDLE)pHandle, zSymbol);
#else
100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
*/
double now;
-#if OS_WINCE
+#if SQLITE_OS_WINCE
SYSTEMTIME time;
GetSystemTime(&time);
- SystemTimeToFileTime(&time,&ft);
+ /* if SystemTimeToFileTime() fails, it returns zero. */
+ if (!SystemTimeToFileTime(&time,&ft)){
+ return 1;
+ }
#else
GetSystemTimeAsFileTime( &ft );
#endif
return 0;
}
+/*
+** The idea is that this function works like a combination of
+** GetLastError() and FormatMessage() on windows (or errno and
+** strerror_r() on unix). After an error is returned by an OS
+** function, SQLite calls this function with zBuf pointing to
+** a buffer of nBuf bytes. The OS layer should populate the
+** buffer with a nul-terminated UTF-8 encoded error message
+** describing the last IO error to have occured within the calling
+** thread.
+**
+** If the error message is too large for the supplied buffer,
+** it should be truncated. The return value of xGetLastError
+** is zero if the error message fits in the buffer, or non-zero
+** otherwise (if the message was truncated). If non-zero is returned,
+** then it is not necessary to include the nul-terminator character
+** in the output buffer.
+**
+** Not supplying an error message will have no adverse effect
+** on SQLite. It is fine to have an implementation that never
+** returns an error message:
+**
+** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+** assert(zBuf[0]=='\0');
+** return 0;
+** }
+**
+** However if an error message is supplied, it will be incorporated
+** by sqlite into the error message available to the user using
+** sqlite3_errmsg(), possibly making IO errors easier to debug.
+*/
+static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+ return getLastErrorMsg(nBuf, zBuf);
+}
/*
-** Return a pointer to the sqlite3DefaultVfs structure. We use
-** a function rather than give the structure global scope because
-** some compilers (MSVC) do not allow forward declarations of
-** initialized structures.
+** Initialize and deinitialize the operating system interface.
*/
-SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
+SQLITE_API int sqlite3_os_init(void){
static sqlite3_vfs winVfs = {
1, /* iVersion */
sizeof(winFile), /* szOsFile */
0, /* pNext */
"win32", /* zName */
0, /* pAppData */
-
+
winOpen, /* xOpen */
winDelete, /* xDelete */
winAccess, /* xAccess */
- winGetTempname, /* xGetTempName */
winFullPathname, /* xFullPathname */
winDlOpen, /* xDlOpen */
winDlError, /* xDlError */
winDlClose, /* xDlClose */
winRandomness, /* xRandomness */
winSleep, /* xSleep */
- winCurrentTime /* xCurrentTime */
+ winCurrentTime, /* xCurrentTime */
+ winGetLastError /* xGetLastError */
};
-
- return &winVfs;
+ sqlite3_vfs_register(&winVfs, 1);
+ return SQLITE_OK;
+}
+SQLITE_API int sqlite3_os_end(void){
+ return SQLITE_OK;
}
-#endif /* OS_WIN */
+#endif /* SQLITE_OS_WIN */
/************** End of os_win.c **********************************************/
/************** Begin file bitvec.c ******************************************/
** start of a transaction, and is thus usually less than a few thousand,
** but can be as large as 2 billion for a really big database.
**
-** @(#) $Id: bitvec.c,v 1.5 2008/05/13 13:27:34 drh Exp $
+** @(#) $Id: bitvec.c,v 1.6 2008/06/20 14:59:51 danielk1977 Exp $
*/
#define BITVEC_SZ 512
u32 bin = (i-1)/p->iDivisor;
i = (i-1)%p->iDivisor + 1;
if( p->u.apSub[bin]==0 ){
- sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ sqlite3BeginBenignMalloc();
p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
- sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ sqlite3EndBenignMalloc();
if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
}
return sqlite3BitvecSet(p->u.apSub[bin], i);
** file simultaneously, or one process from reading the database while
** another is writing.
**
-** @(#) $Id: pager.c,v 1.446 2008/05/13 13:27:34 drh Exp $
+** @(#) $Id: pager.c,v 1.469 2008/08/02 03:50:39 drh Exp $
*/
#ifndef SQLITE_OMIT_DISKIO
short int nRef; /* Number of users of this page */
PgHdr *pDirty, *pPrevDirty; /* Dirty pages */
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ PgHdr *pPrevAll; /* A list of all pages */
PagerLruLink gfree; /* Global list of nRef==0 pages */
#endif
#ifdef SQLITE_CHECK_PAGES
char *zFilename; /* Name of the database file */
char *zJournal; /* Name of the journal file */
char *zDirectory; /* Directory hold database and journal files */
- char *zStmtJrnl; /* Name of the statement journal file */
sqlite3_file *fd, *jfd; /* File descriptors for database and journal */
sqlite3_file *stfd; /* File descriptor for the statement subjournal*/
BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
Pager *pNext; /* Doubly linked list of pagers on which */
Pager *pPrev; /* sqlite3_release_memory() will work */
- int iInUseMM; /* Non-zero if unavailable to MM */
- int iInUseDB; /* Non-zero if in sqlite3_release_memory() */
+ volatile int iInUseMM; /* Non-zero if unavailable to MM */
+ volatile int iInUseDB; /* Non-zero if in sqlite3_release_memory() */
#endif
char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
char dbFileVers[16]; /* Changes whenever database file changes */
+ i64 journalSizeLimit; /* Size limit for persistent journal files */
};
/*
if( p->iInUseMM && p->iInUseDB==1 ){
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex;
- mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
+ mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM2);
#endif
p->iInUseDB = 0;
sqlite3_mutex_enter(mutex);
listAdd(&pPg->pPager->lru, &pPg->free, pPg);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
if( !pPg->pPager->memDb ){
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
listAdd(&sqlite3LruPageList, &pPg->gfree, pPg);
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
}
#endif
}
listRemove(&pPg->pPager->lru, &pPg->free, pPg);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
if( !pPg->pPager->memDb ){
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
listRemove(&sqlite3LruPageList, &pPg->gfree, pPg);
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
}
#endif
}
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
if( !pPager->memDb ){
PgHdr *p;
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext);
assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced);
sqlite3LruPageList.pFirstSynced = p;
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
}
#endif
}
if( N==pPager->nHash ) return;
#endif
pagerLeave(pPager);
- if( pPager->aHash!=0 ) sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ if( pPager->aHash!=0 ) sqlite3BeginBenignMalloc();
aHash = sqlite3MallocZero( sizeof(aHash[0])*N );
- if( pPager->aHash!=0 ) sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ if( pPager->aHash!=0 ) sqlite3EndBenignMalloc();
pagerEnter(pPager);
if( aHash==0 ){
/* Failure to rehash is not an error. It is only a performance hit. */
static int jrnlBufferSize(Pager *pPager){
int dc; /* Device characteristics */
int nSector; /* Sector size */
- int nPage; /* Page size */
+ int szPage; /* Page size */
sqlite3_file *fd = pPager->fd;
if( fd->pMethods ){
dc = sqlite3OsDeviceCharacteristics(fd);
nSector = sqlite3OsSectorSize(fd);
- nPage = pPager->pageSize;
+ szPage = pPager->pageSize;
}
assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
- if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){
+ if( !fd->pMethods ||
+ (dc & (SQLITE_IOCAP_ATOMIC|(szPage>>8)) && nSector<=szPage) ){
return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
}
return 0;
u32 len;
i64 szJ;
u32 cksum;
- int i;
+ u32 u; /* Unsigned loop counter */
unsigned char aMagic[8]; /* A buffer to hold the magic header */
zMaster[0] = '\0';
zMaster[len] = '\0';
/* See if the checksum matches the master journal name */
- for(i=0; i<len; i++){
- cksum -= zMaster[i];
+ for(u=0; u<len; u++){
+ cksum -= zMaster[u];
}
if( cksum ){
/* If the checksum doesn't add up, then one or more of the disk sectors
static const char zeroHdr[28];
if( pPager->journalOff ){
+ i64 iLimit = pPager->journalSizeLimit;
+
IOTRACE(("JZEROHDR %p\n", pPager))
- if( doTruncate ){
+ if( doTruncate || iLimit==0 ){
rc = sqlite3OsTruncate(pPager->jfd, 0);
}else{
rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
}
- if( rc==SQLITE_OK ){
+ if( rc==SQLITE_OK && !pPager->noSync ){
rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->sync_flags);
}
+
+ /* At this point the transaction is committed but the write lock
+ ** is still held on the file. If there is a size limit configured for
+ ** the persistent journal and the journal file currently consumes more
+ ** space than that limit allows for, truncate it now. There is no need
+ ** to sync the file following this operation.
+ */
+ if( rc==SQLITE_OK && iLimit>0 ){
+ i64 sz;
+ rc = sqlite3OsFileSize(pPager->jfd, &sz);
+ if( rc==SQLITE_OK && sz>iLimit ){
+ rc = sqlite3OsTruncate(pPager->jfd, iLimit);
+ }
+ }
}
return rc;
}
PAGER_INCR(sqlite3_pager_pgfree_count);
pNext = pPg->pNextAll;
lruListRemove(pPg);
- sqlite3_free(pPg->pData);
+ sqlite3PageFree(pPg->pData);
sqlite3_free(pPg);
}
assert(pPager->lru.pFirst==0);
static void pagerUnlockAndRollback(Pager *p){
/* assert( p->state>=PAGER_RESERVED || p->journalOpen==0 ); */
if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){
- sqlite3FaultBeginBenign(-1);
+ sqlite3BeginBenignMalloc();
sqlite3PagerRollback(p);
- sqlite3FaultEndBenign(-1);
+ sqlite3EndBenignMalloc();
}
pager_unlock(p);
#if 0
}else{
sqlite3OsClose(pPager->jfd);
pPager->journalOpen = 0;
- if( rc==SQLITE_OK ){
+ if( rc==SQLITE_OK && !pPager->tempFile ){
rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
}
}
/* Open the master journal file exclusively in case some other process
** is running this routine also. Not that it makes too much difference.
*/
- pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2);
+ pMaster = (sqlite3_file *)sqlite3Malloc(pVfs->szOsFile * 2);
pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
if( !pMaster ){
rc = SQLITE_NOMEM;
/* Load the entire master journal file into space obtained from
** sqlite3_malloc() and pointed to by zMasterJournal.
*/
- zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr);
+ zMasterJournal = (char *)sqlite3Malloc(nMasterJournal + nMasterPtr);
if( !zMasterJournal ){
rc = SQLITE_NOMEM;
goto delmaster_out;
zJournal = zMasterJournal;
while( (zJournal-zMasterJournal)<nMasterJournal ){
- rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS);
- if( rc!=0 && rc!=1 ){
- rc = SQLITE_IOERR_NOMEM;
+ int exists;
+ rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists);
+ if( rc!=SQLITE_OK ){
goto delmaster_out;
}
- if( rc==1 ){
+ if( exists ){
/* One of the journals pointed to by the master journal exists.
** Open it and check if it points at the master journal. If
** so, return without deleting the master journal file.
sqlite3_vfs *pVfs = pPager->pVfs;
i64 szJ; /* Size of the journal file in bytes */
u32 nRec; /* Number of Records in the journal */
- int i; /* Loop counter */
+ u32 u; /* Unsigned loop counter */
Pgno mxPg = 0; /* Size of the original file in pages */
int rc; /* Result code of a subroutine */
- int res = 0; /* Value returned by sqlite3OsAccess() */
+ int res = 1; /* Value returned by sqlite3OsAccess() */
char *zMaster = 0; /* Name of master journal file if any */
/* Figure out how many records are in the journal. Abort early if
*/
zMaster = pPager->pTmpSpace;
rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
- if( rc!=SQLITE_OK || (zMaster[0]
- && (res=sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS))==0 )
- ){
- zMaster = 0;
- goto end_playback;
+ if( rc==SQLITE_OK && zMaster[0] ){
+ rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
}
zMaster = 0;
- if( res<0 ){
- rc = SQLITE_IOERR_NOMEM;
+ if( rc!=SQLITE_OK || !res ){
goto end_playback;
}
pPager->journalOff = 0;
/* Copy original pages out of the journal and back into the database file.
*/
- for(i=0; i<nRec; i++){
+ for(u=0; u<nRec; u++){
rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_DONE ){
** file when it is closed.
*/
static int sqlite3PagerOpentemp(
- sqlite3_vfs *pVfs, /* The virtual file system layer */
+ Pager *pPager, /* The pager object */
sqlite3_file *pFile, /* Write the file descriptor here */
- char *zFilename, /* Name of the file. Might be NULL */
int vfsFlags /* Flags passed through to the VFS */
){
int rc;
- assert( zFilename!=0 );
#ifdef SQLITE_TEST
sqlite3_opentemp_count++; /* Used for testing and analysis only */
vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
- rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0);
+ rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0);
assert( rc!=SQLITE_OK || pFile->pMethods );
return rc;
}
int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
int journalFileSize = sqlite3JournalSize(pVfs);
- int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE;
- char *zPathname;
- int nPathname;
- char *zStmtJrnl;
- int nStmtJrnl;
+ int szPageDflt = SQLITE_DEFAULT_PAGE_SIZE;
+ char *zPathname = 0;
+ int nPathname = 0;
/* The default return is a NULL pointer */
*ppPager = 0;
- /* Compute the full pathname */
- nPathname = pVfs->mxPathname+1;
- zPathname = sqlite3_malloc(nPathname*2);
- if( zPathname==0 ){
- return SQLITE_NOMEM;
- }
+ /* Compute and store the full pathname in an allocated buffer pointed
+ ** to by zPathname, length nPathname. Or, if this is a temporary file,
+ ** leave both nPathname and zPathname set to 0.
+ */
if( zFilename && zFilename[0] ){
+ nPathname = pVfs->mxPathname+1;
+ zPathname = sqlite3Malloc(nPathname*2);
+ if( zPathname==0 ){
+ return SQLITE_NOMEM;
+ }
#ifndef SQLITE_OMIT_MEMORYDB
if( strcmp(zFilename,":memory:")==0 ){
memDb = 1;
{
rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
}
- }else{
- rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname);
- }
- if( rc!=SQLITE_OK ){
- sqlite3_free(zPathname);
- return rc;
- }
- nPathname = strlen(zPathname);
-
- /* Put the statement journal in temporary disk space since this is
- ** sometimes RAM disk or other optimized storage. Unlikely the main
- ** main journal file, the statement journal does not need to be
- ** colocated with the database nor does it need to be persistent.
- */
- zStmtJrnl = &zPathname[nPathname+1];
- rc = sqlite3OsGetTempname(pVfs, pVfs->mxPathname+1, zStmtJrnl);
- if( rc!=SQLITE_OK ){
- sqlite3_free(zPathname);
- return rc;
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(zPathname);
+ return rc;
+ }
+ nPathname = strlen(zPathname);
}
- nStmtJrnl = strlen(zStmtJrnl);
/* Allocate memory for the pager structure */
pPager = sqlite3MallocZero(
sizeof(*pPager) + /* Pager structure */
journalFileSize + /* The journal file structure */
pVfs->szOsFile * 3 + /* The main db and two journal files */
- 3*nPathname + 40 + /* zFilename, zDirectory, zJournal */
- nStmtJrnl /* zStmtJrnl */
+ 3*nPathname + 40 /* zFilename, zDirectory, zJournal */
);
if( !pPager ){
sqlite3_free(zPathname);
pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize];
pPager->zDirectory = &pPager->zFilename[nPathname+1];
pPager->zJournal = &pPager->zDirectory[nPathname+1];
- pPager->zStmtJrnl = &pPager->zJournal[nPathname+10];
pPager->pVfs = pVfs;
- memcpy(pPager->zFilename, zPathname, nPathname+1);
- memcpy(pPager->zStmtJrnl, zStmtJrnl, nStmtJrnl+1);
- sqlite3_free(zPathname);
+ if( zPathname ){
+ memcpy(pPager->zFilename, zPathname, nPathname+1);
+ sqlite3_free(zPathname);
+ }
/* Open the pager file.
*/
*/
if( rc==SQLITE_OK && !readOnly ){
int iSectorSize = sqlite3OsSectorSize(pPager->fd);
- if( nDefaultPage<iSectorSize ){
- nDefaultPage = iSectorSize;
+ if( szPageDflt<iSectorSize ){
+ szPageDflt = iSectorSize;
}
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
{
assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
- for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
- if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii;
+ for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
+ if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) szPageDflt = ii;
}
}
#endif
- if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
- nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE;
+ if( szPageDflt>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
+ szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
}
}
}
}
if( pPager && rc==SQLITE_OK ){
- pPager->pTmpSpace = sqlite3MallocZero(nDefaultPage);
+ pPager->pTmpSpace = sqlite3PageMalloc(szPageDflt);
}
/* If an error occured in either of the blocks above.
if( i>0 ) pPager->zDirectory[i-1] = 0;
/* Fill in Pager.zJournal[] */
- memcpy(pPager->zJournal, pPager->zFilename, nPathname);
- memcpy(&pPager->zJournal[nPathname], "-journal", 9);
+ if( zPathname ){
+ memcpy(pPager->zJournal, pPager->zFilename, nPathname);
+ memcpy(&pPager->zJournal[nPathname], "-journal", 9);
+ }else{
+ pPager->zJournal = 0;
+ }
/* pPager->journalOpen = 0; */
pPager->useJournal = useJournal && !memDb;
/* pPager->stmtInUse = 0; */
/* pPager->nRef = 0; */
pPager->dbSize = memDb-1;
- pPager->pageSize = nDefaultPage;
+ pPager->pageSize = szPageDflt;
/* pPager->stmtSize = 0; */
/* pPager->stmtJSize = 0; */
/* pPager->nPage = 0; */
/* pPager->pFirstSynced = 0; */
/* pPager->pLast = 0; */
pPager->nExtra = FORCE_ALIGNMENT(nExtra);
+ pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT;
assert(pPager->fd->pMethods||memDb||tempFile);
if( !memDb ){
setSectorSize(pPager);
pPager->iInUseDB = 0;
if( !memDb ){
#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM2);
#endif
sqlite3_mutex_enter(mutex);
pPager->pNext = sqlite3PagerList;
if( pageSize && pageSize!=pPager->pageSize
&& !pPager->memDb && pPager->nRef==0
){
- char *pNew = (char *)sqlite3_malloc(pageSize);
+ char *pNew = (char *)sqlite3PageMalloc(pageSize);
if( !pNew ){
rc = SQLITE_NOMEM;
}else{
pager_reset(pPager);
pPager->pageSize = pageSize;
setSectorSize(pPager);
- sqlite3_free(pPager->pTmpSpace);
+ sqlite3PageFree(pPager->pTmpSpace);
pPager->pTmpSpace = pNew;
pagerLeave(pPager);
}
if( mxPage>0 ){
pPager->mxPgno = mxPage;
}
- sqlite3PagerPagecount(pPager);
+ sqlite3PagerPagecount(pPager, 0);
return pPager->mxPgno;
}
** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
** file is 4096 bytes, 5 is returned instead of 4.
*/
-SQLITE_PRIVATE int sqlite3PagerPagecount(Pager *pPager){
+SQLITE_PRIVATE int sqlite3PagerPagecount(Pager *pPager, int *pnPage){
i64 n = 0;
int rc;
assert( pPager!=0 );
if( pPager->errCode ){
- return -1;
+ return pPager->errCode;
}
if( pPager->dbSize>=0 ){
n = pPager->dbSize;
pPager->nRef++;
pager_error(pPager, rc);
pPager->nRef--;
- return -1;
+ return rc;
}
if( n>0 && n<pPager->pageSize ){
n = 1;
if( n>pPager->mxPgno ){
pPager->mxPgno = n;
}
- return n;
+ if( pnPage ){
+ *pnPage = n;
+ }
+ return SQLITE_OK;
}
** Clear a PgHistory block
*/
static void clearHistory(PgHistory *pHist){
- sqlite3_free(pHist->pOrig);
- sqlite3_free(pHist->pStmt);
+ sqlite3PageFree(pHist->pOrig);
+ sqlite3PageFree(pHist->pStmt);
pHist->pOrig = 0;
pHist->pStmt = 0;
}
ppPg = &pPg->pNextAll;
}else{
*ppPg = pPg->pNextAll;
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ if( *ppPg ){
+ (*ppPg)->pPrevAll = pPg->pPrevAll;
+ }
+#endif
IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
PAGER_INCR(sqlite3_pager_pgfree_count);
unlinkPage(pPg);
makeClean(pPg);
- sqlite3_free(pPg->pData);
+ sqlite3PageFree(pPg->pData);
sqlite3_free(pPg);
pPager->nPage--;
}
SQLITE_PRIVATE int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
int rc;
assert( pPager->state>=PAGER_SHARED || MEMDB );
- sqlite3PagerPagecount(pPager);
+ sqlite3PagerPagecount(pPager, 0);
if( pPager->errCode ){
rc = pPager->errCode;
return rc;
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
if( !MEMDB ){
#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM2);
#endif
sqlite3_mutex_enter(mutex);
if( pPager->pPrev ){
#endif
disable_simulated_io_errors();
- sqlite3FaultBeginBenign(-1);
+ sqlite3BeginBenignMalloc();
pPager->errCode = 0;
pPager->exclusiveMode = 0;
pager_reset(pPager);
pagerUnlockAndRollback(pPager);
enable_simulated_io_errors();
- sqlite3FaultEndBenign(-1);
+ sqlite3EndBenignMalloc();
PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
IOTRACE(("CLOSE %p\n", pPager))
if( pPager->journalOpen ){
*/
sqlite3_free(pPager->aHash);
- sqlite3_free(pPager->pTmpSpace);
+ sqlite3PageFree(pPager->pTmpSpace);
sqlite3_free(pPager);
return SQLITE_OK;
}
PgHdr *pPg;
int rc = SQLITE_OK;
-
/* Sync the journal before modifying the main database
** (assuming there is a journal and it needs to be synced.)
*/
/* If the file has not yet been opened, open it now. */
if( !pPager->fd->pMethods ){
assert(pPager->tempFile);
- rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename,
- pPager->vfsFlags);
+ rc = sqlite3PagerOpentemp(pPager, pPager->fd, pPager->vfsFlags);
if( rc ) return rc;
}
** is hot. The pager_playback() routine will discover that the
** journal file is not really hot and will no-op.
*/
-static int hasHotJournal(Pager *pPager){
+static int hasHotJournal(Pager *pPager, int *pExists){
sqlite3_vfs *pVfs = pPager->pVfs;
- int rc;
- if( !pPager->useJournal ) return 0;
- if( !pPager->fd->pMethods ) return 0;
- rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS);
- if( rc<=0 ){
- return rc;
- }
- if( sqlite3OsCheckReservedLock(pPager->fd) ){
- return 0;
- }
- if( sqlite3PagerPagecount(pPager)==0 ){
- sqlite3OsDelete(pVfs, pPager->zJournal, 0);
- return 0;
- }else{
- return 1;
+ int rc = SQLITE_OK;
+ *pExists = 0;
+ if( pPager->useJournal && pPager->fd->pMethods ){
+ int exists;
+ int locked;
+
+ rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
+ if( rc==SQLITE_OK && exists ){
+ rc = sqlite3OsCheckReservedLock(pPager->fd, &locked);
+ }
+
+ if( rc==SQLITE_OK && exists && !locked ){
+ int nPage;
+ rc = sqlite3PagerPagecount(pPager, &nPage);
+ if( rc==SQLITE_OK ){
+ if( nPage==0 ){
+ sqlite3OsDelete(pVfs, pPager->zJournal, 0);
+ }else{
+ *pExists = 1;
+ }
+ }
+ }
}
+
+ return rc;
}
/*
** very slow operation, so we work hard to avoid it. But sometimes
** it can't be helped.
*/
- if( pPg==0 && pPager->lru.pFirst){
- int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
- int rc = syncJournal(pPager);
- if( rc!=0 ){
- return rc;
- }
- if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
- /* If in full-sync mode, write a new journal header into the
- ** journal file. This is done to avoid ever modifying a journal
- ** header that is involved in the rollback of pages that have
- ** already been written to the database (in case the header is
- ** trashed when the nRec field is updated).
- */
- pPager->nRec = 0;
- assert( pPager->journalOff > 0 );
- assert( pPager->doNotSync==0 );
- rc = writeJournalHdr(pPager);
+ if( pPg==0 && pPager->lru.pFirst ){
+ if( !pPager->errCode ){
+ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ int rc = syncJournal(pPager);
if( rc!=0 ){
return rc;
}
+ if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
+ /* If in full-sync mode, write a new journal header into the
+ ** journal file. This is done to avoid ever modifying a journal
+ ** header that is involved in the rollback of pages that have
+ ** already been written to the database (in case the header is
+ ** trashed when the nRec field is updated).
+ */
+ pPager->nRec = 0;
+ assert( pPager->journalOff > 0 );
+ assert( pPager->doNotSync==0 );
+ rc = writeJournalHdr(pPager);
+ if( rc!=0 ){
+ return rc;
+ }
+ }
}
pPg = pPager->lru.pFirst;
}
/* Write the page to the database file if it is dirty.
*/
- if( pPg->dirty ){
+ if( pPg->dirty && !pPager->errCode ){
int rc;
assert( pPg->needSync==0 );
makeClean(pPg);
return rc;
}
}
- assert( pPg->dirty==0 );
+ assert( pPg->dirty==0 || pPager->errCode );
/* If the page we are recycling is marked as alwaysRollback, then
** set the global alwaysRollback flag, thus disabling the
*/
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex; /* The MEM2 mutex */
- mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
+ mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM2);
#endif
sqlite3_mutex_enter(mutex);
/* Try to find a page to recycle that does not require a sync(). If
** this is not possible, find one that does require a sync().
*/
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
pPg = sqlite3LruPageList.pFirstSynced;
while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){
pPg = pPg->gfree.pNext;
pPg = pPg->gfree.pNext;
}
}
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
/* If pPg==0, then the block above has failed to find a page to
** recycle. In this case return early - no further memory will
PgHdr *pTmp;
assert( pPg );
if( pPg==pPager->pAll ){
+ assert(pPg->pPrevAll==0);
+ assert(pPg->pNextAll==0 || pPg->pNextAll->pPrevAll==pPg);
pPager->pAll = pPg->pNextAll;
+ if( pPager->pAll ){
+ pPager->pAll->pPrevAll = 0;
+ }
}else{
- for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){}
- pTmp->pNextAll = pPg->pNextAll;
+ assert(pPg->pPrevAll);
+ assert(pPg->pPrevAll->pNextAll==pPg);
+ pTmp = pPg->pPrevAll;
+ pTmp->pNextAll = pPg->pNextAll;
+ if( pTmp->pNextAll ){
+ pTmp->pNextAll->pPrevAll = pTmp;
+ }
}
nReleased += (
sizeof(*pPg) + pPager->pageSize
);
IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno));
PAGER_INCR(sqlite3_pager_pgfree_count);
- sqlite3_free(pPg->pData);
+ sqlite3PageFree(pPg->pData);
sqlite3_free(pPg);
pPager->nPage--;
}else{
*/
static int pagerSharedLock(Pager *pPager){
int rc = SQLITE_OK;
- int isHot = 0;
+ int isErrorReset = 0;
/* If this database is opened for exclusive access, has no outstanding
** page references and is in an error-state, now is the chance to clear
*/
if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){
if( pPager->journalOpen ){
- isHot = 1;
+ isErrorReset = 1;
}
pPager->errCode = SQLITE_OK;
pager_reset(pPager);
return pPager->errCode;
}
- if( pPager->state==PAGER_UNLOCK || isHot ){
+ if( pPager->state==PAGER_UNLOCK || isErrorReset ){
sqlite3_vfs *pVfs = pPager->pVfs;
if( !MEMDB ){
+ int isHotJournal;
assert( pPager->nRef==0 );
if( !pPager->noReadlock ){
rc = pager_wait_on_lock(pPager, SHARED_LOCK);
/* If a journal file exists, and there is no RESERVED lock on the
** database file, then it either needs to be played back or deleted.
*/
- rc = hasHotJournal(pPager);
- if( rc<0 ){
- rc = SQLITE_IOERR_NOMEM;
- goto failed;
+ if( !isErrorReset ){
+ rc = hasHotJournal(pPager, &isHotJournal);
+ if( rc!=SQLITE_OK ){
+ goto failed;
+ }
}
- if( rc==1 || isHot ){
+ if( isErrorReset || isHotJournal ){
/* Get an EXCLUSIVE lock on the database file. At this point it is
** important that a RESERVED lock is not obtained on the way to the
** EXCLUSIVE lock. If it were, another process might open the
** OsTruncate() call used in exclusive-access mode also requires
** a read/write file handle.
*/
- if( !isHot && pPager->journalOpen==0 ){
- int res = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS);
- if( res==1 ){
- int fout = 0;
- int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
- assert( !pPager->tempFile );
- rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
- assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
- if( fout&SQLITE_OPEN_READONLY ){
+ if( !isErrorReset && pPager->journalOpen==0 ){
+ int res;
+ rc = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS,&res);
+ if( rc==SQLITE_OK ){
+ if( res ){
+ int fout = 0;
+ int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
+ assert( !pPager->tempFile );
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
+ assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
+ if( fout&SQLITE_OPEN_READONLY ){
+ rc = SQLITE_BUSY;
+ sqlite3OsClose(pPager->jfd);
+ }
+ }else{
+ /* If the journal does not exist, that means some other process
+ ** has already rolled it back */
rc = SQLITE_BUSY;
- sqlite3OsClose(pPager->jfd);
}
- }else if( res==0 ){
- /* If the journal does not exist, that means some other process
- ** has already rolled it back */
- rc = SQLITE_BUSY;
- }else{
- /* If sqlite3OsAccess() returns a negative value, that means it
- ** failed a memory allocation */
- rc = SQLITE_IOERR_NOMEM;
}
}
if( rc!=SQLITE_OK ){
** it can be neglected.
*/
char dbFileVers[sizeof(pPager->dbFileVers)];
- sqlite3PagerPagecount(pPager);
+ sqlite3PagerPagecount(pPager, 0);
if( pPager->errCode ){
rc = pPager->errCode;
pagerLeave(pPager);
nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra
+ MEMDB*sizeof(PgHistory);
- pPg = sqlite3_malloc( nByteHdr );
+ pPg = sqlite3Malloc( nByteHdr );
if( pPg ){
- pData = sqlite3_malloc( pPager->pageSize );
+ pData = sqlite3PageMalloc( pPager->pageSize );
if( pData==0 ){
sqlite3_free(pPg);
pPg = 0;
pPg->pData = pData;
pPg->pPager = pPager;
pPg->pNextAll = pPager->pAll;
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ if( pPg->pNextAll ){
+ pPg->pNextAll->pPrevAll = pPg;
+ }
+#endif
pPager->pAll = pPg;
pPager->nPage++;
}else{
if( pPager->nExtra>0 ){
memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
}
- nMax = sqlite3PagerPagecount(pPager);
- if( pPager->errCode ){
- rc = pPager->errCode;
+ rc = sqlite3PagerPagecount(pPager, &nMax);
+ if( rc!=SQLITE_OK ){
sqlite3PagerUnref(pPg);
return rc;
}
assert( pPager->state>=PAGER_RESERVED );
assert( pPager->useJournal );
assert( pPager->pInJournal==0 );
- sqlite3PagerPagecount(pPager);
+ sqlite3PagerPagecount(pPager, 0);
pagerLeave(pPager);
pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
pagerEnter(pPager);
assert( pPager->nRec==0 );
assert( pPager->origDbSize==0 );
assert( pPager->pInJournal==0 );
- sqlite3PagerPagecount(pPager);
+ sqlite3PagerPagecount(pPager, 0);
pagerLeave(pPager);
pPager->pInJournal = sqlite3BitvecCreate( pPager->dbSize );
pagerEnter(pPager);
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
assert( pHist->pOrig==0 );
- pHist->pOrig = sqlite3_malloc( pPager->pageSize );
+ pHist->pOrig = sqlite3PageMalloc( pPager->pageSize );
if( !pHist->pOrig ){
return SQLITE_NOMEM;
}
if( MEMDB ){
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
assert( pHist->pStmt==0 );
- pHist->pStmt = sqlite3_malloc( pPager->pageSize );
+ pHist->pStmt = sqlite3PageMalloc( pPager->pageSize );
if( pHist->pStmt ){
memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
}
*/
pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
- nPageCount = sqlite3PagerPagecount(pPager);
+ sqlite3PagerPagecount(pPager, (int *)&nPageCount);
if( pPg->pgno>nPageCount ){
nPage = (pPg->pgno - pg1)+1;
}else if( (pg1+nPagePerSector-1)>nPageCount ){
** has not been previously called during the same transaction.
** And if DontWrite() has previously been called, the following
** conditions must be met.
+ **
+ ** (Later:) Not true. If the database is corrupted by having duplicate
+ ** pages on the freelist (ex: corrupt9.test) then the following is not
+ ** necessarily true:
*/
- assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize );
+ /* assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ); */
assert( pPager->pInJournal!=0 );
sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
u32 change_counter;
int rc = SQLITE_OK;
+#ifndef SQLITE_ENABLE_ATOMIC_WRITE
+ assert( isDirect==0 ); /* isDirect is only true for atomic writes */
+#endif
if( !pPager->changeCountDone ){
/* Open page 1 of the file for writing. */
rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
change_counter++;
put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter);
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
if( isDirect && pPager->fd->pMethods ){
const void *zBuf = PGHDR_TO_DATA(pPgHdr);
rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
}
+#endif
/* Release the page reference. */
sqlite3PagerUnref(pPgHdr);
){
int rc = SQLITE_OK;
+ if( pPager->errCode ){
+ return pPager->errCode;
+ }
+
/* If no changes have been made, we can leave the transaction early.
*/
if( pPager->dbModified==0 &&
if( !pPager->setMaster ){
rc = pager_incr_changecounter(pPager, 0);
if( rc!=SQLITE_OK ) goto sync_exit;
+ if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
#ifndef SQLITE_OMIT_AUTOVACUUM
- if( nTrunc!=0 ){
- /* If this transaction has made the database smaller, then all pages
- ** being discarded by the truncation must be written to the journal
- ** file.
- */
- Pgno i;
- int iSkip = PAGER_MJ_PGNO(pPager);
- for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
- if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
- rc = sqlite3PagerGet(pPager, i, &pPg);
- if( rc!=SQLITE_OK ) goto sync_exit;
- rc = sqlite3PagerWrite(pPg);
- sqlite3PagerUnref(pPg);
- if( rc!=SQLITE_OK ) goto sync_exit;
- }
- }
- }
+ if( nTrunc!=0 ){
+ /* If this transaction has made the database smaller, then all pages
+ ** being discarded by the truncation must be written to the journal
+ ** file.
+ */
+ Pgno i;
+ int iSkip = PAGER_MJ_PGNO(pPager);
+ for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
+ if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
+ rc = sqlite3PagerGet(pPager, i, &pPg);
+ if( rc!=SQLITE_OK ) goto sync_exit;
+ rc = sqlite3PagerWrite(pPg);
+ sqlite3PagerUnref(pPg);
+ if( rc!=SQLITE_OK ) goto sync_exit;
+ }
+ }
+ }
#endif
- rc = writeMasterJournal(pPager, zMaster);
- if( rc!=SQLITE_OK ) goto sync_exit;
- rc = syncJournal(pPager);
+ rc = writeMasterJournal(pPager, zMaster);
+ if( rc!=SQLITE_OK ) goto sync_exit;
+ rc = syncJournal(pPager);
+ }
}
if( rc!=SQLITE_OK ) goto sync_exit;
a[10] = pPager->nWrite;
return a;
}
+SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager *pPager){
+ return MEMDB;
+}
#endif
/*
pPager->stmtHdrOff = 0;
pPager->stmtCksum = pPager->cksumInit;
if( !pPager->stmtOpen ){
- rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl,
- SQLITE_OPEN_SUBJOURNAL);
+ rc = sqlite3PagerOpentemp(pPager, pPager->stfd, SQLITE_OPEN_SUBJOURNAL);
if( rc ){
goto stmt_begin_failed;
}
assert( pHist->inStmt );
pHist->inStmt = 0;
pHist->pPrevStmt = pHist->pNextStmt = 0;
- sqlite3_free(pHist->pStmt);
+ sqlite3PageFree(pHist->pStmt);
pHist->pStmt = 0;
}
}
pHist = PGHDR_TO_HIST(pPg, pPager);
if( pHist->pStmt ){
memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
- sqlite3_free(pHist->pStmt);
+ sqlite3PageFree(pHist->pStmt);
pHist->pStmt = 0;
}
}
** required that a statement transaction was not active, but this restriction
** has been removed (CREATE INDEX needs to move a page when a statement
** transaction is active).
+**
+** If the fourth argument, isCommit, is non-zero, then this page is being
+** moved as part of a database reorganization just before the transaction
+** is being committed. In this case, it is guaranteed that the database page
+** pPg refers to will not be written to again within this transaction.
*/
-SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){
PgHdr *pPgOld; /* The page being overwritten. */
int h;
Pgno needSyncPgno = 0;
IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
pager_get_content(pPg);
- if( pPg->needSync ){
+
+ /* If the journal needs to be sync()ed before page pPg->pgno can
+ ** be written to, store pPg->pgno in local variable needSyncPgno.
+ **
+ ** If the isCommit flag is set, there is no need to remember that
+ ** the journal needs to be sync()ed before database page pPg->pgno
+ ** can be written to. The caller has already promised not to write to it.
+ */
+ if( pPg->needSync && !isCommit ){
needSyncPgno = pPg->pgno;
assert( pPg->inJournal || (int)pgno>pPager->origDbSize );
assert( pPg->dirty );
/* If needSyncPgno is non-zero, then the journal file needs to be
** sync()ed before any data is written to database file page needSyncPgno.
** Currently, no such page exists in the page-cache and the
- ** Pager.pInJournal bit has been set. This needs to be remedied by loading
- ** the page into the pager-cache and setting the PgHdr.needSync flag.
+ ** "is journaled" bitvec flag has been set. This needs to be remedied by
+ ** loading the page into the pager-cache and setting the PgHdr.needSync
+ ** flag.
**
** If the attempt to load the page into the page-cache fails, (due
** to a malloc() or IO failure), clear the bit in the pInJournal[]
return (int)pPager->journalMode;
}
-#ifdef SQLITE_TEST
/*
-** Print a listing of all referenced pages and their ref count.
+** Get/set the size-limit used for persistent journal files.
*/
-SQLITE_PRIVATE void sqlite3PagerRefdump(Pager *pPager){
- PgHdr *pPg;
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- if( pPg->nRef<=0 ) continue;
- sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n",
- pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef);
+SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){
+ if( iLimit>=-1 ){
+ pPager->journalSizeLimit = iLimit;
}
+ return pPager->journalSizeLimit;
}
-#endif
#endif /* SQLITE_OMIT_DISKIO */
**
*************************************************************************
**
-** $Id: btmutex.c,v 1.9 2008/01/23 12:52:41 drh Exp $
+** $Id: btmutex.c,v 1.10 2008/07/14 19:39:17 drh Exp $
**
** This file contains code used to implement mutexes on Btree objects.
** This code really belongs in btree.c. But btree.c is getting too
** May you share freely, never taking more than you give.
**
*************************************************************************
-** $Id: btreeInt.h,v 1.21 2008/04/24 19:15:10 shane Exp $
+** $Id: btreeInt.h,v 1.30 2008/08/01 20:10:08 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
u8 intKey; /* True if intkey flag is set */
u8 leaf; /* True if leaf flag is set */
- u8 zeroData; /* True if table stores keys only */
- u8 leafData; /* True if tables stores data on leaves only */
u8 hasData; /* True if this page stores data */
u8 hdrOffset; /* 100 for page 1. 0 otherwise */
u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
u16 idxParent; /* Index in parent of this node */
u16 nFree; /* Number of free bytes on the page */
u16 nCell; /* Number of cells on this page, local and ovfl */
+ u16 maskPage; /* Mask for page offset */
struct _OvflCell { /* Cells that will not fit on aData[] */
u8 *pCell; /* Pointers to the body of the overflow cell */
u16 idx; /* Insert this cell before idx-th non-overflow cell */
MemPage *pPage1; /* First page of the database */
u8 inStmt; /* True if we are in a statement subtransaction */
u8 readOnly; /* True if the underlying file is readonly */
- u8 maxEmbedFrac; /* Maximum payload as % of total page size */
- u8 minEmbedFrac; /* Minimum payload as % of total page size */
- u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
u8 pageSizeFixed; /* True if the page size can no longer be changed */
#ifndef SQLITE_OMIT_AUTOVACUUM
u8 autoVacuum; /* True if auto-vacuum is enabled */
** The table that this cursor was opened on still exists, but has been
** modified since the cursor was last used. The cursor position is saved
** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
-** this state, restoreOrClearCursorPosition() can be called to attempt to
+** this state, restoreCursorPosition() can be called to attempt to
** seek the cursor to the saved position.
**
** CURSOR_FAULT:
#define CURSOR_REQUIRESEEK 2
#define CURSOR_FAULT 3
-/*
-** The TRACE macro will print high-level status information about the
-** btree operation when the global variable sqlite3BtreeTrace is
-** enabled.
-*/
-#if SQLITE_TEST
-# define TRACE(X) if( sqlite3BtreeTrace ){ printf X; fflush(stdout); }
-#else
-# define TRACE(X)
-#endif
-
/* The database page the PENDING_BYTE occupies. This page is never used.
** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
** should possibly be consolidated (presumably in pager.h).
** this test.
*/
#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
-#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
+#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
/*
int nPage; /* Number of pages in the database */
int *anRef; /* Number of times each page is referenced */
int mxErr; /* Stop accumulating errors when this reaches zero */
- char *zErrMsg; /* An error message. NULL if no errors seen. */
int nErr; /* Number of messages written to zErrMsg so far */
+ int mallocFailed; /* A memory allocation error has occurred */
+ StrAccum errMsg; /* Accumulate the error message text here */
};
/*
SQLITE_PRIVATE int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);
SQLITE_PRIVATE void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
SQLITE_PRIVATE void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
-#ifdef SQLITE_TEST
-SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell);
-#endif
-SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur);
+SQLITE_PRIVATE int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur);
SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage *pPage);
#endif /* NDEBUG */
/*
-** Potentially dd a new Btree pointer to a BtreeMutexArray.
-** Really only add the Btree if it can possibly be shared with
+** Add a new Btree pointer to a BtreeMutexArray.
+** if the pointer can possibly be shared with
** another database connection.
**
-** The Btrees are kept in sorted order by pBtree->pBt. That
+** The pointers are kept in sorted order by pBtree->pBt. That
** way when we go to enter all the mutexes, we can enter them
** in order without every having to backup and retry and without
** worrying about deadlock.
** May you share freely, never taking more than you give.
**
*************************************************************************
-** $Id: btree.c,v 1.458 2008/05/09 16:57:51 danielk1977 Exp $
+** $Id: btree.c,v 1.495 2008/08/02 17:36:46 danielk1977 Exp $
**
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Set this global variable to 1 to enable tracing using the TRACE
** macro.
*/
-#if SQLITE_TEST
+#if 0
int sqlite3BtreeTrace=0; /* True to enable tracing */
+# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
+#else
+# define TRACE(X)
#endif
/*
** Forward declaration
*/
-static int checkReadLocks(Btree*,Pgno,BtCursor*);
+static int checkReadLocks(Btree*, Pgno, BtCursor*, i64);
#ifdef SQLITE_OMIT_SHARED_CACHE
BtLock *pIter;
assert( sqlite3BtreeHoldsMutex(p) );
+ assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
+ assert( p->db!=0 );
/* This is a no-op if the shared-cache is not enabled */
if( !p->sharable ){
** write-cursor does not change.
*/
if(
- !p->db ||
0==(p->db->flags&SQLITE_ReadUncommitted) ||
eLock==WRITE_LOCK ||
iTab==MASTER_ROOT
BtLock *pIter;
assert( sqlite3BtreeHoldsMutex(p) );
+ assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
+ assert( p->db!=0 );
/* This is a no-op if the shared-cache is not enabled */
if( !p->sharable ){
** the ReadUncommitted flag.
*/
if(
- (p->db) &&
(p->db->flags&SQLITE_ReadUncommitted) &&
(eLock==READ_LOCK) &&
iTable!=MASTER_ROOT
** data.
*/
if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
- void *pKey = sqlite3_malloc(pCur->nKey);
+ void *pKey = sqlite3Malloc(pCur->nKey);
if( pKey ){
rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
if( rc==SQLITE_OK ){
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the
** saved position info stored by saveCursorPosition(), so there can be
-** at most one effective restoreOrClearCursorPosition() call after each
+** at most one effective restoreCursorPosition() call after each
** saveCursorPosition().
-**
-** If the second argument argument - doSeek - is false, then instead of
-** returning the cursor to its saved position, any saved position is deleted
-** and the cursor state set to CURSOR_INVALID.
*/
-SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){
+SQLITE_PRIVATE int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
int rc;
assert( cursorHoldsMutex(pCur) );
assert( pCur->eState>=CURSOR_REQUIRESEEK );
if( pCur->eState==CURSOR_FAULT ){
return pCur->skip;
}
-#ifndef SQLITE_OMIT_INCRBLOB
- if( pCur->isIncrblobHandle ){
- return SQLITE_ABORT;
- }
-#endif
pCur->eState = CURSOR_INVALID;
rc = sqlite3BtreeMoveto(pCur, pCur->pKey, 0, pCur->nKey, 0, &pCur->skip);
if( rc==SQLITE_OK ){
return rc;
}
-#define restoreOrClearCursorPosition(p) \
+#define restoreCursorPosition(p) \
(p->eState>=CURSOR_REQUIRESEEK ? \
- sqlite3BtreeRestoreOrClearCursorPosition(p) : \
+ sqlite3BtreeRestoreCursorPosition(p) : \
SQLITE_OK)
+/*
+** Determine whether or not a cursor has moved from the position it
+** was last placed at. Cursor can move when the row they are pointing
+** at is deleted out from under them.
+**
+** This routine returns an error code if something goes wrong. The
+** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
+ int rc;
+
+ rc = restoreCursorPosition(pCur);
+ if( rc ){
+ *pHasMoved = 1;
+ return rc;
+ }
+ if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
+ *pHasMoved = 1;
+ }else{
+ *pHasMoved = 0;
+ }
+ return SQLITE_OK;
+}
+
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Given a page number of a regular database page, return the page
if( rc!=SQLITE_OK ){
return rc;
}
- offset = PTRMAP_PTROFFSET(pBt, key);
+ offset = PTRMAP_PTROFFSET(iPtrmap, key);
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
}
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
- offset = PTRMAP_PTROFFSET(pBt, key);
+ offset = PTRMAP_PTROFFSET(iPtrmap, key);
assert( pEType!=0 );
*pEType = pPtrmap[offset];
if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
return SQLITE_OK;
}
-#endif /* SQLITE_OMIT_AUTOVACUUM */
+#else /* if defined SQLITE_OMIT_AUTOVACUUM */
+ #define ptrmapPut(w,x,y,z) SQLITE_OK
+ #define ptrmapGet(w,x,y,z) SQLITE_OK
+ #define ptrmapPutOvfl(y,z) SQLITE_OK
+#endif
/*
** Given a btree page and a cell index (0 means the first cell on
**
** This routine works only for pages that do not contain overflow cells.
*/
-#define findCell(pPage, iCell) \
- ((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)]))
-#ifdef SQLITE_TEST
-SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell){
- assert( iCell>=0 );
- assert( iCell<get2byte(&pPage->aData[pPage->hdrOffset+3]) );
- return findCell(pPage, iCell);
-}
-#endif
+#define findCell(P,I) \
+ ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
/*
-** This a more complex version of sqlite3BtreeFindCell() that works for
+** This a more complex version of findCell() that works for
** pages that do contain overflow cells. See insert
*/
static u8 *findOverflowCell(MemPage *pPage, int iCell){
assert( pPage->leaf==0 || pPage->leaf==1 );
n = pPage->childPtrSize;
assert( n==4-4*pPage->leaf );
- if( pPage->hasData ){
- n += getVarint32(&pCell[n], nPayload);
- }else{
- nPayload = 0;
- }
- pInfo->nData = nPayload;
if( pPage->intKey ){
- n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
+ if( pPage->hasData ){
+ n += getVarint32(&pCell[n], nPayload);
+ }else{
+ nPayload = 0;
+ }
+ n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
+ pInfo->nData = nPayload;
}else{
- u32 x;
- n += getVarint32(&pCell[n], x);
- pInfo->nKey = x;
- nPayload += x;
+ pInfo->nData = 0;
+ n += getVarint32(&pCell[n], nPayload);
+ pInfo->nKey = nPayload;
}
pInfo->nPayload = nPayload;
pInfo->nHeader = n;
- if( nPayload<=pPage->maxLocal ){
+ if( likely(nPayload<=pPage->maxLocal) ){
/* This is the (easy) common case where the entire payload fits
** on the local page. No overflow is required.
*/
int nSize; /* Total size of cell content in bytes */
+ nSize = nPayload + n;
pInfo->nLocal = nPayload;
pInfo->iOverflow = 0;
- nSize = nPayload + n;
- if( nSize<4 ){
+ if( (nSize & ~3)==0 ){
nSize = 4; /* Minimum cell size is 4 */
}
pInfo->nSize = nSize;
** for the overflow page.
*/
static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
- if( pCell ){
- CellInfo info;
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
- if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
- Pgno ovfl = get4byte(&pCell[info.iOverflow]);
- return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
- }
+ CellInfo info;
+ assert( pCell!=0 );
+ sqlite3BtreeParseCellPtr(pPage, pCell, &info);
+ assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
+ if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
+ Pgno ovfl = get4byte(&pCell[info.iOverflow]);
+ return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
}
return SQLITE_OK;
}
** big FreeBlk that occurs in between the header and cell
** pointer array and the cell content area.
*/
-static int defragmentPage(MemPage *pPage){
+static void defragmentPage(MemPage *pPage){
int i; /* Loop counter */
int pc; /* Address of a i-th cell */
int addr; /* Offset of first byte after cell pointer array */
data[hdr+7] = 0;
addr = cellOffset+2*nCell;
memset(&data[addr], 0, brk-addr);
- return SQLITE_OK;
}
/*
** Allocate nByte bytes of space on a page.
**
** Return the index into pPage->aData[] of the first byte of
-** the new allocation. Or return 0 if there is not enough free
-** space on the page to satisfy the allocation request.
+** the new allocation. The caller guarantees that there is enough
+** space. This routine will never fail.
**
** If the page contains nBytes of free space but does not contain
** nBytes of contiguous free space, then this routine automatically
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
assert( pPage->pBt );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( nByte<4 ) nByte = 4;
- if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
+ assert( nByte>=0 ); /* Minimum cell size is 4 */
+ assert( pPage->nFree>=nByte );
+ assert( pPage->nOverflow==0 );
pPage->nFree -= nByte;
hdr = pPage->hdrOffset;
nCell = get2byte(&data[hdr+3]);
cellOffset = pPage->cellOffset;
if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
- if( defragmentPage(pPage) ) return 0;
+ defragmentPage(pPage);
top = get2byte(&data[hdr+5]);
}
top -= nByte;
assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
assert( (start + size)<=pPage->pBt->usableSize );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( size<4 ) size = 4;
+ assert( size>=0 ); /* Minimum cell size is 4 */
#ifdef SQLITE_SECURE_DELETE
/* Overwrite deleted information with zeros when the SECURE_DELETE
/*
** Decode the flags byte (the first byte of the header) for a page
** and initialize fields of the MemPage structure accordingly.
+**
+** Only the following combinations are supported. Anything different
+** indicates a corrupt database files:
+**
+** PTF_ZERODATA
+** PTF_ZERODATA | PTF_LEAF
+** PTF_LEAFDATA | PTF_INTKEY
+** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
*/
-static void decodeFlags(MemPage *pPage, int flagByte){
+static int decodeFlags(MemPage *pPage, int flagByte){
BtShared *pBt; /* A copy of pPage->pBt */
assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
- pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
- pPage->leaf = (flagByte & PTF_LEAF)!=0;
- pPage->childPtrSize = 4*(pPage->leaf==0);
+ pPage->leaf = flagByte>>3; assert( PTF_LEAF == 1<<3 );
+ flagByte &= ~PTF_LEAF;
+ pPage->childPtrSize = 4-4*pPage->leaf;
pBt = pPage->pBt;
- if( flagByte & PTF_LEAFDATA ){
- pPage->leafData = 1;
+ if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
+ pPage->intKey = 1;
+ pPage->hasData = pPage->leaf;
pPage->maxLocal = pBt->maxLeaf;
pPage->minLocal = pBt->minLeaf;
- }else{
- pPage->leafData = 0;
+ }else if( flagByte==PTF_ZERODATA ){
+ pPage->intKey = 0;
+ pPage->hasData = 0;
pPage->maxLocal = pBt->maxLocal;
pPage->minLocal = pBt->minLocal;
+ }else{
+ return SQLITE_CORRUPT_BKPT;
}
- pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
+ return SQLITE_OK;
}
/*
}
hdr = pPage->hdrOffset;
data = pPage->aData;
- decodeFlags(pPage, data[hdr]);
+ if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
+ assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
+ pPage->maskPage = pBt->pageSize - 1;
pPage->nOverflow = 0;
pPage->idxShift = 0;
usableSize = pBt->usableSize;
return SQLITE_CORRUPT_BKPT;
}
+#if 0
+ /* Check that all the offsets in the cell offset array are within range.
+ **
+ ** Omitting this consistency check and using the pPage->maskPage mask
+ ** to prevent overrunning the page buffer in findCell() results in a
+ ** 2.5% performance gain.
+ */
+ {
+ u8 *pOff; /* Iterator used to check all cell offsets are in range */
+ u8 *pEnd; /* Pointer to end of cell offset array */
+ u8 mask; /* Mask of bits that must be zero in MSB of cell offsets */
+ mask = ~(((u8)(pBt->pageSize>>8))-1);
+ pEnd = &data[cellOffset + pPage->nCell*2];
+ for(pOff=&data[cellOffset]; pOff!=pEnd && !((*pOff)&mask); pOff+=2);
+ if( pOff!=pEnd ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ }
+#endif
+
pPage->isInit = 1;
return SQLITE_OK;
}
assert( sqlite3PagerGetData(pPage->pDbPage) == data );
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
assert( sqlite3_mutex_held(pBt->mutex) );
- memset(&data[hdr], 0, pBt->usableSize - hdr);
+ /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
data[hdr] = flags;
first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
memset(&data[hdr+1], 0, 4);
pPage->hdrOffset = hdr;
pPage->cellOffset = first;
pPage->nOverflow = 0;
+ assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
+ pPage->maskPage = pBt->pageSize - 1;
pPage->idxShift = 0;
pPage->nCell = 0;
pPage->isInit = 1;
** If this Btree is a candidate for shared cache, try to find an
** existing BtShared object that we can share with
*/
- if( (flags & BTREE_PRIVATE)==0
- && isMemdb==0
+ if( isMemdb==0
&& (db->flags & SQLITE_Vtab)==0
&& zFilename && zFilename[0]
){
if( sqlite3SharedCacheEnabled ){
int nFullPathname = pVfs->mxPathname+1;
- char *zFullPathname = (char *)sqlite3_malloc(nFullPathname);
+ char *zFullPathname = sqlite3Malloc(nFullPathname);
sqlite3_mutex *mutexShared;
p->sharable = 1;
- if( db ){
- db->flags |= SQLITE_SharedCache;
- }
+ db->flags |= SQLITE_SharedCache;
if( !zFullPathname ){
sqlite3_free(p);
return SQLITE_NOMEM;
}
sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
- mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+ mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
sqlite3_mutex_enter(mutexShared);
for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
assert( pBt->nRef>0 );
|| ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
pBt->pageSize = 0;
sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
- pBt->maxEmbedFrac = 64; /* 25% */
- pBt->minEmbedFrac = 32; /* 12.5% */
- pBt->minLeafFrac = 32; /* 12.5% */
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the magic name ":memory:" will create an in-memory database, then
** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
nReserve = 0;
}else{
nReserve = zDbHeader[20];
- pBt->maxEmbedFrac = zDbHeader[21];
- pBt->minEmbedFrac = zDbHeader[22];
- pBt->minLeafFrac = zDbHeader[23];
pBt->pageSizeFixed = 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
if( p->sharable ){
sqlite3_mutex *mutexShared;
pBt->nRef = 1;
- mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
- if( SQLITE_THREADSAFE ){
- pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
+ mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+ if( SQLITE_THREADSAFE && sqlite3Config.bCoreMutex ){
+ pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
if( pBt->mutex==0 ){
rc = SQLITE_NOMEM;
db->mallocFailed = 0;
int removed = 0;
assert( sqlite3_mutex_notheld(pBt->mutex) );
- pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+ pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
sqlite3_mutex_enter(pMaster);
pBt->nRef--;
if( pBt->nRef<=0 ){
sqlite3SharedCacheList = pBt->pNext;
}else{
pList = sqlite3SharedCacheList;
- while( pList && pList->pNext!=pBt ){
+ while( ALWAYS(pList) && pList->pNext!=pBt ){
pList=pList->pNext;
}
- if( pList ){
+ if( ALWAYS(pList) ){
pList->pNext = pBt->pNext;
}
}
}
/*
+** Make sure pBt->pTmpSpace points to an allocation of
+** MX_CELL_SIZE(pBt) bytes.
+*/
+static void allocateTempSpace(BtShared *pBt){
+ if( !pBt->pTmpSpace ){
+ pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
+ }
+}
+
+/*
+** Free the pBt->pTmpSpace allocation
+*/
+static void freeTempSpace(BtShared *pBt){
+ sqlite3PageFree( pBt->pTmpSpace);
+ pBt->pTmpSpace = 0;
+}
+
+/*
** Close an open database and invalidate all cursors.
*/
SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){
pBt->xFreeSchema(pBt->pSchema);
}
sqlite3_free(pBt->pSchema);
- sqlite3_free(pBt->pTmpSpace);
+ freeTempSpace(pBt);
sqlite3_free(pBt);
}
assert( (pageSize & 7)==0 );
assert( !pBt->pPage1 && !pBt->pCursor );
pBt->pageSize = pageSize;
- sqlite3_free(pBt->pTmpSpace);
- pBt->pTmpSpace = 0;
+ freeTempSpace(pBt);
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
}
pBt->usableSize = pBt->pageSize - nReserve;
/* Do some checking to help insure the file we opened really is
** a valid database file.
*/
- rc = SQLITE_NOTADB;
- nPage = sqlite3PagerPagecount(pBt->pPager);
- if( nPage<0 ){
- rc = SQLITE_IOERR;
+ rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
+ if( rc!=SQLITE_OK ){
goto page1_init_failed;
}else if( nPage>0 ){
int pageSize;
int usableSize;
u8 *page1 = pPage1->aData;
+ rc = SQLITE_NOTADB;
if( memcmp(page1, zMagicHeader, 16)!=0 ){
goto page1_init_failed;
}
if( page1[19]>1 ){
goto page1_init_failed;
}
+
+ /* The maximum embedded fraction must be exactly 25%. And the minimum
+ ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
+ ** The original design allowed these amounts to vary, but as of
+ ** version 3.6.0, we require them to be fixed.
+ */
+ if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
+ goto page1_init_failed;
+ }
pageSize = get2byte(&page1[16]);
if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
(SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
releasePage(pPage1);
pBt->usableSize = usableSize;
pBt->pageSize = pageSize;
- sqlite3_free(pBt->pTmpSpace);
- pBt->pTmpSpace = 0;
+ freeTempSpace(pBt);
sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
return SQLITE_OK;
}
}
pBt->pageSize = pageSize;
pBt->usableSize = usableSize;
- pBt->maxEmbedFrac = page1[21];
- pBt->minEmbedFrac = page1[22];
- pBt->minLeafFrac = page1[23];
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
** page pointer.
*/
- pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
- pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
+ pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
+ pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
pBt->maxLeaf = pBt->usableSize - 35;
- pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
- if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
- goto page1_init_failed;
- }
+ pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
pBt->pPage1 = pPage1;
return SQLITE_OK;
MemPage *pP1;
unsigned char *data;
int rc;
+ int nPage;
assert( sqlite3_mutex_held(pBt->mutex) );
- if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK;
+ rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
+ if( rc!=SQLITE_OK || nPage>0 ){
+ return rc;
+ }
pP1 = pBt->pPage1;
assert( pP1!=0 );
data = pP1->aData;
data[18] = 1;
data[19] = 1;
data[20] = pBt->pageSize - pBt->usableSize;
- data[21] = pBt->maxEmbedFrac;
- data[22] = pBt->minEmbedFrac;
- data[23] = pBt->minLeafFrac;
+ data[21] = 64;
+ data[22] = 32;
+ data[23] = 32;
memset(&data[24], 0, 100-24);
zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
pBt->pageSizeFixed = 1;
return rc;
}
+/*
+** Return the size of the database file in pages. Or return -1 if
+** there is any kind of error.
+*/
+static int pagerPagecount(Pager *pPager){
+ int rc;
+ int nPage;
+ rc = sqlite3PagerPagecount(pPager, &nPage);
+ return (rc==SQLITE_OK?nPage:-1);
+}
+
+
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
if( !pPage->leaf ){
Pgno childPgno = get4byte(pCell);
rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
- if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
+ if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
}
}
MemPage *pDbPage, /* Open page to move */
u8 eType, /* Pointer map 'type' entry for pDbPage */
Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
- Pgno iFreePage /* The location to move pDbPage to */
+ Pgno iFreePage, /* The location to move pDbPage to */
+ int isCommit
){
MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
Pgno iDbPage = pDbPage->pgno;
/* Move page iDbPage from its current location to page number iFreePage */
TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
iDbPage, iFreePage, iPtrPage, eType));
- rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
+ rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
if( rc!=SQLITE_OK ){
return rc;
}
assert( sqlite3_mutex_held(pBt->mutex) );
iLastPg = pBt->nTrunc;
if( iLastPg==0 ){
- iLastPg = sqlite3PagerPagecount(pBt->pPager);
+ iLastPg = pagerPagecount(pBt->pPager);
}
if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
rc = sqlite3PagerWrite(pLastPg->pDbPage);
if( rc==SQLITE_OK ){
- rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg);
+ rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
}
releasePage(pLastPg);
if( rc!=SQLITE_OK ){
Pgno nFree;
Pgno nPtrmap;
const int pgsz = pBt->pageSize;
- Pgno nOrig = sqlite3PagerPagecount(pBt->pPager);
+ int nOrig = pagerPagecount(pBt->pPager);
if( PTRMAP_ISPAGE(pBt, nOrig) ){
return SQLITE_CORRUPT_BKPT;
pBt->db = p->db;
if( pBt->inStmt && !pBt->readOnly ){
rc = sqlite3PagerStmtRollback(pBt->pPager);
- assert( countWriteCursors(pBt)==0 );
pBt->inStmt = 0;
}
sqlite3BtreeLeave(p);
if( pBt->readOnly ){
return SQLITE_READONLY;
}
- if( checkReadLocks(p, iTable, 0) ){
+ if( checkReadLocks(p, iTable, 0, 0) ){
return SQLITE_LOCKED;
}
}
}
}
pCur->pgnoRoot = (Pgno)iTable;
- if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){
+ if( iTable==1 && pagerPagecount(pBt->pPager)==0 ){
rc = SQLITE_EMPTY;
goto create_cursor_exception;
}
return SQLITE_OK;
create_cursor_exception:
- if( pCur ){
- releasePage(pCur->pPage);
- }
+ releasePage(pCur->pPage);
unlockBtreeIfUnused(pBt);
return rc;
}
int rc;
assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
+ rc = restoreCursorPosition(pCur);
if( rc==SQLITE_OK ){
assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
if( pCur->eState==CURSOR_INVALID ){
int rc;
assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
+ rc = restoreCursorPosition(pCur);
if( rc==SQLITE_OK ){
assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
if( pCur->eState==CURSOR_INVALID ){
iGuess++;
}
- if( iGuess<=sqlite3PagerPagecount(pBt->pPager) ){
+ if( iGuess<=pagerPagecount(pBt->pPager) ){
rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
if( rc!=SQLITE_OK ){
return rc;
int rc;
assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
+ rc = restoreCursorPosition(pCur);
if( rc==SQLITE_OK ){
assert( pCur->eState==CURSOR_VALID );
assert( pCur->pPage!=0 );
SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
int rc;
+#ifndef SQLITE_OMIT_INCRBLOB
+ if ( pCur->eState==CURSOR_INVALID ){
+ return SQLITE_ABORT;
+ }
+#endif
+
assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
+ rc = restoreCursorPosition(pCur);
if( rc==SQLITE_OK ){
assert( pCur->eState==CURSOR_VALID );
assert( pCur->pPage!=0 );
if( available>=nCellKey ){
c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pUnKey);
}else{
- pCellKey = sqlite3_malloc( nCellKey );
+ pCellKey = sqlite3Malloc( nCellKey );
if( pCellKey==0 ){
rc = SQLITE_NOMEM;
goto moveto_finish;
}
if( c==0 ){
pCur->info.nKey = nCellKey;
- if( pPage->leafData && !pPage->leaf ){
+ if( pPage->intKey && !pPage->leaf ){
lwr = pCur->idx;
upr = lwr - 1;
break;
MemPage *pPage;
assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
+ rc = restoreCursorPosition(pCur);
if( rc!=SQLITE_OK ){
return rc;
}
pPage = pCur->pPage;
}while( pCur->idx>=pPage->nCell );
*pRes = 0;
- if( pPage->leafData ){
+ if( pPage->intKey ){
rc = sqlite3BtreeNext(pCur, pRes);
}else{
rc = SQLITE_OK;
MemPage *pPage;
assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
+ rc = restoreCursorPosition(pCur);
if( rc!=SQLITE_OK ){
return rc;
}
pCur->idx--;
pCur->info.nSize = 0;
pCur->validNKey = 0;
- if( pPage->leafData && !pPage->leaf ){
+ if( pPage->intKey && !pPage->leaf ){
rc = sqlite3BtreePrevious(pCur, pRes);
}else{
rc = SQLITE_OK;
** the entire-list will be searched for that page.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
- if( exact && nearby<=sqlite3PagerPagecount(pBt->pPager) ){
+ if( exact && nearby<=pagerPagecount(pBt->pPager) ){
u8 eType;
assert( nearby>0 );
assert( pBt->autoVacuum );
*ppPage = pTrunk;
pTrunk = 0;
TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
- }else if( k>pBt->usableSize/4 - 8 ){
+ }else if( k>pBt->usableSize/4 - 2 ){
/* Value of k is out of range. Database corruption */
rc = SQLITE_CORRUPT_BKPT;
goto end_allocate_page;
iPage = get4byte(&aData[8+closest*4]);
if( !searchList || iPage==nearby ){
+ int nPage;
*pPgno = iPage;
- if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){
+ nPage = pagerPagecount(pBt->pPager);
+ if( *pPgno>nPage ){
/* Free page off the end of the file */
rc = SQLITE_CORRUPT_BKPT;
goto end_allocate_page;
}else{
/* There are no pages on the freelist, so create a new page at the
** end of the file */
- *pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;
+ int nPage = pagerPagecount(pBt->pPager);
+ *pPgno = nPage + 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->nTrunc ){
memset(pPage->aData, 0, pPage->pBt->pageSize);
#endif
-#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the database supports auto-vacuum, write an entry in the pointer-map
** to indicate that the page is free.
*/
- if( pBt->autoVacuum ){
+ if( ISAUTOVACUUM ){
rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
if( rc ) return rc;
}
-#endif
if( n==0 ){
/* This is the first free page */
k = get4byte(&pTrunk->aData[4]);
if( k>=pBt->usableSize/4 - 8 ){
/* The trunk is full. Turn the page being freed into a new
- ** trunk page with no leaves. */
+ ** trunk page with no leaves.
+ **
+ ** Note that the trunk page is not really full until it contains
+ ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
+ ** coded. But due to a coding error in versions of SQLite prior to
+ ** 3.6.0, databases with freelist trunk pages holding more than
+ ** usableSize/4 - 8 entries will be reported as corrupt. In order
+ ** to maintain backwards compatibility with older versions of SQLite,
+ ** we will contain to restrict the number of entries to usableSize/4 - 8
+ ** for now. At some point in the future (once everyone has upgraded
+ ** to 3.6.0 or later) we should consider fixing the conditional above
+ ** to read "usableSize/4-2" instead of "usableSize/4-8".
+ */
rc = sqlite3PagerWrite(pPage->pDbPage);
if( rc==SQLITE_OK ){
put4byte(pPage->aData, pTrunk->pgno);
assert( ovflPgno==0 || nOvfl>0 );
while( nOvfl-- ){
MemPage *pOvfl;
- if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){
+ if( ovflPgno==0 || ovflPgno>pagerPagecount(pBt->pPager) ){
return SQLITE_CORRUPT_BKPT;
}
return SQLITE_OK;
}
+
/*
** Change the MemPage.pParent pointer on the page whose number is
** given in the second argument so that MemPage.pParent holds the
** pointer in the third argument.
+**
+** If the final argument, updatePtrmap, is non-zero and the database
+** is an auto-vacuum database, then the pointer-map entry for pgno
+** is updated.
*/
-static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
+static int reparentPage(
+ BtShared *pBt, /* B-Tree structure */
+ Pgno pgno, /* Page number of child being adopted */
+ MemPage *pNewParent, /* New parent of pgno */
+ int idx, /* Index of child page pgno in pNewParent */
+ int updatePtrmap /* If true, update pointer-map for pgno */
+){
MemPage *pThis;
DbPage *pDbPage;
sqlite3PagerUnref(pDbPage);
}
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
+ if( ISAUTOVACUUM && updatePtrmap ){
return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
}
+
+#ifndef NDEBUG
+ /* If the updatePtrmap flag was clear, assert that the entry in the
+ ** pointer-map is already correct.
+ */
+ if( ISAUTOVACUUM ){
+ pDbPage = sqlite3PagerLookup(pBt->pPager,PTRMAP_PAGENO(pBt,pgno));
+ if( pDbPage ){
+ u8 eType;
+ Pgno ii;
+ int rc = ptrmapGet(pBt, pgno, &eType, &ii);
+ assert( rc==SQLITE_OK && ii==pNewParent->pgno && eType==PTRMAP_BTREE );
+ sqlite3PagerUnref(pDbPage);
+ }
+ }
#endif
+
return SQLITE_OK;
}
**
** This routine gets called after you memcpy() one page into
** another.
+**
+** If updatePtrmap is true, then the pointer-map entries for all child
+** pages of pPage are updated.
*/
-static int reparentChildPages(MemPage *pPage){
- int i;
- BtShared *pBt = pPage->pBt;
+static int reparentChildPages(MemPage *pPage, int updatePtrmap){
int rc = SQLITE_OK;
-
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( pPage->leaf ) return SQLITE_OK;
+ if( !pPage->leaf ){
+ int i;
+ BtShared *pBt = pPage->pBt;
+ Pgno iRight = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- for(i=0; i<pPage->nCell; i++){
- u8 *pCell = findCell(pPage, i);
- rc = reparentPage(pBt, get4byte(pCell), pPage, i);
- if( rc!=SQLITE_OK ) return rc;
+ for(i=0; i<pPage->nCell; i++){
+ u8 *pCell = findCell(pPage, i);
+ rc = reparentPage(pBt, get4byte(pCell), pPage, i, updatePtrmap);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ rc = reparentPage(pBt, iRight, pPage, i, updatePtrmap);
+ pPage->idxShift = 0;
}
- rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
- pPage, i);
- pPage->idxShift = 0;
return rc;
}
end = cellOffset + 2*pPage->nCell + 2;
ins = cellOffset + 2*i;
if( end > top - sz ){
- rc = defragmentPage(pPage);
- if( rc!=SQLITE_OK ) return rc;
+ defragmentPage(pPage);
top = get2byte(&data[hdr+5]);
assert( end + sz <= top );
}
/* pPage is currently the right-child of pParent. Change this
** so that the right-child is the new page allocated above and
** pPage is the next-to-right child.
+ **
+ ** Ignore the return value of the call to fillInCell(). fillInCell()
+ ** may only return other than SQLITE_OK if it is required to allocate
+ ** one or more overflow pages. Since an internal table B-Tree cell
+ ** may never spill over onto an overflow page (it is a maximum of
+ ** 13 bytes in size), it is not neccessary to check the return code.
+ **
+ ** Similarly, the insertCell() function cannot fail if the page
+ ** being inserted into is already writable and the cell does not
+ ** contain an overflow pointer. So ignore this return code too.
*/
assert( pPage->nCell>0 );
pCell = findCell(pPage, pPage->nCell-1);
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
- if( rc!=SQLITE_OK ){
- return rc;
- }
+ fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
assert( parentSize<64 );
- rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
- if( rc!=SQLITE_OK ){
- return rc;
- }
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+ insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
-#ifndef SQLITE_OMIT_AUTOVACUUM
/* If this is an auto-vacuum database, update the pointer map
** with entries for the new page, and any pointer from the
** cell on the page to an overflow page.
*/
- if( pBt->autoVacuum ){
+ if( ISAUTOVACUUM ){
rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
if( rc==SQLITE_OK ){
rc = ptrmapPutOvfl(pNew, 0);
return rc;
}
}
-#endif
/* Release the reference to the new page and balance the parent page,
** in case the divider cell inserted caused it to become overfull.
int usableSpace; /* Bytes in pPage beyond the header */
int pageFlags; /* Value of pPage->aData[0] */
int subtotal; /* Subtotal of bytes in cells on one page */
- int iSpace = 0; /* First unused byte of aSpace[] */
+ int iSpace1 = 0; /* First unused byte of aSpace1[] */
+ int iSpace2 = 0; /* First unused byte of aSpace2[] */
+ int szScratch; /* Size of scratch memory requested */
MemPage *apOld[NB]; /* pPage and up to two siblings */
Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
int szNew[NB+2]; /* Combined size of cells place on i-th page */
u8 **apCell = 0; /* All cells begin balanced */
u16 *szCell; /* Local size of all cells in apCell[] */
- u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
- u8 *aSpace; /* Space to hold copies of dividers cells */
-#ifndef SQLITE_OMIT_AUTOVACUUM
+ u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
+ u8 *aSpace1; /* Space for copies of dividers cells before balance */
+ u8 *aSpace2 = 0; /* Space for overflow dividers cells after balance */
u8 *aFrom = 0;
-#endif
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
return rc;
}
+
TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
#ifndef SQLITE_OMIT_QUICKBALANCE
*/
if( pPage->leaf &&
pPage->intKey &&
- pPage->leafData &&
pPage->nOverflow==1 &&
pPage->aOvfl[0].idx==pPage->nCell &&
pPage->pParent->pgno!=1 &&
get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
){
+ assert( pPage->intKey );
/*
** TODO: Check the siblings to the left of pPage. It may be that
** they are not full and no new page is required.
/*
** Allocate space for memory structures
*/
- apCell = sqlite3_malloc(
+ szScratch =
nMaxCells*sizeof(u8*) /* apCell */
+ nMaxCells*sizeof(u16) /* szCell */
+ (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB /* aCopy */
- + pBt->pageSize*5 /* aSpace */
- + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
- );
+ + pBt->pageSize /* aSpace1 */
+ + (ISAUTOVACUUM ? nMaxCells : 0); /* aFrom */
+ apCell = sqlite3ScratchMalloc( szScratch );
if( apCell==0 ){
rc = SQLITE_NOMEM;
goto balance_cleanup;
aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
}
- aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
- assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- aFrom = &aSpace[5*pBt->pageSize];
+ aSpace1 = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
+ assert( ((aSpace1 - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
+ if( ISAUTOVACUUM ){
+ aFrom = &aSpace1[pBt->pageSize];
+ }
+ aSpace2 = sqlite3PageMalloc(pBt->pageSize);
+ if( aSpace2==0 ){
+ rc = SQLITE_NOMEM;
+ goto balance_cleanup;
}
-#endif
/*
** Make copies of the content of pPage and its siblings into aOld[].
/*
** Load pointers to all cells on sibling pages and the divider cells
** into the local apCell[] array. Make copies of the divider cells
- ** into space obtained form aSpace[] and remove the the divider Cells
+ ** into space obtained form aSpace1[] and remove the the divider Cells
** from pParent.
**
** If the siblings are on leaf pages, then the child pointers of the
** divider cells are stripped from the cells before they are copied
- ** into aSpace[]. In this way, all cells in apCell[] are without
+ ** into aSpace1[]. In this way, all cells in apCell[] are without
** child pointers. If siblings are not leaves, then all cell in
** apCell[] include child pointers. Either way, all cells in apCell[]
** are alike.
*/
nCell = 0;
leafCorrection = pPage->leaf*4;
- leafData = pPage->leafData && pPage->leaf;
+ leafData = pPage->hasData;
for(i=0; i<nOld; i++){
MemPage *pOld = apCopy[i];
int limit = pOld->nCell+pOld->nOverflow;
assert( nCell<nMaxCells );
apCell[nCell] = findOverflowCell(pOld, j);
szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
+ if( ISAUTOVACUUM ){
int a;
aFrom[nCell] = i;
for(a=0; a<pOld->nOverflow; a++){
}
}
}
-#endif
nCell++;
}
if( i<nOld-1 ){
u8 *pTemp;
assert( nCell<nMaxCells );
szCell[nCell] = sz;
- pTemp = &aSpace[iSpace];
- iSpace += sz;
- assert( iSpace<=pBt->pageSize*5 );
+ pTemp = &aSpace1[iSpace1];
+ iSpace1 += sz;
+ assert( sz<=pBt->pageSize/4 );
+ assert( iSpace1<=pBt->pageSize );
memcpy(pTemp, apDiv[i], sz);
apCell[nCell] = pTemp+leafCorrection;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
+ if( ISAUTOVACUUM ){
aFrom[nCell] = 0xFF;
}
-#endif
dropCell(pParent, nxDiv, sz);
szCell[nCell] -= leafCorrection;
assert( get4byte(pTemp)==pgnoOld[i] );
apNew[i] = pNew;
nNew++;
}
- zeroPage(pNew, pageFlags);
}
/* Free any old pages that were not reused as new pages.
MemPage *pNew = apNew[i];
assert( j<nMaxCells );
assert( pNew->pgno==pgnoNew[i] );
+ zeroPage(pNew, pageFlags);
assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
assert( pNew->nOverflow==0 );
-#ifndef SQLITE_OMIT_AUTOVACUUM
/* If this is an auto-vacuum database, update the pointer map entries
** that point to the siblings that were rearranged. These can be: left
** children of cells, the right-child of the page, or overflow pages
** pointed to by cells.
*/
- if( pBt->autoVacuum ){
+ if( ISAUTOVACUUM ){
for(k=j; k<cntNew[i]; k++){
assert( k<nMaxCells );
if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
rc = ptrmapPutOvfl(pNew, k-j);
+ if( rc==SQLITE_OK && leafCorrection==0 ){
+ rc = ptrmapPut(pBt, get4byte(apCell[k]), PTRMAP_BTREE, pNew->pgno);
+ }
if( rc!=SQLITE_OK ){
goto balance_cleanup;
}
}
}
}
-#endif
j = cntNew[i];
assert( j<nMaxCells );
pCell = apCell[j];
sz = szCell[j] + leafCorrection;
+ pTemp = &aSpace2[iSpace2];
if( !pNew->leaf ){
memcpy(&pNew->aData[8], pCell, 4);
- pTemp = 0;
+ if( ISAUTOVACUUM
+ && (aFrom[j]==0xFF || apCopy[aFrom[j]]->pgno!=pNew->pgno)
+ ){
+ rc = ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno);
+ if( rc!=SQLITE_OK ){
+ goto balance_cleanup;
+ }
+ }
}else if( leafData ){
/* If the tree is a leaf-data tree, and the siblings are leaves,
** then there is no divider cell in apCell[]. Instead, the divider
CellInfo info;
j--;
sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
- pCell = &aSpace[iSpace];
+ pCell = pTemp;
fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
- iSpace += sz;
- assert( iSpace<=pBt->pageSize*5 );
pTemp = 0;
}else{
pCell -= 4;
- pTemp = &aSpace[iSpace];
- iSpace += sz;
- assert( iSpace<=pBt->pageSize*5 );
/* Obscure case for non-leaf-data trees: If the cell at pCell was
** previously stored on a leaf node, and its reported size was 4
** bytes, then it may actually be smaller than this
sz = cellSizePtr(pParent, pCell);
}
}
+ iSpace2 += sz;
+ assert( sz<=pBt->pageSize/4 );
+ assert( iSpace2<=pBt->pageSize );
rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
if( rc!=SQLITE_OK ) goto balance_cleanup;
put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
-#ifndef SQLITE_OMIT_AUTOVACUUM
+
/* If this is an auto-vacuum database, and not a leaf-data tree,
** then update the pointer map with an entry for the overflow page
** that the cell just inserted points to (if any).
*/
- if( pBt->autoVacuum && !leafData ){
+ if( ISAUTOVACUUM && !leafData ){
rc = ptrmapPutOvfl(pParent, nxDiv);
if( rc!=SQLITE_OK ){
goto balance_cleanup;
}
}
-#endif
j++;
nxDiv++;
}
+
+ /* Set the pointer-map entry for the new sibling page. */
+ if( ISAUTOVACUUM ){
+ rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
+ if( rc!=SQLITE_OK ){
+ goto balance_cleanup;
+ }
+ }
}
assert( j==nCell );
assert( nOld>0 );
assert( nNew>0 );
if( (pageFlags & PTF_LEAF)==0 ){
- memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
+ u8 *zChild = &apCopy[nOld-1]->aData[8];
+ memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
+ if( ISAUTOVACUUM ){
+ rc = ptrmapPut(pBt, get4byte(zChild), PTRMAP_BTREE, apNew[nNew-1]->pgno);
+ if( rc!=SQLITE_OK ){
+ goto balance_cleanup;
+ }
+ }
}
if( nxDiv==pParent->nCell+pParent->nOverflow ){
/* Right-most sibling is the right-most child of pParent */
** Reparent children of all cells.
*/
for(i=0; i<nNew; i++){
- rc = reparentChildPages(apNew[i]);
+ rc = reparentChildPages(apNew[i], 0);
if( rc!=SQLITE_OK ) goto balance_cleanup;
}
- rc = reparentChildPages(pParent);
+ rc = reparentChildPages(pParent, 0);
if( rc!=SQLITE_OK ) goto balance_cleanup;
/*
** But the parent page will always be initialized.
*/
assert( pParent->isInit );
+ sqlite3ScratchFree(apCell);
+ apCell = 0;
rc = balance(pParent, 0);
/*
** Cleanup before returning.
*/
balance_cleanup:
- sqlite3_free(apCell);
+ sqlite3PageFree(aSpace2);
+ sqlite3ScratchFree(apCell);
for(i=0; i<nOld; i++){
releasePage(apOld[i]);
}
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
pBt = pPage->pBt;
mxCellPerPage = MX_CELL(pBt);
- apCell = sqlite3_malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
+ apCell = sqlite3Malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
if( apCell==0 ) return SQLITE_NOMEM;
szCell = (u16*)&apCell[mxCellPerPage];
if( pPage->leaf ){
*/
pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
assert( pgnoChild>0 );
- assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) );
+ assert( pgnoChild<=pagerPagecount(pPage->pBt->pPager) );
rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
if( rc ) goto end_shallow_balance;
if( pPage->pgno==1 ){
TRACE(("BALANCE: transfer child %d into root %d\n",
pChild->pgno, pPage->pgno));
}
- rc = reparentChildPages(pPage);
+ rc = reparentChildPages(pPage, 1);
assert( pPage->nOverflow==0 );
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
+ if( ISAUTOVACUUM ){
int i;
for(i=0; i<pPage->nCell; i++){
rc = ptrmapPutOvfl(pPage, i);
}
}
}
-#endif
releasePage(pChild);
}
end_shallow_balance:
cdata = pChild->aData;
memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
memcpy(&cdata[brk], &data[brk], usableSize-brk);
- assert( pChild->isInit==0 );
+ if( pChild->isInit ) return SQLITE_CORRUPT;
rc = sqlite3BtreeInitPage(pChild, pPage);
if( rc ) goto balancedeeper_out;
memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
+ if( ISAUTOVACUUM ){
int i;
rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
if( rc ) goto balancedeeper_out;
for(i=0; i<pChild->nCell; i++){
rc = ptrmapPutOvfl(pChild, i);
if( rc!=SQLITE_OK ){
- return rc;
+ goto balancedeeper_out;
}
}
+ rc = reparentChildPages(pChild, 1);
+ }
+ if( rc==SQLITE_OK ){
+ rc = balance_nonroot(pChild);
}
-#endif
- rc = balance_nonroot(pChild);
balancedeeper_out:
releasePage(pChild);
** is not in the ReadUncommmitted state, then this routine returns
** SQLITE_LOCKED.
**
-** In addition to checking for read-locks (where a read-lock
-** means a cursor opened with wrFlag==0) this routine also moves
-** all write cursors so that they are pointing to the
-** first Cell on the root page. This is necessary because an insert
-** or delete might change the number of cells on a page or delete
-** a page entirely and we do not want to leave any cursors
-** pointing to non-existant pages or cells.
-*/
-static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
+** As well as cursors with wrFlag==0, cursors with wrFlag==1 and
+** isIncrblobHandle==1 are also considered 'read' cursors. Incremental
+** blob cursors are used for both reading and writing.
+**
+** When pgnoRoot is the root page of an intkey table, this function is also
+** responsible for invalidating incremental blob cursors when the table row
+** on which they are opened is deleted or modified. Cursors are invalidated
+** according to the following rules:
+**
+** 1) When BtreeClearTable() is called to completely delete the contents
+** of a B-Tree table, pExclude is set to zero and parameter iRow is
+** set to non-zero. In this case all incremental blob cursors open
+** on the table rooted at pgnoRoot are invalidated.
+**
+** 2) When BtreeInsert(), BtreeDelete() or BtreePutData() is called to
+** modify a table row via an SQL statement, pExclude is set to the
+** write cursor used to do the modification and parameter iRow is set
+** to the integer row id of the B-Tree entry being modified. Unless
+** pExclude is itself an incremental blob cursor, then all incremental
+** blob cursors open on row iRow of the B-Tree are invalidated.
+**
+** 3) If both pExclude and iRow are set to zero, no incremental blob
+** cursors are invalidated.
+*/
+static int checkReadLocks(
+ Btree *pBtree,
+ Pgno pgnoRoot,
+ BtCursor *pExclude,
+ i64 iRow
+){
BtCursor *p;
BtShared *pBt = pBtree->pBt;
sqlite3 *db = pBtree->db;
assert( sqlite3BtreeHoldsMutex(pBtree) );
for(p=pBt->pCursor; p; p=p->pNext){
if( p==pExclude ) continue;
- if( p->eState!=CURSOR_VALID ) continue;
if( p->pgnoRoot!=pgnoRoot ) continue;
- if( p->wrFlag==0 ){
+#ifndef SQLITE_OMIT_INCRBLOB
+ if( p->isIncrblobHandle && (
+ (!pExclude && iRow)
+ || (pExclude && !pExclude->isIncrblobHandle && p->info.nKey==iRow)
+ )){
+ p->eState = CURSOR_INVALID;
+ }
+#endif
+ if( p->eState!=CURSOR_VALID ) continue;
+ if( p->wrFlag==0
+#ifndef SQLITE_OMIT_INCRBLOB
+ || p->isIncrblobHandle
+#endif
+ ){
sqlite3 *dbOther = p->pBtree->db;
if( dbOther==0 ||
(dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
return SQLITE_LOCKED;
}
- }else if( p->pPage->pgno!=p->pgnoRoot ){
- moveToRoot(p);
}
}
return SQLITE_OK;
}
/*
-** Make sure pBt->pTmpSpace points to an allocation of
-** MX_CELL_SIZE(pBt) bytes.
-*/
-static void allocateTempSpace(BtShared *pBt){
- if( !pBt->pTmpSpace ){
- pBt->pTmpSpace = sqlite3_malloc(MX_CELL_SIZE(pBt));
- }
-}
-
-/*
** Insert a new record into the BTree. The key is given by (pKey,nKey)
** and the data is given by (pData,nData). The cursor is used only to
** define what table the record should be inserted into. The cursor
if( !pCur->wrFlag ){
return SQLITE_PERM; /* Cursor not open for writing */
}
- if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
+ if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, nKey) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
if( pCur->eState==CURSOR_FAULT ){
pPage = pCur->pPage;
assert( pPage->intKey || nKey>=0 );
- assert( pPage->leaf || !pPage->leafData );
+ assert( pPage->leaf || !pPage->intKey );
TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
pCur->pgnoRoot, nKey, nData, pPage->pgno,
loc==0 ? "overwrite" : "new entry"));
rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
if( rc!=SQLITE_OK ) goto end_insert;
rc = balance(pPage, 1);
- /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
- /* fflush(stdout); */
if( rc==SQLITE_OK ){
moveToRoot(pCur);
}
if( !pCur->wrFlag ){
return SQLITE_PERM; /* Did not open this cursor for writing */
}
- if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
+ if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, pCur->info.nKey) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
** that the entry will be deleted from.
*/
if(
- (rc = restoreOrClearCursorPosition(pCur))!=0 ||
+ (rc = restoreCursorPosition(pCur))!=0 ||
(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
(rc = sqlite3PagerWrite(pPage->pDbPage))!=0
){
unsigned char *pNext;
int notUsed;
unsigned char *tempCell = 0;
- assert( !pPage->leafData );
+ assert( !pPage->intKey );
sqlite3BtreeGetTempCursor(pCur, &leafCur);
rc = sqlite3BtreeNext(&leafCur, ¬Used);
if( rc==SQLITE_OK ){
releasePage(pRoot);
return rc;
}
- rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
+ rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
releasePage(pRoot);
/* Obtain the page at pgnoRoot */
int i;
assert( sqlite3_mutex_held(pBt->mutex) );
- if( pgno>sqlite3PagerPagecount(pBt->pPager) ){
+ if( pgno>pagerPagecount(pBt->pPager) ){
return SQLITE_CORRUPT_BKPT;
}
pBt->db = p->db;
if( p->inTrans!=TRANS_WRITE ){
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }else if( (rc = checkReadLocks(p, iTable, 0))!=SQLITE_OK ){
+ }else if( (rc = checkReadLocks(p, iTable, 0, 1))!=SQLITE_OK ){
/* nothing to do */
}else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
/* nothing to do */
if( rc!=SQLITE_OK ){
return rc;
}
- rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
+ rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
releasePage(pMove);
if( rc!=SQLITE_OK ){
return rc;
*/
SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor *pCur){
/* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
- ** restoreOrClearCursorPosition() here.
+ ** restoreCursorPosition() here.
*/
MemPage *pPage;
- restoreOrClearCursorPosition(pCur);
+ restoreCursorPosition(pCur);
pPage = pCur->pPage;
assert( cursorHoldsMutex(pCur) );
assert( pPage->pBt==pCur->pBt );
...
){
va_list ap;
- char *zMsg2;
if( !pCheck->mxErr ) return;
pCheck->mxErr--;
pCheck->nErr++;
va_start(ap, zFormat);
- zMsg2 = sqlite3VMPrintf(0, zFormat, ap);
+ if( pCheck->errMsg.nChar ){
+ sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
+ }
+ if( zMsg1 ){
+ sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
+ }
+ sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
va_end(ap);
- if( zMsg1==0 ) zMsg1 = "";
- if( pCheck->zErrMsg ){
- char *zOld = pCheck->zErrMsg;
- pCheck->zErrMsg = 0;
- sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
- sqlite3_free(zOld);
- }else{
- sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
+ if( pCheck->errMsg.mallocFailed ){
+ pCheck->mallocFailed = 1;
}
- sqlite3_free(zMsg2);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
}
#endif
- if( n>pCheck->pBt->usableSize/4-8 ){
+ if( n>pCheck->pBt->usableSize/4-2 ){
checkAppendMsg(pCheck, zContext,
"freelist leaf count too big on page %d", iPage);
N--;
*/
data = pPage->aData;
hdr = pPage->hdrOffset;
- hit = sqlite3MallocZero( usableSize );
- if( hit ){
+ hit = sqlite3PageMalloc( pBt->pageSize );
+ if( hit==0 ){
+ pCheck->mallocFailed = 1;
+ }else{
+ memset(hit, 0, usableSize );
memset(hit, 1, get2byte(&data[hdr+5]));
nCell = get2byte(&data[hdr+3]);
cellStart = hdr + 12 - 4*pPage->leaf;
cnt, data[hdr+7], iPage);
}
}
- sqlite3_free(hit);
+ sqlite3PageFree(hit);
releasePage(pPage);
return depth+1;
** an array of pages numbers were each page number is the root page of
** a table. nRoot is the number of entries in aRoot.
**
-** If everything checks out, this routine returns NULL. If something is
-** amiss, an error message is written into memory obtained from malloc()
-** and a pointer to that error message is returned. The calling function
-** is responsible for freeing the error message when it is done.
+** Write the number of error seen in *pnErr. Except for some memory
+** allocation errors, nn error message is held in memory obtained from
+** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
+** returned.
*/
SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(
Btree *p, /* The btree to be checked */
int nRef;
IntegrityCk sCheck;
BtShared *pBt = p->pBt;
+ char zErr[100];
sqlite3BtreeEnter(p);
pBt->db = p->db;
nRef = sqlite3PagerRefcount(pBt->pPager);
if( lockBtreeWithRetry(p)!=SQLITE_OK ){
+ *pnErr = 1;
sqlite3BtreeLeave(p);
- return sqlite3StrDup("Unable to acquire a read lock on the database");
+ return sqlite3DbStrDup(0, "cannot acquire a read lock on the database");
}
sCheck.pBt = pBt;
sCheck.pPager = pBt->pPager;
- sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
+ sCheck.nPage = pagerPagecount(sCheck.pPager);
sCheck.mxErr = mxErr;
sCheck.nErr = 0;
+ sCheck.mallocFailed = 0;
*pnErr = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->nTrunc!=0 ){
sqlite3BtreeLeave(p);
return 0;
}
- sCheck.anRef = sqlite3_malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
+ sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
if( !sCheck.anRef ){
unlockBtreeIfUnused(pBt);
*pnErr = 1;
sqlite3BtreeLeave(p);
- return sqlite3MPrintf(p->db, "Unable to malloc %d bytes",
- (sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
+ return 0;
}
for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
i = PENDING_BYTE_PAGE(pBt);
if( i<=sCheck.nPage ){
sCheck.anRef[i] = 1;
}
- sCheck.zErrMsg = 0;
+ sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
/* Check the integrity of the freelist
*/
*/
sqlite3BtreeLeave(p);
sqlite3_free(sCheck.anRef);
+ if( sCheck.mallocFailed ){
+ sqlite3StrAccumReset(&sCheck.errMsg);
+ *pnErr = sCheck.nErr+1;
+ return 0;
+ }
*pnErr = sCheck.nErr;
- return sCheck.zErrMsg;
+ if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
+ return sqlite3StrAccumFinish(&sCheck.errMsg);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
return SQLITE_BUSY;
}
- nToPage = sqlite3PagerPagecount(pBtTo->pPager);
- nFromPage = sqlite3PagerPagecount(pBtFrom->pPager);
+ nToPage = pagerPagecount(pBtTo->pPager);
+ nFromPage = pagerPagecount(pBtFrom->pPager);
iSkip = PENDING_BYTE_PAGE(pBtTo);
/* Variable nNewPage is the number of pages required to store the
** call the nBytes parameter is ignored and a pointer to the same blob
** of memory returned.
**
+** If the nBytes parameter is 0 and the blob of memory has not yet been
+** allocated, a null pointer is returned. If the blob has already been
+** allocated, it is returned as normal.
+**
** Just before the shared-btree is closed, the function passed as the
** xFree argument when the memory allocation was made is invoked on the
** blob of allocated memory. This function should not call sqlite3_free()
SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
- if( !pBt->pSchema ){
+ if( !pBt->pSchema && nBytes ){
pBt->pSchema = sqlite3MallocZero(nBytes);
pBt->xFreeSchema = xFree;
}
assert( cursorHoldsMutex(pCsr) );
assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
assert(pCsr->isIncrblobHandle);
- if( pCsr->eState>=CURSOR_REQUIRESEEK ){
- if( pCsr->eState==CURSOR_FAULT ){
- return pCsr->skip;
- }else{
- return SQLITE_ABORT;
- }
+
+ restoreCursorPosition(pCsr);
+ assert( pCsr->eState!=CURSOR_REQUIRESEEK );
+ if( pCsr->eState!=CURSOR_VALID ){
+ return SQLITE_ABORT;
}
/* Check some preconditions:
}
assert( !pCsr->pBt->readOnly
&& pCsr->pBt->inTransaction==TRANS_WRITE );
- if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){
+ if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr, 0) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
*************************************************************************
** This file implements a FIFO queue of rowids used for processing
** UPDATE and DELETE statements.
+**
+** $Id: vdbefifo.c,v 1.8 2008/07/28 19:34:54 drh Exp $
*/
/*
** Allocate a new FifoPage and return a pointer to it. Return NULL if
** we run out of memory. Leave space on the page for nEntry entries.
*/
-static FifoPage *allocateFifoPage(int nEntry){
+static FifoPage *allocateFifoPage(sqlite3 *db, int nEntry){
FifoPage *pPage;
if( nEntry>FIFOSIZE_MAX ){
nEntry = FIFOSIZE_MAX;
}
- pPage = sqlite3_malloc( sizeof(FifoPage) + sizeof(i64)*(nEntry-1) );
+ pPage = sqlite3DbMallocRaw(db, sizeof(FifoPage) + sizeof(i64)*(nEntry-1) );
if( pPage ){
pPage->nSlot = nEntry;
pPage->iWrite = 0;
/*
** Initialize a Fifo structure.
*/
-SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo *pFifo){
+SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo *pFifo, sqlite3 *db){
memset(pFifo, 0, sizeof(*pFifo));
+ pFifo->db = db;
}
/*
FifoPage *pPage;
pPage = pFifo->pLast;
if( pPage==0 ){
- pPage = pFifo->pLast = pFifo->pFirst = allocateFifoPage(FIFOSIZE_FIRST);
+ pPage = pFifo->pLast = pFifo->pFirst =
+ allocateFifoPage(pFifo->db, FIFOSIZE_FIRST);
if( pPage==0 ){
return SQLITE_NOMEM;
}
}else if( pPage->iWrite>=pPage->nSlot ){
- pPage->pNext = allocateFifoPage(pFifo->nEntry);
+ pPage->pNext = allocateFifoPage(pFifo->db, pFifo->nEntry);
if( pPage->pNext==0 ){
return SQLITE_NOMEM;
}
pFifo->nEntry--;
if( pPage->iRead>=pPage->iWrite ){
pFifo->pFirst = pPage->pNext;
- sqlite3_free(pPage);
+ sqlite3DbFree(pFifo->db, pPage);
if( pFifo->nEntry==0 ){
assert( pFifo->pLast==pPage );
pFifo->pLast = 0;
FifoPage *pPage, *pNextPage;
for(pPage=pFifo->pFirst; pPage; pPage=pNextPage){
pNextPage = pPage->pNext;
- sqlite3_free(pPage);
+ sqlite3DbFree(pFifo->db, pPage);
}
- sqlite3VdbeFifoInit(pFifo);
+ sqlite3VdbeFifoInit(pFifo, pFifo->db);
}
/************** End of vdbefifo.c ********************************************/
** stores a single value in the VDBE. Mem is an opaque structure visible
** only within the VDBE. Interface routines refer to a Mem using the
** name sqlite_value
+**
+** $Id: vdbemem.c,v 1.121 2008/08/01 20:10:09 drh Exp $
*/
/*
((pMem->flags&MEM_Static) ? 1 : 0)
);
- if( !pMem->zMalloc || sqlite3MallocSize(pMem->zMalloc)<n ){
- n = (n>32?n:32);
+ if( n<32 ) n = 32;
+ if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
if( preserve && pMem->z==pMem->zMalloc ){
pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
if( !pMem->z ){
}
preserve = 0;
}else{
- sqlite3_free(pMem->zMalloc);
+ sqlite3DbFree(pMem->db, pMem->zMalloc);
pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
}
}
}
/*
-** Make the given Mem object MEM_Dyn.
+** Make the given Mem object MEM_Dyn. In other words, make it so
+** that any TEXT or BLOB content is stored in memory obtained from
+** malloc(). In this way, we know that the memory is safe to be
+** overwritten or altered.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
-SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem *pMem){
+SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){
int f;
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
expandBlob(pMem);
/*
-** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
-** of the Mem.z[] array can be modified.
-**
-** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){
- return sqlite3VdbeMemDynamicify(pMem);
-}
-
-/*
** Make sure the given Mem is \u0000 terminated.
*/
SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){
ctx.isError = 0;
pFunc->xFinalize(&ctx);
assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
- sqlite3_free(pMem->zMalloc);
+ sqlite3DbFree(pMem->db, pMem->zMalloc);
*pMem = ctx.s;
rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK);
}
*/
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){
sqlite3VdbeMemReleaseExternal(p);
- sqlite3_free(p->zMalloc);
+ sqlite3DbFree(p->db, p->zMalloc);
p->z = 0;
p->zMalloc = 0;
p->xDel = 0;
void (*xDel)(void*) /* Destructor function */
){
int nByte = n; /* New value for pMem->n */
+ int iLimit; /* Maximum allowed string or blob size */
int flags = 0; /* New value for pMem->flags */
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
return SQLITE_OK;
}
+ if( pMem->db ){
+ iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
+ }else{
+ iLimit = SQLITE_MAX_LENGTH;
+ }
flags = (enc==0?MEM_Blob:MEM_Str);
if( nByte<0 ){
assert( enc!=0 );
if( enc==SQLITE_UTF8 ){
- for(nByte=0; z[nByte]; nByte++){}
+ for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
}else{
- for(nByte=0; z[nByte] | z[nByte+1]; nByte+=2){}
+ for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
}
flags |= MEM_Term;
}
+ if( nByte>iLimit ){
+ return SQLITE_TOOBIG;
+ }
/* The following block sets the new values of Mem.z and Mem.xDel. It
** also sets a flag in local variable "flags" to indicate the memory
return SQLITE_NOMEM;
}
memcpy(pMem->z, z, nAlloc);
+ }else if( xDel==SQLITE_DYNAMIC ){
+ sqlite3VdbeMemRelease(pMem);
+ pMem->zMalloc = pMem->z = (char *)z;
+ pMem->xDel = 0;
}else{
sqlite3VdbeMemRelease(pMem);
pMem->z = (char *)z;
expandBlob(pVal);
if( pVal->flags&MEM_Str ){
sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
- if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){
+ if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
return 0;
op = pExpr->op;
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
- zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n);
+ zVal = sqlite3DbStrNDup(db, (char*)pExpr->token.z, pExpr->token.n);
pVal = sqlite3ValueNew(db);
if( !zVal || !pVal ) goto no_mem;
sqlite3Dequote(zVal);
- sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free);
+ sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
}else{
nVal = pExpr->token.n - 3;
zVal = (char*)pExpr->token.z + 2;
sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
- 0, sqlite3_free);
+ 0, SQLITE_DYNAMIC);
}
#endif
no_mem:
db->mallocFailed = 1;
- sqlite3_free(zVal);
+ sqlite3DbFree(db, zVal);
sqlite3ValueFree(pVal);
*ppVal = 0;
return SQLITE_NOMEM;
SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
if( !v ) return;
sqlite3VdbeMemRelease((Mem *)v);
- sqlite3_free(v);
+ sqlite3DbFree(((Mem*)v)->db, v);
}
/*
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
**
-** $Id: vdbeaux.c,v 1.383 2008/05/13 13:27:34 drh Exp $
+** $Id: vdbeaux.c,v 1.405 2008/08/02 03:50:39 drh Exp $
*/
for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
u8 opcode = pOp->opcode;
- if( opcode==OP_Function ){
+ if( opcode==OP_Function || opcode==OP_AggStep ){
if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
- }else if( opcode==OP_AggStep
#ifndef SQLITE_OMIT_VIRTUALTABLE
- || opcode==OP_VUpdate
-#endif
- ){
+ }else if( opcode==OP_VUpdate ){
if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
+#endif
}
if( opcode==OP_Halt ){
if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
pOp->p2 = aLabel[-1-pOp->p2];
}
}
- sqlite3_free(p->aLabel);
+ sqlite3DbFree(p->db, p->aLabel);
p->aLabel = 0;
*pMaxFuncArgs = nMaxArgs;
** If the input FuncDef structure is ephemeral, then free it. If
** the FuncDef is not ephermal, then do nothing.
*/
-static void freeEphemeralFunction(FuncDef *pDef){
+static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
- sqlite3_free(pDef);
+ sqlite3DbFree(db, pDef);
}
}
/*
** Delete a P4 value if necessary.
*/
-static void freeP4(int p4type, void *p3){
- if( p3 ){
+static void freeP4(sqlite3 *db, int p4type, void *p4){
+ if( p4 ){
switch( p4type ){
case P4_REAL:
case P4_INT64:
case P4_MPRINTF:
case P4_DYNAMIC:
case P4_KEYINFO:
+ case P4_INTARRAY:
case P4_KEYINFO_HANDOFF: {
- sqlite3_free(p3);
+ sqlite3DbFree(db, p4);
break;
}
case P4_VDBEFUNC: {
- VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
- freeEphemeralFunction(pVdbeFunc->pFunc);
+ VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
+ freeEphemeralFunction(db, pVdbeFunc->pFunc);
sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
- sqlite3_free(pVdbeFunc);
+ sqlite3DbFree(db, pVdbeFunc);
break;
}
case P4_FUNCDEF: {
- freeEphemeralFunction((FuncDef*)p3);
+ freeEphemeralFunction(db, (FuncDef*)p4);
break;
}
case P4_MEM: {
- sqlite3ValueFree((sqlite3_value*)p3);
+ sqlite3ValueFree((sqlite3_value*)p4);
break;
}
}
SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
if( p && p->aOp ){
VdbeOp *pOp = &p->aOp[addr];
+ sqlite3 *db = p->db;
while( N-- ){
- freeP4(pOp->p4type, pOp->p4.p);
+ freeP4(db, pOp->p4type, pOp->p4.p);
memset(pOp, 0, sizeof(pOp[0]));
pOp->opcode = OP_Noop;
pOp++;
*/
SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
Op *pOp;
+ sqlite3 *db;
assert( p!=0 );
+ db = p->db;
assert( p->magic==VDBE_MAGIC_INIT );
- if( p->aOp==0 || p->db->mallocFailed ){
+ if( p->aOp==0 || db->mallocFailed ){
if (n != P4_KEYINFO) {
- freeP4(n, (void*)*(char**)&zP4);
+ freeP4(db, n, (void*)*(char**)&zP4);
}
return;
}
if( addr<0 ) return;
}
pOp = &p->aOp[addr];
- freeP4(pOp->p4type, pOp->p4.p);
+ freeP4(db, pOp->p4type, pOp->p4.p);
pOp->p4.p = 0;
if( n==P4_INT32 ){
/* Note: this cast is safe, because the origin data point was an int
** that was cast to a (const char *). */
- pOp->p4.i = (int)zP4;
+ pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
pOp->p4type = n;
}else if( zP4==0 ){
pOp->p4.p = 0;
nField = ((KeyInfo*)zP4)->nField;
nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
- pKeyInfo = sqlite3_malloc( nByte );
+ pKeyInfo = sqlite3Malloc( nByte );
pOp->p4.pKeyInfo = pKeyInfo;
if( pKeyInfo ){
+ u8 *aSortOrder;
memcpy(pKeyInfo, zP4, nByte);
- /* In the current implementation, P4_KEYINFO is only ever used on
- ** KeyInfo structures that have no aSortOrder component. Elements
- ** with an aSortOrder always use P4_KEYINFO_HANDOFF. So we do not
- ** need to bother with duplicating the aSortOrder. */
- assert( pKeyInfo->aSortOrder==0 );
-#if 0
aSortOrder = pKeyInfo->aSortOrder;
if( aSortOrder ){
pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
}
-#endif
pOp->p4type = P4_KEYINFO;
}else{
p->db->mallocFailed = 1;
#ifndef NDEBUG
/*
-** Change the comment on the the most recently coded instruction.
+** Change the comment on the the most recently coded instruction. Or
+** insert a No-op and add the comment to that new instruction. This
+** makes the code easier to read during debugging. None of this happens
+** in a production build.
*/
SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
va_list ap;
if( p->nOp ){
char **pz = &p->aOp[p->nOp-1].zComment;
va_start(ap, zFormat);
- sqlite3_free(*pz);
+ sqlite3DbFree(p->db, *pz);
*pz = sqlite3VMPrintf(p->db, zFormat, ap);
va_end(ap);
}
}
-#endif
+SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ sqlite3VdbeAddOp0(p, OP_Noop);
+ assert( p->nOp>0 || p->aOp==0 );
+ assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
+ if( p->nOp ){
+ char **pz = &p->aOp[p->nOp-1].zComment;
+ va_start(ap, zFormat);
+ sqlite3DbFree(p->db, *pz);
+ *pz = sqlite3VMPrintf(p->db, zFormat, ap);
+ va_end(ap);
+ }
+}
+#endif /* NDEBUG */
/*
** Return the opcode for a given address.
char *zP4 = zTemp;
assert( nTemp>=20 );
switch( pOp->p4type ){
+ case P4_KEYINFO_STATIC:
case P4_KEYINFO: {
int i, j;
KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
break;
}
#endif
+ case P4_INTARRAY: {
+ sqlite3_snprintf(nTemp, zTemp, "intarray");
+ break;
+ }
default: {
zP4 = pOp->p4.z;
if( zP4==0 ){
/*
** Release an array of N Mem elements
*/
-static void releaseMemArray(Mem *p, int N, int freebuffers){
+static void releaseMemArray(Mem *p, int N){
if( p && N ){
sqlite3 *db = p->db;
int malloc_failed = db->mallocFailed;
while( N-->0 ){
assert( N<2 || p[0].db==p[1].db );
- if( freebuffers ){
- sqlite3VdbeMemRelease(p);
- }else{
- sqlite3VdbeMemReleaseExternal(p);
- }
+ sqlite3VdbeMemRelease(p);
p->flags = MEM_Null;
p++;
}
Mem *pMem = &p->aMem[ii];
if( pMem->z && pMem->flags&MEM_Dyn ){
assert( !pMem->xDel );
- nFree += sqlite3MallocSize(pMem->z);
+ nFree += sqlite3DbMallocSize(pMem->db, pMem->z);
sqlite3VdbeMemRelease(pMem);
}
}
** the result, result columns may become dynamic if the user calls
** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
*/
- releaseMemArray(pMem, p->nMem, 1);
+ releaseMemArray(pMem, p->nMem);
do{
i = p->pc++;
}else if( db->u1.isInterrupted ){
p->rc = SQLITE_INTERRUPT;
rc = SQLITE_ERROR;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
}else{
char *z;
Op *pOp = &p->aOp[i];
p->pc = -1;
p->rc = SQLITE_OK;
p->uniqueCnt = 0;
- p->returnDepth = 0;
p->errorAction = OE_Abort;
p->explain |= isExplain;
p->magic = VDBE_MAGIC_RUN;
if( pCx==0 ){
return;
}
- if( pCx->pCursor ){
- sqlite3BtreeCloseCursor(pCx->pCursor);
- }
if( pCx->pBt ){
sqlite3BtreeClose(pCx->pBt);
+ /* The pCx->pCursor will be close automatically, if it exists, by
+ ** the call above. */
+ }else if( pCx->pCursor ){
+ sqlite3BtreeCloseCursor(pCx->pCursor);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( pCx->pVtabCursor ){
}
#endif
if( !pCx->ephemPseudoTable ){
- sqlite3_free(pCx->pData);
+ sqlite3DbFree(p->db, pCx->pData);
}
- /* memset(pCx, 0, sizeof(Cursor)); */
- /* sqlite3_free(pCx->aType); */
- /* sqlite3_free(pCx); */
}
/*
** sorters that were left open. It also deletes the values of
** variables in the aVar[] array.
*/
-static void Cleanup(Vdbe *p, int freebuffers){
+static void Cleanup(Vdbe *p){
int i;
+ sqlite3 *db = p->db;
closeAllCursorsExceptActiveVtabs(p);
for(i=1; i<=p->nMem; i++){
MemSetTypeFlag(&p->aMem[i], MEM_Null);
}
- releaseMemArray(&p->aMem[1], p->nMem, freebuffers);
+ releaseMemArray(&p->aMem[1], p->nMem);
sqlite3VdbeFifoClear(&p->sFifo);
if( p->contextStack ){
for(i=0; i<p->contextStackTop; i++){
sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
}
- sqlite3_free(p->contextStack);
+ sqlite3DbFree(db, p->contextStack);
}
p->contextStack = 0;
p->contextStackDepth = 0;
p->contextStackTop = 0;
- sqlite3_free(p->zErrMsg);
+ sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = 0;
p->pResultSet = 0;
}
SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
Mem *pColName;
int n;
+ sqlite3 *db = p->db;
- releaseMemArray(p->aColName, p->nResColumn*COLNAME_N, 1);
- sqlite3_free(p->aColName);
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
+ sqlite3DbFree(db, p->aColName);
n = nResColumn*COLNAME_N;
p->nResColumn = nResColumn;
- p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n );
+ p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
if( p->aColName==0 ) return;
while( n-- > 0 ){
pColName->flags = MEM_Null;
**
** If N==P4_STATIC it means that zName is a pointer to a constant static
** string and we can just copy the pointer. If it is P4_DYNAMIC, then
-** the string is freed using sqlite3_free() when the vdbe is finished with
+** the string is freed using sqlite3DbFree(db, ) when the vdbe is finished with
** it. Otherwise, N bytes of zName are copied.
*/
SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
** write-transaction spanning more than one database file, this routine
** takes care of the master journal trickery.
*/
-static int vdbeCommit(sqlite3 *db){
+static int vdbeCommit(sqlite3 *db, Vdbe *p){
int i;
int nTrans = 0; /* Number of databases with an active write-transaction */
int rc = SQLITE_OK;
** required, as an xSync() callback may add an attached database
** to the transaction.
*/
- rc = sqlite3VtabSync(db, rc);
+ rc = sqlite3VtabSync(db, &p->zErrMsg);
if( rc!=SQLITE_OK ){
return rc;
}
** master-journal.
**
** If the return value of sqlite3BtreeGetFilename() is a zero length
- ** string, it means the main database is :memory:. In that case we do
- ** not support atomic multi-file commits, so use the simple case then
- ** too.
+ ** string, it means the main database is :memory: or a temp file. In
+ ** that case we do not support atomic multi-file commits, so use the
+ ** simple case then too.
*/
if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
sqlite3_file *pMaster = 0;
i64 offset = 0;
+ int res;
/* Select a master journal file name */
do {
u32 random;
- sqlite3_free(zMaster);
+ sqlite3DbFree(db, zMaster);
sqlite3_randomness(sizeof(random), &random);
zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
if( !zMaster ){
return SQLITE_NOMEM;
}
- rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS);
- }while( rc==1 );
- if( rc!=0 ){
- rc = SQLITE_IOERR_NOMEM;
- }else{
+ rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
+ }while( rc==SQLITE_OK && res );
+ if( rc==SQLITE_OK ){
/* Open the master journal. */
rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
);
}
if( rc!=SQLITE_OK ){
- sqlite3_free(zMaster);
+ sqlite3DbFree(db, zMaster);
return rc;
}
if( rc!=SQLITE_OK ){
sqlite3OsCloseFree(pMaster);
sqlite3OsDelete(pVfs, zMaster, 0);
- sqlite3_free(zMaster);
+ sqlite3DbFree(db, zMaster);
return rc;
}
}
&& (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
sqlite3OsCloseFree(pMaster);
sqlite3OsDelete(pVfs, zMaster, 0);
- sqlite3_free(zMaster);
+ sqlite3DbFree(db, zMaster);
return rc;
}
}
sqlite3OsCloseFree(pMaster);
if( rc!=SQLITE_OK ){
- sqlite3_free(zMaster);
+ sqlite3DbFree(db, zMaster);
return rc;
}
** transaction files are deleted.
*/
rc = sqlite3OsDelete(pVfs, zMaster, 1);
- sqlite3_free(zMaster);
+ sqlite3DbFree(db, zMaster);
zMaster = 0;
if( rc ){
return rc;
** may be lying around. Returning an error code won't help matters.
*/
disable_simulated_io_errors();
- sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ sqlite3BeginBenignMalloc();
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
sqlite3BtreeCommitPhaseTwo(pBt);
}
}
- sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ sqlite3EndBenignMalloc();
enable_simulated_io_errors();
sqlite3VtabCommit(db);
** successful or hit an 'OR FAIL' constraint. This means a commit
** is required.
*/
- int rc = vdbeCommit(db);
+ int rc = vdbeCommit(db, p);
if( rc==SQLITE_BUSY ){
sqlite3BtreeMutexArrayLeave(&p->aMutex);
return SQLITE_BUSY;
rc = xFunc(pBt);
if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
p->rc = rc;
- sqlite3SetString(&p->zErrMsg, 0);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = 0;
}
}
}
** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
** VDBE_MAGIC_INIT.
*/
-SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p, int freebuffers){
+SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p){
sqlite3 *db;
db = p->db;
*/
if( p->pc>=0 ){
if( p->zErrMsg ){
- sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
+ sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
db->errCode = p->rc;
+ sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = 0;
}else if( p->rc ){
sqlite3Error(db, p->rc, 0);
** called), set the database error in this case as well.
*/
sqlite3Error(db, p->rc, 0);
- sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free);
+ sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
+ sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = 0;
}
/* Reclaim all memory used by the VDBE
*/
- Cleanup(p, freebuffers);
+ Cleanup(p);
/* Save profiling information from this VDBE run.
*/
}
#endif
p->magic = VDBE_MAGIC_INIT;
- p->aborted = 0;
return p->rc & db->errMask;
}
SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){
int rc = SQLITE_OK;
if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
- rc = sqlite3VdbeReset(p, 1);
+ rc = sqlite3VdbeReset(p);
assert( (rc & p->db->errMask)==rc );
}else if( p->magic!=VDBE_MAGIC_INIT ){
return SQLITE_MISUSE;
}
- releaseMemArray(&p->aMem[1], p->nMem, 1);
sqlite3VdbeDelete(p);
return rc;
}
*/
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
int i;
+ sqlite3 *db;
+
if( p==0 ) return;
- Cleanup(p, 1);
+ db = p->db;
if( p->pPrev ){
p->pPrev->pNext = p->pNext;
}else{
- assert( p->db->pVdbe==p );
- p->db->pVdbe = p->pNext;
+ assert( db->pVdbe==p );
+ db->pVdbe = p->pNext;
}
if( p->pNext ){
p->pNext->pPrev = p->pPrev;
if( p->aOp ){
Op *pOp = p->aOp;
for(i=0; i<p->nOp; i++, pOp++){
- freeP4(pOp->p4type, pOp->p4.p);
+ freeP4(db, pOp->p4type, pOp->p4.p);
#ifdef SQLITE_DEBUG
- sqlite3_free(pOp->zComment);
+ sqlite3DbFree(db, pOp->zComment);
#endif
}
- sqlite3_free(p->aOp);
+ sqlite3DbFree(db, p->aOp);
}
- releaseMemArray(p->aVar, p->nVar, 1);
- sqlite3_free(p->aLabel);
+ releaseMemArray(p->aVar, p->nVar);
+ sqlite3DbFree(db, p->aLabel);
if( p->aMem ){
- sqlite3_free(&p->aMem[1]);
+ sqlite3DbFree(db, &p->aMem[1]);
}
- releaseMemArray(p->aColName, p->nResColumn*COLNAME_N, 1);
- sqlite3_free(p->aColName);
- sqlite3_free(p->zSql);
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
+ sqlite3DbFree(db, p->aColName);
+ sqlite3DbFree(db, p->zSql);
p->magic = VDBE_MAGIC_DEAD;
- sqlite3_free(p);
+ sqlite3DbFree(db, p);
}
/*
#endif
p->deferredMoveto = 0;
p->cacheStatus = CACHE_STALE;
+ }else if( p->pCursor ){
+ int hasMoved;
+ int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
+ if( rc ) return rc;
+ if( hasMoved ){
+ p->cacheStatus = CACHE_STALE;
+ p->nullRow = 1;
+ }
}
return SQLITE_OK;
}
**
** sqlite3VdbeSerialType()
** sqlite3VdbeSerialTypeLen()
-** sqlite3VdbeSerialRead()
** sqlite3VdbeSerialLen()
-** sqlite3VdbeSerialWrite()
+** sqlite3VdbeSerialPut()
+** sqlite3VdbeSerialGet()
**
** encapsulate the code that serializes values for storage in SQLite
** data and index records. Each serialized value consists of a
const unsigned char *aKey = (const unsigned char *)pKey;
UnpackedRecord *p;
int nByte;
- int i, idx, d;
+ int idx, d;
+ u16 u; /* Unsigned loop counter */
u32 szHdr;
Mem *pMem;
p->aMem = pMem = &((Mem*)p)[1];
idx = getVarint32(aKey, szHdr);
d = szHdr;
- i = 0;
- while( idx<szHdr && i<p->nField ){
+ u = 0;
+ while( idx<szHdr && u<p->nField ){
u32 serial_type;
idx += getVarint32( aKey+idx, serial_type);
pMem->zMalloc = 0;
d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
pMem++;
- i++;
+ u++;
}
- p->nField = i;
+ p->nField = u;
return (void*)p;
}
}
}
if( p->needFree ){
- sqlite3_free(p);
+ sqlite3DbFree(p->pKeyInfo->db, p);
}
}
}
** an integer rowid). This routine returns the number of bytes in
** that integer.
*/
-SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8 *aKey){
+SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8 *aKey, int nKey, int *pRowidLen){
u32 szHdr; /* Size of the header */
u32 typeRowid; /* Serial type of the rowid */
(void)getVarint32(aKey, szHdr);
+ if( szHdr>nKey ){
+ return SQLITE_CORRUPT_BKPT;
+ }
(void)getVarint32(&aKey[szHdr-1], typeRowid);
- return sqlite3VdbeSerialTypeLen(typeRowid);
+ *pRowidLen = sqlite3VdbeSerialTypeLen(typeRowid);
+ return SQLITE_OK;
}
m.db = 0;
m.flags = 0;
m.zMalloc = 0;
- rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
- if( rc ){
+ if( (rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m))
+ || (rc = sqlite3VdbeIdxRowidLen((u8*)m.z, m.n, &lenRowid))
+ ){
return rc;
}
- lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
if( !pUnpacked ){
pRec = sqlite3VdbeRecordUnpack(pC->pKeyInfo, nKey, pKey,
zSpace, sizeof(zSpace));
**
** This file contains code use to implement APIs that are part of the
** VDBE.
+**
+** $Id: vdbeapi.c,v 1.138 2008/08/02 03:50:39 drh Exp $
*/
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
*/
static void stmtLruAdd(Vdbe *p){
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
return;
}
assert( stmtLruCheck() );
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
}
/*
** statement is not currently part of the list, this call is a no-op.
*/
static void stmtLruRemove(Vdbe *p){
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
stmtLruRemoveNomutex(p);
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
}
/*
Vdbe *pNext;
int nFree = 0;
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
pNext = p->pLruNext;
sqlite3_mutex_leave(p->db->mutex);
}
}
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
return nFree;
}
}else{
Vdbe *v = (Vdbe*)pStmt;
sqlite3_mutex_enter(v->db->mutex);
- rc = sqlite3VdbeReset(v, 1);
+ rc = sqlite3VdbeReset(v);
stmtLruAdd(v);
sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
assert( (rc & (v->db->errMask))==rc );
db = p->db;
assert( !db->mallocFailed );
- if( p->aborted ){
- return SQLITE_ABORT;
- }
if( p->pc<=0 && p->expired ){
if( p->rc==SQLITE_OK ){
p->rc = SQLITE_SCHEMA;
}
#endif
- sqlite3Error(p->db, rc, 0);
+ db->errCode = rc;
+ /*sqlite3Error(p->db, rc, 0);*/
p->rc = sqlite3ApiExit(p->db, p->rc);
end_of_step:
assert( (rc&0xff)==rc );
if( p->zSql && (rc&0xff)<SQLITE_ROW ){
/* This behavior occurs if sqlite3_prepare_v2() was used to build
** the prepared statement. Return error codes directly */
- sqlite3Error(p->db, p->rc, 0);
+ p->db->errCode = p->rc;
+ /* sqlite3Error(p->db, p->rc, 0); */
return p->rc;
}else{
/* This is for legacy sqlite3_prepare() builds and when the code
** sqlite3_errmsg() and sqlite3_errcode().
*/
const char *zErr = (const char *)sqlite3_value_text(db->pErr);
- sqlite3_free(v->zErrMsg);
+ sqlite3DbFree(db, v->zErrMsg);
if( !db->mallocFailed ){
v->zErrMsg = sqlite3DbStrDup(db, zErr);
} else {
rc = vdbeUnbind(p, i);
if( rc==SQLITE_OK ){
rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db));
+ }
}
rc = sqlite3ApiExit(p->db, rc);
sqlite3_mutex_leave(p->db->mutex);
return pStmt ? ((Vdbe*)pStmt)->db : 0;
}
+/*
+** Return a pointer to the next prepared statement after pStmt associated
+** with database connection pDb. If pStmt is NULL, return the first
+** prepared statement for the database connection. Return NULL if there
+** are no more.
+*/
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
+ sqlite3_stmt *pNext;
+ sqlite3_mutex_enter(pDb->mutex);
+ if( pStmt==0 ){
+ pNext = (sqlite3_stmt*)pDb->pVdbe;
+ }else{
+ pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
+ }
+ sqlite3_mutex_leave(pDb->mutex);
+ return pNext;
+}
+
/************** End of vdbeapi.c *********************************************/
/************** Begin file vdbe.c ********************************************/
/*
** Computation results are stored on a set of registers numbered beginning
** with 1 and going up to Vdbe.nMem. Each register can store
** either an integer, a null-terminated string, a floating point
-** number, or the SQL "NULL" value. An inplicit conversion from one
+** number, or the SQL "NULL" value. An implicit conversion from one
** type to the other occurs as necessary.
**
** Most of the code in this file is taken up by the sqlite3VdbeExec()
** in this file for details. If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
-** $Id: vdbe.c,v 1.740 2008/05/13 13:27:34 drh Exp $
+** $Id: vdbe.c,v 1.772 2008/08/02 15:10:09 danielk1977 Exp $
*/
/*
/*
** The next global variable is incremented each type the OP_Sort opcode
** is executed. The test procedures use this information to make sure that
-** sorting is occurring or not occuring at appropriate times. This variable
+** sorting is occurring or not occurring at appropriate times. This variable
** has no function other than to help verify the correct operation of the
** library.
*/
#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
/*
-** Argument pMem points at a regiser that will be passed to a
+** Argument pMem points at a register that will be passed to a
** user-defined function or returned to the user as the result of a query.
** The second argument, 'db_enc' is the text encoding used by the vdbe for
** register variables. This routine sets the pMem->enc and pMem->type
#endif
#ifdef SQLITE_DEBUG
-# define REGISTER_TRACE(R,M) if(p->trace&&R>0)registerTrace(p->trace,R,M)
+# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
#else
# define REGISTER_TRACE(R,M)
#endif
#ifdef VDBE_PROFILE
+
+/*
+** hwtime.h contains inline assembler code for implementing
+** high-performance timing routines.
+*/
+/************** Include hwtime.h in the middle of vdbe.c *********************/
+/************** Begin file hwtime.h ******************************************/
/*
-** The following routine only works on pentium-class processors.
+** 2008 May 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains inline asm code for retrieving "high-performance"
+** counters for x86 class CPUs.
+**
+** $Id: hwtime.h,v 1.3 2008/08/01 14:33:15 shane Exp $
+*/
+#ifndef _HWTIME_H_
+#define _HWTIME_H_
+
+/*
+** The following routine only works on pentium-class (or newer) processors.
** It uses the RDTSC opcode to read the cycle count value out of the
** processor and returns that value. This can be used for high-res
** profiling.
*/
-__inline__ unsigned long long int hwtime(void){
- unsigned int lo, hi;
- /* We cannot use "=A", since this would use %rax on x86_64 */
- __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
- return (unsigned long long int)hi << 32 | lo;
-}
+#if (defined(__GNUC__) || defined(_MSC_VER)) && \
+ (defined(i386) || defined(__i386__) || defined(_M_IX86))
+
+ #if defined(__GNUC__)
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned int lo, hi;
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (sqlite_uint64)hi << 32 | lo;
+ }
+
+ #elif defined(_MSC_VER)
+
+ __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
+ __asm {
+ rdtsc
+ ret ; return value at EDX:EAX
+ }
+ }
+
+ #endif
+
+#elif (defined(__GNUC__) && defined(__x86_64__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long val;
+ __asm__ __volatile__ ("rdtsc" : "=A" (val));
+ return val;
+ }
+
+#elif (defined(__GNUC__) && defined(__ppc__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long long retval;
+ unsigned long junk;
+ __asm__ __volatile__ ("\n\
+ 1: mftbu %1\n\
+ mftb %L0\n\
+ mftbu %0\n\
+ cmpw %0,%1\n\
+ bne 1b"
+ : "=r" (retval), "=r" (junk));
+ return retval;
+ }
+
+#else
+
+ #error Need implementation of sqlite3Hwtime() for your platform.
+
+ /*
+ ** To compile without implementing sqlite3Hwtime() for your platform,
+ ** you can remove the above #error and use the following
+ ** stub function. You will lose timing support for many
+ ** of the debugging and testing utilities, but it should at
+ ** least compile and run.
+ */
+SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
+
+#endif
+
+#endif /* !defined(_HWTIME_H_) */
+
+/************** End of hwtime.h **********************************************/
+/************** Continuing where we left off in vdbe.c ***********************/
+
#endif
/*
#define CHECK_FOR_INTERRUPT \
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
+#ifdef SQLITE_DEBUG
+static int fileExists(sqlite3 *db, const char *zFile){
+ int res = 0;
+ int rc = SQLITE_OK;
+#ifdef SQLITE_TEST
+ /* If we are currently testing IO errors, then do not call OsAccess() to
+ ** test for the presence of zFile. This is because any IO error that
+ ** occurs here will not be reported, causing the test to fail.
+ */
+ extern int sqlite3_io_error_pending;
+ if( sqlite3_io_error_pending<=0 )
+#endif
+ rc = sqlite3OsAccess(db->pVfs, zFile, SQLITE_ACCESS_EXISTS, &res);
+ return (res && rc==SQLITE_OK);
+}
+#endif
/*
** Execute as much of a VDBE program as we can then return.
Mem *pIn1, *pIn2, *pIn3; /* Input operands */
Mem *pOut; /* Output operand */
u8 opProperty;
+ int iCompare = 0; /* Result of last OP_Compare operation */
+ int *aPermute = 0; /* Permuation of columns for OP_Compare */
#ifdef VDBE_PROFILE
- unsigned long long start; /* CPU clock count at start of opcode */
+ u64 start; /* CPU clock count at start of opcode */
int origPc; /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
CHECK_FOR_INTERRUPT;
sqlite3VdbeIOTraceSql(p);
#ifdef SQLITE_DEBUG
- sqlite3FaultBeginBenign(-1);
- if( p->pc==0 && ((p->db->flags & SQLITE_VdbeListing)!=0
- || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS)==1 )
+ sqlite3BeginBenignMalloc();
+ if( p->pc==0
+ && ((p->db->flags & SQLITE_VdbeListing) || fileExists(db, "vdbe_explain"))
){
int i;
printf("VDBE Program Listing:\n");
sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
}
}
- if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS)==1 ){
+ if( fileExists(db, "vdbe_trace") ){
p->trace = stdout;
}
- sqlite3FaultEndBenign(-1);
+ sqlite3EndBenignMalloc();
#endif
for(pc=p->pc; rc==SQLITE_OK; pc++){
assert( pc>=0 && pc<p->nOp );
if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
origPc = pc;
- start = hwtime();
+ start = sqlite3Hwtime();
#endif
pOp = &p->aOp[pc];
sqlite3VdbePrintOp(p->trace, pc, pOp);
}
if( p->trace==0 && pc==0 ){
- sqlite3FaultBeginBenign(-1);
- if( sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS)==1 ){
+ sqlite3BeginBenignMalloc();
+ if( fileExists(db, "vdbe_sqltrace") ){
sqlite3VdbePrintSql(p);
}
- sqlite3FaultEndBenign(-1);
+ sqlite3EndBenignMalloc();
}
#endif
break;
}
-/* Opcode: Gosub * P2 * * *
+/* Opcode: Gosub P1 P2 * * *
**
-** Push the current address plus 1 onto the return address stack
+** Write the current address onto register P1
** and then jump to address P2.
-**
-** The return address stack is of limited depth. If too many
-** OP_Gosub operations occur without intervening OP_Returns, then
-** the return address stack will fill up and processing will abort
-** with a fatal error.
*/
case OP_Gosub: { /* jump */
- assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
- p->returnStack[p->returnDepth++] = pc+1;
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=p->nMem );
+ pIn1 = &p->aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Dyn)==0 );
+ pIn1->flags = MEM_Int;
+ pIn1->u.i = pc;
+ REGISTER_TRACE(pOp->p1, pIn1);
pc = pOp->p2 - 1;
break;
}
-/* Opcode: Return * * * * *
+/* Opcode: Return P1 * * * *
+**
+** Jump to the next instruction after the address in register P1.
+*/
+case OP_Return: { /* in1 */
+ assert( pIn1->flags & MEM_Int );
+ pc = pIn1->u.i;
+ break;
+}
+
+/* Opcode: Yield P1 * * * *
**
-** Jump immediately to the next instruction after the last unreturned
-** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
-** processing aborts with a fatal error.
+** Swap the program counter with the value in register P1.
*/
-case OP_Return: {
- assert( p->returnDepth>0 );
- p->returnDepth--;
- pc = p->returnStack[p->returnDepth] - 1;
+case OP_Yield: {
+ int pcDest;
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=p->nMem );
+ pIn1 = &p->aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Dyn)==0 );
+ pIn1->flags = MEM_Int;
+ pcDest = pIn1->u.i;
+ pIn1->u.i = pc;
+ REGISTER_TRACE(pOp->p1, pIn1);
+ pc = pcDest;
break;
}
+
/* Opcode: Halt P1 P2 * P4 *
**
** Exit immediately. All open cursors, Fifos, etc are closed
p->pc = pc;
p->errorAction = pOp->p2;
if( pOp->p4.z ){
- sqlite3SetString(&p->zErrMsg, pOp->p4.z, (char*)0);
+ sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
}
rc = sqlite3VdbeHalt(p);
assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
if( encoding!=SQLITE_UTF8 ){
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
- if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pOut) ) goto no_mem;
+ if( SQLITE_OK!=sqlite3VdbeMemMakeWriteable(pOut) ) goto no_mem;
pOut->zMalloc = 0;
pOut->flags |= MEM_Static;
pOut->flags &= ~MEM_Dyn;
if( pOp->p4type==P4_DYNAMIC ){
- sqlite3_free(pOp->p4.z);
+ sqlite3DbFree(db, pOp->p4.z);
}
pOp->p4type = P4_DYNAMIC;
pOp->p4.z = pOut->z;
**
** The value of variable P1 is written into register P2. A variable is
** an unknown in the original SQL string as handed to sqlite3_compile().
-** Any occurance of the '?' character in the original SQL is considered
+** Any occurrence of the '?' character in the original SQL is considered
** a variable. Variables in the SQL string are number from left to
** right beginning with 1. The values of variables are set using the
** sqlite3_bind() API.
break;
}
-/* Opcode: Move P1 P2 * * *
+/* Opcode: Move P1 P2 P3 * *
**
-** Move the value in register P1 over into register P2. Register P1
-** is left holding a NULL. It is an error for P1 and P2 to be the
-** same register.
+** Move the values in register P1..P1+P3-1 over into
+** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
+** left holding a NULL. It is an error for register ranges
+** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
*/
case OP_Move: {
char *zMalloc;
- assert( pOp->p1>0 );
- assert( pOp->p1<=p->nMem );
- pIn1 = &p->aMem[pOp->p1];
- REGISTER_TRACE(pOp->p1, pIn1);
- assert( pOp->p2>0 );
- assert( pOp->p2<=p->nMem );
- pOut = &p->aMem[pOp->p2];
- assert( pOut!=pIn1 );
- zMalloc = pOut->zMalloc;
- pOut->zMalloc = 0;
- sqlite3VdbeMemMove(pOut, pIn1);
- pIn1->zMalloc = zMalloc;
- REGISTER_TRACE(pOp->p2, pOut);
+ int n = pOp->p3;
+ int p1 = pOp->p1;
+ int p2 = pOp->p2;
+ assert( n>0 );
+ assert( p1>0 );
+ assert( p1+n<p->nMem );
+ pIn1 = &p->aMem[p1];
+ assert( p2>0 );
+ assert( p2+n<p->nMem );
+ pOut = &p->aMem[p2];
+ assert( p1+n<=p2 || p2+n<=p1 );
+ while( n-- ){
+ zMalloc = pOut->zMalloc;
+ pOut->zMalloc = 0;
+ sqlite3VdbeMemMove(pOut, pIn1);
+ pIn1->zMalloc = zMalloc;
+ REGISTER_TRACE(p2++, pOut);
+ pIn1++;
+ pOut++;
+ }
break;
}
assert( pOp->p1>0 );
assert( pOp->p1<=p->nMem );
pIn1 = &p->aMem[pOp->p1];
- REGISTER_TRACE(pOp->p1, pIn1);
assert( pOp->p2>0 );
assert( pOp->p2<=p->nMem );
pOut = &p->aMem[pOp->p2];
/* Opcode: ResultRow P1 P2 * * *
**
-** The registers P1 throught P1+P2-1 contain a single row of
+** The registers P1 through P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the top P1 values as the result
p->cacheCtr = (p->cacheCtr + 2)|1;
/* Make sure the results of the current row are \000 terminated
- ** and have an assigned type. The results are deephemeralized as
+ ** and have an assigned type. The results are de-ephemeralized as
** as side effect.
*/
pMem = p->pResultSet = &p->aMem[pOp->p1];
for(i=0; i<pOp->p2; i++){
sqlite3VdbeMemNulTerminate(&pMem[i]);
storeTypeInfo(&pMem[i], encoding);
+ REGISTER_TRACE(pOp->p1+i, &pMem[i]);
}
if( db->mallocFailed ) goto no_mem;
/* Opcode: Add P1 P2 P3 * *
**
** Add the value in register P1 to the value in register P2
-** and store the result in regiser P3.
+** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Multiply P1 P2 P3 * *
**
**
-** Multiply the value in regiser P1 by the value in regiser P2
+** Multiply the value in register P1 by the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
int flags;
+ applyNumericAffinity(pIn1);
+ applyNumericAffinity(pIn2);
flags = pIn1->flags | pIn2->flags;
if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
** -1 returns an integer too large to store in a 64-bit data-type. On
** some architectures, the value overflows to (1<<63). On others,
** a SIGFPE is issued. The following statement normalizes this
- ** behaviour so that all architectures behave as if integer
- ** overflow occured.
+ ** behavior so that all architectures behave as if integer
+ ** overflow occurred.
*/
if( a==-1 && b==SMALLEST_INT64 ) a = 1;
b /= a;
goto no_mem;
}
- /* If any auxilary data functions have been called by this user function,
+ /* If any auxiliary data functions have been called by this user function,
** immediately call the destructor for any non-static values.
*/
if( ctx.pVdbeFunc ){
/* If the function returned an error, throw an exception */
if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
rc = ctx.isError;
}
/* Opcode: AddImm P1 P2 * * *
**
-** Add the constant P2 the value in register P1.
+** Add the constant P2 to the value in register P1.
** The result is always an integer.
**
** To force any register to be an integer, just add 0.
** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
** bit is clear then fall thru if either operand is NULL.
**
-** If the SQLITE_NULLEQUAL bit of P5 is set then treat NULL operands
-** as being equal to one another. Normally NULLs are not equal to
-** anything including other NULLs.
-**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
** to coerce both inputs according to this affinity before the
int flags;
int res;
char affinity;
- Mem x1, x3;
flags = pIn1->flags|pIn3->flags;
if( flags&MEM_Null ){
- if( (pOp->p5 & SQLITE_NULLEQUAL)!=0 ){
- /*
- ** When SQLITE_NULLEQUAL set and either operand is NULL
- ** then both operands are converted to integers prior to being
- ** passed down into the normal comparison logic below.
- ** NULL operands are converted to zero and non-NULL operands
- ** are converted to 1. Thus, for example, with SQLITE_NULLEQUAL
- ** set, NULL==NULL is true whereas it would normally NULL.
- ** Similarly, NULL!=123 is true.
- */
- x1.flags = MEM_Int;
- x1.u.i = (pIn1->flags & MEM_Null)==0;
- pIn1 = &x1;
- x3.flags = MEM_Int;
- x3.u.i = (pIn3->flags & MEM_Null)==0;
- pIn3 = &x3;
- }else{
- /* If the SQLITE_NULLEQUAL bit is clear and either operand is NULL then
- ** the result is always NULL. The jump is taken if the
- ** SQLITE_JUMPIFNULL bit is set.
- */
- if( pOp->p5 & SQLITE_STOREP2 ){
- pOut = &p->aMem[pOp->p2];
- MemSetTypeFlag(pOut, MEM_Null);
- REGISTER_TRACE(pOp->p2, pOut);
- }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
- pc = pOp->p2-1;
- }
- break;
+ /* If either operand is NULL then the result is always NULL.
+ ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
+ */
+ if( pOp->p5 & SQLITE_STOREP2 ){
+ pOut = &p->aMem[pOp->p2];
+ MemSetTypeFlag(pOut, MEM_Null);
+ REGISTER_TRACE(pOp->p2, pOut);
+ }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
+ pc = pOp->p2-1;
}
+ break;
}
affinity = pOp->p5 & SQLITE_AFF_MASK;
break;
}
+/* Opcode: Permutation * * * P4 *
+**
+** Set the permuation used by the OP_Compare operator to be the array
+** of integers in P4.
+**
+** The permutation is only valid until the next OP_Permutation, OP_Compare,
+** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
+** immediately prior to the OP_Compare.
+*/
+case OP_Permutation: {
+ assert( pOp->p4type==P4_INTARRAY );
+ assert( pOp->p4.ai );
+ aPermute = pOp->p4.ai;
+ break;
+}
+
+/* Opcode: Compare P1 P2 P3 P4 *
+**
+** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this
+** one "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
+** the comparison for use by the next OP_Jump instruct.
+**
+** P4 is a KeyInfo structure that defines collating sequences and sort
+** orders for the comparison. The permutation applies to registers
+** only. The KeyInfo elements are used sequentially.
+**
+** The comparison is a sort comparison, so NULLs compare equal,
+** NULLs are less than numbers, numbers are less than strings,
+** and strings are less than blobs.
+*/
+case OP_Compare: {
+ int n = pOp->p3;
+ int i, p1, p2;
+ const KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
+ assert( n>0 );
+ assert( pKeyInfo!=0 );
+ p1 = pOp->p1;
+ assert( p1>0 && p1+n-1<p->nMem );
+ p2 = pOp->p2;
+ assert( p2>0 && p2+n-1<p->nMem );
+ for(i=0; i<n; i++){
+ int idx = aPermute ? aPermute[i] : i;
+ CollSeq *pColl; /* Collating sequence to use on this term */
+ int bRev; /* True for DESCENDING sort order */
+ REGISTER_TRACE(p1+idx, &p->aMem[p1+idx]);
+ REGISTER_TRACE(p2+idx, &p->aMem[p2+idx]);
+ assert( i<pKeyInfo->nField );
+ pColl = pKeyInfo->aColl[i];
+ bRev = pKeyInfo->aSortOrder[i];
+ iCompare = sqlite3MemCompare(&p->aMem[p1+idx], &p->aMem[p2+idx], pColl);
+ if( iCompare ){
+ if( bRev ) iCompare = -iCompare;
+ break;
+ }
+ }
+ aPermute = 0;
+ break;
+}
+
+/* Opcode: Jump P1 P2 P3 * *
+**
+** Jump to the instruction at address P1, P2, or P3 depending on whether
+** in the most recent OP_Compare instruction the P1 vector was less than
+** equal to, or greater than the P2 vector, respectively.
+*/
+case OP_Jump: { /* jump */
+ if( iCompare<0 ){
+ pc = pOp->p1 - 1;
+ }else if( iCompare==0 ){
+ pc = pOp->p2 - 1;
+ }else{
+ pc = pOp->p3 - 1;
+ }
+ break;
+}
+
/* Opcode: And P1 P2 P3 * *
**
** Take the logical AND of the values in registers P1 and P2 and
if( aOffset[p2] ){
assert( rc==SQLITE_OK );
if( zRec ){
- if( pDest->flags&MEM_Dyn ){
- sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], &sMem);
- sMem.db = db;
- rc = sqlite3VdbeMemCopy(pDest, &sMem);
- assert( !(sMem.flags&MEM_Dyn) );
- if( rc!=SQLITE_OK ){
- goto op_column_out;
- }
- }else{
- sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
- }
+ sqlite3VdbeMemReleaseExternal(pDest);
+ sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
}else{
len = sqlite3VdbeSerialTypeLen(aType[p2]);
sqlite3VdbeMemMove(&sMem, pDest);
**
** Convert P2 registers beginning with P1 into a single entry
** suitable for use as a data record in a database table or as a key
-** in an index. The details of the format are irrelavant as long as
+** in an index. The details of the format are irrelevant as long as
** the OP_Column opcode can decode the record later.
** Refer to source code comments for the details of the record
** format.
** still running, and a transaction is active, return an error indicating
** that the other VMs must complete first.
*/
- sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit",
- " transaction - SQL statements in progress", (char*)0);
+ sqlite3SetString(&p->zErrMsg, db, "cannot %s transaction - "
+ "SQL statements in progress",
+ rollback ? "rollback" : "commit");
rc = SQLITE_ERROR;
}else if( i!=db->autoCommit ){
if( pOp->p2 ){
}
goto vdbe_return;
}else{
- sqlite3SetString(&p->zErrMsg,
+ sqlite3SetString(&p->zErrMsg, db,
(!i)?"cannot start a transaction within a transaction":(
(rollback)?"cannot rollback - no transaction is active":
- "cannot commit - no transaction is active"), (char*)0);
+ "cannot commit - no transaction is active"));
rc = SQLITE_ERROR;
}
iMeta = 0;
}
if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
- sqlite3_free(p->zErrMsg);
+ sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
/* If the schema-cookie from the database file matches the cookie
** stored with the in-memory representation of the schema, do
** not reload the schema from the database file.
**
- ** If virtual-tables are in use, this is not just an optimisation.
+ ** If virtual-tables are in use, this is not just an optimization.
** Often, v-tables store their data in other SQLite tables, which
** are queried from within xNext() and other v-table methods using
** prepared queries. If such a query is out-of-date, we do not want to
case SQLITE_OK: {
int flags = sqlite3BtreeFlags(pCur->pCursor);
/* Sanity checking. Only the lower four bits of the flags byte should
- ** be used. Bit 3 (mask 0x08) is unpreditable. The lower 3 bits
+ ** be used. Bit 3 (mask 0x08) is unpredictable. The lower 3 bits
** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
** 2 (zerodata for indices). If these conditions are not met it can
** only mean that we are dealing with a corrupt database file
if( res ){
pc = pOp->p2 - 1;
}
+ }else if( !pC->pseudoTable ){
+ /* This happens when attempting to open the sqlite3_master table
+ ** for read access returns SQLITE_EMPTY. In this case always
+ ** take the jump (since there are no records in the table).
+ */
+ pc = pOp->p2 - 1;
}
break;
}
** DISTINCT keyword in SELECT statements.
**
** This instruction checks if index P1 contains a record for which
-** the first N serialised values exactly match the N serialised values
+** the first N serialized values exactly match the N serialized values
** in the record in register P3, where N is the total number of values in
** the P3 record (the P3 record is a prefix of the P1 record).
**
zKey = pK->z;
nKey = pK->n;
- szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
+ /* sqlite3VdbeIdxRowidLen() only returns other than SQLITE_OK when the
+ ** record passed as an argument corrupt. Since the record in this case
+ ** has just been created by an OP_MakeRecord instruction, and not loaded
+ ** from the database file, it is not possible for it to be corrupt.
+ ** Therefore, assert(rc==SQLITE_OK).
+ */
+ rc = sqlite3VdbeIdxRowidLen((u8*)zKey, nKey, &szRowid);
+ assert(rc==SQLITE_OK);
len = nKey-szRowid;
/* Search for an entry in P1 where all but the last four bytes match K.
pc = pOp->p2 - 1;
assert( pC->rowidIsValid==0 );
}
+ }else if( !pC->pseudoTable ){
+ /* This happens when an attempt to open a read cursor on the
+ ** sqlite_master table returns SQLITE_EMPTY.
+ */
+ assert( pC->isTable );
+ pc = pOp->p2 - 1;
+ assert( pC->rowidIsValid==0 );
}
break;
}
** random number generator based on the RC4 algorithm.
**
** To promote locality of reference for repetitive inserts, the
- ** first few attempts at chosing a random rowid pick values just a little
+ ** first few attempts at choosing a random rowid pick values just a little
** larger than the previous rowid. This has been shown experimentally
** to double the speed of the COPY operation.
*/
}
if( pC->pseudoTable ){
if( !pC->ephemPseudoTable ){
- sqlite3_free(pC->pData);
+ sqlite3DbFree(db, pC->pData);
}
pC->iKey = iKey;
pC->nData = pData->n;
pData->zMalloc = 0;
}
}else{
- pC->pData = sqlite3_malloc( pC->nData+2 );
+ pC->pData = sqlite3Malloc( pC->nData+2 );
if( !pC->pData ) goto no_mem;
memcpy(pC->pData, pData->z, pC->nData);
pC->pData[pC->nData] = 0;
/* Opcode: Rowid P1 P2 * * *
**
** Store in register P2 an integer which is the key of the table entry that
-** P1 is currently point to. If p2==0 then push the integer.
+** P1 is currently point to.
*/
case OP_Rowid: { /* out2-prerelease */
int i = pOp->p1;
case OP_Next: { /* jump */
Cursor *pC;
BtCursor *pCrsr;
+ int res;
CHECK_FOR_INTERRUPT;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
}
pCrsr = pC->pCursor;
assert( pCrsr );
- if( pC->nullRow==0 ){
- int res = 1;
- assert( pC->deferredMoveto==0 );
- rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
- sqlite3BtreePrevious(pCrsr, &res);
- pC->nullRow = res;
- pC->cacheStatus = CACHE_STALE;
- if( res==0 ){
- pc = pOp->p2 - 1;
+ res = 1;
+ assert( pC->deferredMoveto==0 );
+ rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
+ sqlite3BtreePrevious(pCrsr, &res);
+ pC->nullRow = res;
+ pC->cacheStatus = CACHE_STALE;
+ if( res==0 ){
+ pc = pOp->p2 - 1;
#ifdef SQLITE_TEST
- sqlite3_search_count++;
+ sqlite3_search_count++;
#endif
- }
}
pC->rowidIsValid = 0;
break;
** schema is already loaded into the symbol table.
**
** This opcode invokes the parser to create a new virtual machine,
-** then runs the new virtual machine. It is thus a reentrant opcode.
+** then runs the new virtual machine. It is thus a re-entrant opcode.
*/
case OP_ParseSchema: {
char *zSql;
assert( !db->mallocFailed );
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
if( rc==SQLITE_ABORT ) rc = initData.rc;
- sqlite3_free(zSql);
+ sqlite3DbFree(db, zSql);
db->init.busy = 0;
(void)sqlite3SafetyOn(db);
if( rc==SQLITE_NOMEM ){
nRoot = pOp->p2;
assert( nRoot>0 );
- aRoot = sqlite3_malloc( sizeof(int)*(nRoot+1) );
+ aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
if( aRoot==0 ) goto no_mem;
assert( pOp->p3>0 && pOp->p3<=p->nMem );
pnErr = &p->aMem[pOp->p3];
assert( (p->btreeMask & (1<<pOp->p5))!=0 );
z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
pnErr->u.i, &nErr);
+ sqlite3DbFree(db, aRoot);
pnErr->u.i -= nErr;
sqlite3VdbeMemSetNull(pIn1);
if( nErr==0 ){
assert( z==0 );
+ }else if( z==0 ){
+ goto no_mem;
}else{
sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
}
UPDATE_MAX_BLOBSIZE(pIn1);
sqlite3VdbeChangeEncoding(pIn1, encoding);
- sqlite3_free(aRoot);
break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
** Write the integer from register P1 into the Fifo.
*/
case OP_FifoWrite: { /* in1 */
+ p->sFifo.db = db;
if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){
goto no_mem;
}
pContext->lastRowid = db->lastRowid;
pContext->nChange = p->nChange;
pContext->sFifo = p->sFifo;
- sqlite3VdbeFifoInit(&p->sFifo);
+ sqlite3VdbeFifoInit(&p->sFifo, db);
break;
}
}
(ctx.pFunc->xStep)(&ctx, n, apVal);
if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
rc = ctx.isError;
}
sqlite3VdbeMemRelease(&ctx.s);
assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
if( rc==SQLITE_ERROR ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
}
sqlite3VdbeChangeEncoding(pMem, encoding);
UPDATE_MAX_BLOBSIZE(pMem);
rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
if( rc==SQLITE_LOCKED ){
const char *z = pOp->p4.z;
- sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
+ sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
}
break;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VBegin * * * P4 *
**
-** P4 a pointer to an sqlite3_vtab structure. Call the xBegin method
-** for that table.
+** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
+** xBegin method for that table.
+**
+** Also, whether or not P4 is set, check that this is not being called from
+** within a callback to a virtual table xSync() method. If it is, set the
+** error code to SQLITE_LOCKED.
*/
case OP_VBegin: {
- rc = sqlite3VtabBegin(db, pOp->p4.pVtab);
+ sqlite3_vtab *pVtab = pOp->p4.pVtab;
+ rc = sqlite3VtabBegin(db, pVtab);
+ if( pVtab ){
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = pVtab->zErrMsg;
+ pVtab->zErrMsg = 0;
+ }
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
assert(pVtab && pModule);
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
rc = pModule->xOpen(pVtab, &pVtabCursor);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = pVtab->zErrMsg;
+ pVtab->zErrMsg = 0;
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
if( SQLITE_OK==rc ){
- /* Initialise sqlite3_vtab_cursor base class */
+ /* Initialize sqlite3_vtab_cursor base class */
pVtabCursor->pVtab = pVtab;
/* Initialise vdbe cursor object */
** This opcode invokes the xFilter method on the virtual table specified
** by P1. The integer query plan parameter to xFilter is stored in register
** P3. Register P3+1 stores the argc parameter to be passed to the
-** xFilter method. Registers P3+2..P3+1+argc are the argc additional
-** parametersneath additional parameters which are passed to
+** xFilter method. Registers P3+2..P3+1+argc are the argc
+** additional parameters which are passed to
** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
**
** A jump is made to P2 if the result set after filtering would be empty.
const sqlite3_module *pModule;
Mem *pQuery = &p->aMem[pOp->p3];
Mem *pArgc = &pQuery[1];
+ sqlite3_vtab_cursor *pVtabCursor;
+ sqlite3_vtab *pVtab;
Cursor *pCur = p->apCsr[pOp->p1];
REGISTER_TRACE(pOp->p3, pQuery);
assert( pCur->pVtabCursor );
- pModule = pCur->pVtabCursor->pVtab->pModule;
+ pVtabCursor = pCur->pVtabCursor;
+ pVtab = pVtabCursor->pVtab;
+ pModule = pVtab->pModule;
/* Grab the index number and argc parameters */
assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
}
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ sqlite3VtabLock(pVtab);
p->inVtabMethod = 1;
- rc = pModule->xFilter(pCur->pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
+ rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
p->inVtabMethod = 0;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = pVtab->zErrMsg;
+ pVtab->zErrMsg = 0;
+ sqlite3VtabUnlock(db, pVtab);
if( rc==SQLITE_OK ){
- res = pModule->xEof(pCur->pVtabCursor);
+ res = pModule->xEof(pVtabCursor);
}
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
** the virtual-table that the P1 cursor is pointing to.
*/
case OP_VRowid: { /* out2-prerelease */
+ sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
sqlite_int64 iRow;
Cursor *pCur = p->apCsr[pOp->p1];
if( pCur->nullRow ){
break;
}
- pModule = pCur->pVtabCursor->pVtab->pModule;
+ pVtab = pCur->pVtabCursor->pVtab;
+ pModule = pVtab->pModule;
assert( pModule->xRowid );
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = pVtab->zErrMsg;
+ pVtab->zErrMsg = 0;
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
MemSetTypeFlag(pOut, MEM_Int);
pOut->u.i = iRow;
** P1 cursor is pointing to into register P3.
*/
case OP_VColumn: {
+ sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
Mem *pDest;
sqlite3_context sContext;
sqlite3VdbeMemSetNull(pDest);
break;
}
- pModule = pCur->pVtabCursor->pVtab->pModule;
+ pVtab = pCur->pVtabCursor->pVtab;
+ pModule = pVtab->pModule;
assert( pModule->xColumn );
memset(&sContext, 0, sizeof(sContext));
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = pVtab->zErrMsg;
+ pVtab->zErrMsg = 0;
/* Copy the result of the function to the P3 register. We
** do this regardless of whether or not an error occured to ensure any
** the end of its result set, then fall through to the next instruction.
*/
case OP_VNext: { /* jump */
+ sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
int res = 0;
if( pCur->nullRow ){
break;
}
- pModule = pCur->pVtabCursor->pVtab->pModule;
+ pVtab = pCur->pVtabCursor->pVtab;
+ pModule = pVtab->pModule;
assert( pModule->xNext );
/* Invoke the xNext() method of the module. There is no way for the
** some other method is next invoked on the save virtual table cursor.
*/
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ sqlite3VtabLock(pVtab);
p->inVtabMethod = 1;
rc = pModule->xNext(pCur->pVtabCursor);
p->inVtabMethod = 0;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = pVtab->zErrMsg;
+ pVtab->zErrMsg = 0;
+ sqlite3VtabUnlock(db, pVtab);
if( rc==SQLITE_OK ){
res = pModule->xEof(pCur->pVtabCursor);
}
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
sqlite3VtabLock(pVtab);
rc = pVtab->pModule->xRename(pVtab, pName->z);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = pVtab->zErrMsg;
+ pVtab->zErrMsg = 0;
sqlite3VtabUnlock(db, pVtab);
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
int nArg = pOp->p2;
assert( pOp->p4type==P4_VTAB );
if( pModule->xUpdate==0 ){
- sqlite3SetString(&p->zErrMsg, "read-only table", 0);
+ sqlite3SetString(&p->zErrMsg, db, "read-only table");
rc = SQLITE_ERROR;
}else{
int i;
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
sqlite3VtabLock(pVtab);
rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = pVtab->zErrMsg;
+ pVtab->zErrMsg = 0;
sqlite3VtabUnlock(db, pVtab);
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
if( pOp->p1 && rc==SQLITE_OK ){
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/* Opcode: Pagecount P1 P2 * * *
+**
+** Write the current number of pages in database P1 to memory cell P2.
+*/
+case OP_Pagecount: { /* out2-prerelease */
+ int p1 = pOp->p1;
+ int nPage;
+ Pager *pPager = sqlite3BtreePager(db->aDb[p1].pBt);
+
+ rc = sqlite3PagerPagecount(pPager, &nPage);
+ if( rc==SQLITE_OK ){
+ pOut->flags = MEM_Int;
+ pOut->u.i = nPage;
+ }
+ break;
+}
+#endif
+
#ifndef SQLITE_OMIT_TRACE
/* Opcode: Trace * * * P4 *
**
#ifdef VDBE_PROFILE
{
- long long elapse = hwtime() - start;
- pOp->cycles += elapse;
+ u64 elapsed = sqlite3Hwtime() - start;
+ pOp->cycles += elapsed;
pOp->cnt++;
#if 0
- fprintf(stdout, "%10lld ", elapse);
+ fprintf(stdout, "%10llu ", elapsed);
sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
#endif
}
vdbe_error_halt:
assert( rc );
p->rc = rc;
- rc = SQLITE_ERROR;
sqlite3VdbeHalt(p);
+ if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
+ rc = SQLITE_ERROR;
/* This is the only way out of this procedure. We have to
** release the mutexes on btrees that were acquired at the
** is encountered.
*/
too_big:
- sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0);
+ sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
rc = SQLITE_TOOBIG;
goto vdbe_error_halt;
*/
no_mem:
db->mallocFailed = 1;
- sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
+ sqlite3SetString(&p->zErrMsg, db, "out of memory");
rc = SQLITE_NOMEM;
goto vdbe_error_halt;
abort_due_to_error:
assert( p->zErrMsg==0 );
if( db->mallocFailed ) rc = SQLITE_NOMEM;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
+ if( rc!=SQLITE_IOERR_NOMEM ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
+ }
goto vdbe_error_halt;
/* Jump to here if the sqlite3_interrupt() API sets the interrupt
assert( db->u1.isInterrupted );
rc = SQLITE_INTERRUPT;
p->rc = rc;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
goto vdbe_error_halt;
}
**
** This file contains code used to implement incremental BLOB I/O.
**
-** $Id: vdbeblob.c,v 1.22 2008/04/24 09:49:55 danielk1977 Exp $
+** $Id: vdbeblob.c,v 1.25 2008/07/28 19:34:54 drh Exp $
*/
memset(&sParse, 0, sizeof(Parse));
sParse.db = db;
- rc = sqlite3SafetyOn(db);
- if( rc!=SQLITE_OK ){
+ if( sqlite3SafetyOn(db) ){
sqlite3_mutex_leave(db->mutex);
- return rc;
+ return SQLITE_MISUSE;
}
sqlite3BtreeEnterAll(db);
if( sParse.zErrMsg ){
sqlite3_snprintf(sizeof(zErr), zErr, "%s", sParse.zErrMsg);
}
- sqlite3_free(sParse.zErrMsg);
+ sqlite3DbFree(db, sParse.zErrMsg);
rc = SQLITE_ERROR;
(void)sqlite3SafetyOff(db);
sqlite3BtreeLeaveAll(db);
** and offset cache without causing any IO.
*/
sqlite3VdbeChangeP2(v, flags ? 4 : 2, pTab->nCol+1);
+ sqlite3VdbeChangeP2(v, 8, pTab->nCol);
if( !db->mallocFailed ){
sqlite3VdbeMakeReady(v, 1, 1, 1, 0);
}
}
pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
if( db->mallocFailed ){
- sqlite3_free(pBlob);
+ sqlite3DbFree(db, pBlob);
goto blob_open_out;
}
pBlob->flags = flags;
int rc;
rc = sqlite3_finalize(p->pStmt);
- sqlite3_free(p);
+ sqlite3DbFree(p->db, p);
return rc;
}
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
-** $Id: expr.c,v 1.371 2008/05/01 17:16:53 drh Exp $
+** $Id: expr.c,v 1.387 2008/07/28 19:34:53 drh Exp $
*/
/*
SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
char *zColl = 0; /* Dequoted name of collation sequence */
CollSeq *pColl;
- zColl = sqlite3NameFromToken(pParse->db, pName);
+ sqlite3 *db = pParse->db;
+ zColl = sqlite3NameFromToken(db, pName);
if( pExpr && zColl ){
pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
if( pColl ){
pExpr->flags |= EP_ExpCollate;
}
}
- sqlite3_free(zColl);
+ sqlite3DbFree(db, zColl);
return pExpr;
}
addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
(void*)p4, P4_COLLSEQ);
sqlite3VdbeChangeP5(pParse->pVdbe, p5);
- if( p5 & SQLITE_AFF_MASK ){
+ if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
sqlite3ExprCacheAffinityChange(pParse, in1, 1);
sqlite3ExprCacheAffinityChange(pParse, in2, 1);
}
return addr;
}
+#if SQLITE_MAX_EXPR_DEPTH>0
+/*
+** Check that argument nHeight is less than or equal to the maximum
+** expression depth allowed. If it is not, leave an error message in
+** pParse.
+*/
+static int checkExprHeight(Parse *pParse, int nHeight){
+ int rc = SQLITE_OK;
+ int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
+ if( nHeight>mxHeight ){
+ sqlite3ErrorMsg(pParse,
+ "Expression tree is too large (maximum depth %d)", mxHeight
+ );
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/* The following three functions, heightOfExpr(), heightOfExprList()
+** and heightOfSelect(), are used to determine the maximum height
+** of any expression tree referenced by the structure passed as the
+** first argument.
+**
+** If this maximum height is greater than the current value pointed
+** to by pnHeight, the second parameter, then set *pnHeight to that
+** value.
+*/
+static void heightOfExpr(Expr *p, int *pnHeight){
+ if( p ){
+ if( p->nHeight>*pnHeight ){
+ *pnHeight = p->nHeight;
+ }
+ }
+}
+static void heightOfExprList(ExprList *p, int *pnHeight){
+ if( p ){
+ int i;
+ for(i=0; i<p->nExpr; i++){
+ heightOfExpr(p->a[i].pExpr, pnHeight);
+ }
+ }
+}
+static void heightOfSelect(Select *p, int *pnHeight){
+ if( p ){
+ heightOfExpr(p->pWhere, pnHeight);
+ heightOfExpr(p->pHaving, pnHeight);
+ heightOfExpr(p->pLimit, pnHeight);
+ heightOfExpr(p->pOffset, pnHeight);
+ heightOfExprList(p->pEList, pnHeight);
+ heightOfExprList(p->pGroupBy, pnHeight);
+ heightOfExprList(p->pOrderBy, pnHeight);
+ heightOfSelect(p->pPrior, pnHeight);
+ }
+}
+
+/*
+** Set the Expr.nHeight variable in the structure passed as an
+** argument. An expression with no children, Expr.pList or
+** Expr.pSelect member has a height of 1. Any other expression
+** has a height equal to the maximum height of any other
+** referenced Expr plus one.
+*/
+static void exprSetHeight(Expr *p){
+ int nHeight = 0;
+ heightOfExpr(p->pLeft, &nHeight);
+ heightOfExpr(p->pRight, &nHeight);
+ heightOfExprList(p->pList, &nHeight);
+ heightOfSelect(p->pSelect, &nHeight);
+ p->nHeight = nHeight + 1;
+}
+
+/*
+** Set the Expr.nHeight variable using the exprSetHeight() function. If
+** the height is greater than the maximum allowed expression depth,
+** leave an error in pParse.
+*/
+SQLITE_PRIVATE void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
+ exprSetHeight(p);
+ checkExprHeight(pParse, p->nHeight);
+}
+
+/*
+** Return the maximum height of any expression tree referenced
+** by the select statement passed as an argument.
+*/
+SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){
+ int nHeight = 0;
+ heightOfSelect(p, &nHeight);
+ return nHeight;
+}
+#else
+ #define checkExprHeight(x,y)
+ #define exprSetHeight(y)
+#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
+
/*
** Construct a new expression node and return a pointer to it. Memory
** for this node is obtained from sqlite3_malloc(). The calling function
** this function must always be allocated with sqlite3Expr() for this
** reason.
*/
- sqlite3ExprDelete(pLeft);
- sqlite3ExprDelete(pRight);
+ sqlite3ExprDelete(db, pLeft);
+ sqlite3ExprDelete(db, pRight);
return 0;
}
pNew->op = op;
pNew->pLeft = pLeft;
pNew->pRight = pRight;
pNew->iAgg = -1;
+ pNew->span.z = (u8*)"";
if( pToken ){
assert( pToken->dyn==0 );
pNew->span = pNew->token = *pToken;
}else if( pLeft ){
if( pRight ){
- sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
+ if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
+ sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
+ }
if( pRight->flags & EP_ExpCollate ){
pNew->flags |= EP_ExpCollate;
pNew->pColl = pRight->pColl;
}
}
- sqlite3ExprSetHeight(pNew);
+ exprSetHeight(pNew);
return pNew;
}
Expr *pRight, /* Right operand */
const Token *pToken /* Argument token */
){
- return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
+ Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
+ if( p ){
+ checkExprHeight(pParse, p->nHeight);
+ }
+ return p;
}
/*
/*
** Set the Expr.span field of the given expression to span all
-** text between the two given tokens.
+** text between the two given tokens. Both tokens must be pointing
+** at the same string.
*/
SQLITE_PRIVATE void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
assert( pRight!=0 );
assert( pLeft!=0 );
- if( pExpr && pRight->z && pLeft->z ){
- assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
- if( pLeft->dyn==0 && pRight->dyn==0 ){
- pExpr->span.z = pLeft->z;
- pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
- }else{
- pExpr->span.z = 0;
- }
+ if( pExpr ){
+ pExpr->span.z = pLeft->z;
+ pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
}
}
*/
SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
Expr *pNew;
+ sqlite3 *db = pParse->db;
assert( pToken );
- pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) );
+ pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
if( pNew==0 ){
- sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
+ sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
return 0;
}
pNew->op = TK_FUNCTION;
pNew->token = *pToken;
pNew->span = pNew->token;
- sqlite3ExprSetHeight(pNew);
+ sqlite3ExprSetHeight(pParse, pNew);
return pNew;
}
/*
** Recursively delete an expression tree.
*/
-SQLITE_PRIVATE void sqlite3ExprDelete(Expr *p){
+SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){
if( p==0 ) return;
- if( p->span.dyn ) sqlite3_free((char*)p->span.z);
- if( p->token.dyn ) sqlite3_free((char*)p->token.z);
- sqlite3ExprDelete(p->pLeft);
- sqlite3ExprDelete(p->pRight);
- sqlite3ExprListDelete(p->pList);
- sqlite3SelectDelete(p->pSelect);
- sqlite3_free(p);
+ if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
+ if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
+ sqlite3ExprDelete(db, p->pLeft);
+ sqlite3ExprDelete(db, p->pRight);
+ sqlite3ExprListDelete(db, p->pList);
+ sqlite3SelectDelete(db, p->pSelect);
+ sqlite3DbFree(db, p);
}
/*
return pNew;
}
SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
- if( pTo->dyn ) sqlite3_free((char*)pTo->z);
+ if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
if( pFrom->z ){
pTo->n = pFrom->n;
pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
pNew->nExpr = pNew->nAlloc = p->nExpr;
pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
if( pItem==0 ){
- sqlite3_free(pNew);
+ sqlite3DbFree(db, pNew);
return 0;
}
pOldItem = p->a;
pNew->nId = pNew->nAlloc = p->nId;
pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
if( pNew->a==0 ){
- sqlite3_free(pNew);
+ sqlite3DbFree(db, pNew);
return 0;
}
for(i=0; i<p->nId; i++){
pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
- pNew->iLimit = -1;
- pNew->iOffset = -1;
+ pNew->iLimit = 0;
+ pNew->iOffset = 0;
pNew->isResolved = p->isResolved;
pNew->isAgg = p->isAgg;
pNew->usesEphm = 0;
no_mem:
/* Avoid leaking memory if malloc has failed. */
- sqlite3ExprDelete(pExpr);
- sqlite3ExprListDelete(pList);
+ sqlite3ExprDelete(db, pExpr);
+ sqlite3ExprListDelete(db, pList);
return 0;
}
}
}
-
-/* The following three functions, heightOfExpr(), heightOfExprList()
-** and heightOfSelect(), are used to determine the maximum height
-** of any expression tree referenced by the structure passed as the
-** first argument.
-**
-** If this maximum height is greater than the current value pointed
-** to by pnHeight, the second parameter, then set *pnHeight to that
-** value.
-*/
-static void heightOfExpr(Expr *p, int *pnHeight){
- if( p ){
- if( p->nHeight>*pnHeight ){
- *pnHeight = p->nHeight;
- }
- }
-}
-static void heightOfExprList(ExprList *p, int *pnHeight){
- if( p ){
- int i;
- for(i=0; i<p->nExpr; i++){
- heightOfExpr(p->a[i].pExpr, pnHeight);
- }
- }
-}
-static void heightOfSelect(Select *p, int *pnHeight){
- if( p ){
- heightOfExpr(p->pWhere, pnHeight);
- heightOfExpr(p->pHaving, pnHeight);
- heightOfExpr(p->pLimit, pnHeight);
- heightOfExpr(p->pOffset, pnHeight);
- heightOfExprList(p->pEList, pnHeight);
- heightOfExprList(p->pGroupBy, pnHeight);
- heightOfExprList(p->pOrderBy, pnHeight);
- heightOfSelect(p->pPrior, pnHeight);
- }
-}
-
-/*
-** Set the Expr.nHeight variable in the structure passed as an
-** argument. An expression with no children, Expr.pList or
-** Expr.pSelect member has a height of 1. Any other expression
-** has a height equal to the maximum height of any other
-** referenced Expr plus one.
-*/
-SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *p){
- int nHeight = 0;
- heightOfExpr(p->pLeft, &nHeight);
- heightOfExpr(p->pRight, &nHeight);
- heightOfExprList(p->pList, &nHeight);
- heightOfSelect(p->pSelect, &nHeight);
- p->nHeight = nHeight + 1;
-}
-
-/*
-** Return the maximum height of any expression tree referenced
-** by the select statement passed as an argument.
-*/
-SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){
- int nHeight = 0;
- heightOfSelect(p, &nHeight);
- return nHeight;
-}
-
/*
** Delete an entire expression list.
*/
-SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList *pList){
+SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
int i;
struct ExprList_item *pItem;
if( pList==0 ) return;
assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
assert( pList->nExpr<=pList->nAlloc );
for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
- sqlite3ExprDelete(pItem->pExpr);
- sqlite3_free(pItem->zName);
+ sqlite3ExprDelete(db, pItem->pExpr);
+ sqlite3DbFree(db, pItem->zName);
}
- sqlite3_free(pList->a);
- sqlite3_free(pList);
+ sqlite3DbFree(db, pList->a);
+ sqlite3DbFree(db, pList);
}
/*
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
*/
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){
+ int rc = 0;
+ if( p->flags & EP_IntValue ){
+ *pValue = p->iTable;
+ return 1;
+ }
switch( p->op ){
case TK_INTEGER: {
- if( sqlite3GetInt32((char*)p->token.z, pValue) ){
- return 1;
- }
+ rc = sqlite3GetInt32((char*)p->token.z, pValue);
break;
}
case TK_UPLUS: {
- return sqlite3ExprIsInteger(p->pLeft, pValue);
+ rc = sqlite3ExprIsInteger(p->pLeft, pValue);
+ break;
}
case TK_UMINUS: {
int v;
if( sqlite3ExprIsInteger(p->pLeft, &v) ){
*pValue = -v;
- return 1;
+ rc = 1;
}
break;
}
default: break;
}
- return 0;
+ if( rc ){
+ p->op = TK_INTEGER;
+ p->flags |= EP_IntValue;
+ p->iTable = *pValue;
+ }
+ return rc;
}
/*
pOrig = pEList->a[j].pExpr;
if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
- sqlite3_free(zCol);
+ sqlite3DbFree(db, zCol);
return 2;
}
pDup = sqlite3ExprDup(db, pOrig);
pDup->pColl = pExpr->pColl;
pDup->flags |= EP_ExpCollate;
}
- if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);
- if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);
+ if( pExpr->span.dyn ) sqlite3DbFree(db, (char*)pExpr->span.z);
+ if( pExpr->token.dyn ) sqlite3DbFree(db, (char*)pExpr->token.z);
memcpy(pExpr, pDup, sizeof(*pExpr));
- sqlite3_free(pDup);
+ sqlite3DbFree(db, pDup);
cnt = 1;
pMatch = 0;
assert( zTab==0 && zDb==0 );
** fields are not changed in any context.
*/
if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
- sqlite3_free(zCol);
+ sqlite3DbFree(db, zCol);
return 0;
}
lookupname_end:
/* Clean up and return
*/
- sqlite3_free(zDb);
- sqlite3_free(zTab);
- sqlite3ExprDelete(pExpr->pLeft);
+ sqlite3DbFree(db, zDb);
+ sqlite3DbFree(db, zTab);
+ sqlite3ExprDelete(db, pExpr->pLeft);
pExpr->pLeft = 0;
- sqlite3ExprDelete(pExpr->pRight);
+ sqlite3ExprDelete(db, pExpr->pRight);
pExpr->pRight = 0;
pExpr->op = TK_COLUMN;
lookupname_end_2:
- sqlite3_free(zCol);
+ sqlite3DbFree(db, zCol);
if( cnt==1 ){
assert( pNC!=0 );
sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
if( pExpr==0 ) return 0;
#if SQLITE_MAX_EXPR_DEPTH>0
{
- int mxDepth = pNC->pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
- if( (pExpr->nHeight+pNC->pParse->nHeight)>mxDepth ){
- sqlite3ErrorMsg(pNC->pParse,
- "Expression tree is too large (maximum depth %d)", mxDepth
- );
+ if( checkExprHeight(pNC->pParse, pExpr->nHeight + pNC->pParse->nHeight) ){
return 1;
}
pNC->pParse->nHeight += pExpr->nHeight;
**
** SELECT <column> FROM <table>
**
-** If the mustBeUnique parameter is false, the structure will be used
-** for fast set membership tests. In this case an epheremal table must
-** be used unless <column> is an INTEGER PRIMARY KEY or an index can
-** be found with <column> as its left-most column.
-**
-** If mustBeUnique is true, then the structure will be used to iterate
+** If prNotFound parameter is 0, then the structure will be used to iterate
** through the set members, skipping any duplicates. In this case an
** epheremal table must be used unless the selected <column> is guaranteed
** to be unique - either because it is an INTEGER PRIMARY KEY or it
** is unique by virtue of a constraint or implicit index.
+**
+** If the prNotFound parameter is not 0, then the structure will be used
+** for fast set membership tests. In this case an epheremal table must
+** be used unless <column> is an INTEGER PRIMARY KEY or an index can
+** be found with <column> as its left-most column.
+**
+** When the structure is being used for set membership tests, the user
+** needs to know whether or not the structure contains an SQL NULL
+** value in order to correctly evaluate expressions like "X IN (Y, Z)".
+** If there is a chance that the structure may contain a NULL value at
+** runtime, then a register is allocated and the register number written
+** to *prNotFound. If there is no chance that the structure contains a
+** NULL value, then *prNotFound is left unchanged.
+**
+** If a register is allocated and its location stored in *prNotFound, then
+** its initial value is NULL. If the structure does not remain constant
+** for the duration of the query (i.e. the set is a correlated sub-select),
+** the value of the allocated register is reset to NULL each time the
+** structure is repopulated. This allows the caller to use vdbe code
+** equivalent to the following:
+**
+** if( register==NULL ){
+** has_null = <test if data structure contains null>
+** register = 1
+** }
+**
+** in order to avoid running the <test if data structure contains null>
+** test more often than is necessary.
*/
#ifndef SQLITE_OMIT_SUBQUERY
-SQLITE_PRIVATE int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){
+SQLITE_PRIVATE int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
Select *p;
int eType = 0;
int iTab = pParse->nTab++;
+ int mustBeUnique = !prNotFound;
/* The follwing if(...) expression is true if the SELECT is of the
** simple form:
eType = IN_INDEX_INDEX;
sqlite3VdbeJumpHere(v, iAddr);
+ if( prNotFound && !pTab->aCol[iCol].notNull ){
+ *prNotFound = ++pParse->nMem;
+ }
}
}
}
}
if( eType==0 ){
- sqlite3CodeSubselect(pParse, pX);
+ int rMayHaveNull = 0;
+ if( prNotFound ){
+ *prNotFound = rMayHaveNull = ++pParse->nMem;
+ }
+ sqlite3CodeSubselect(pParse, pX, rMayHaveNull);
eType = IN_INDEX_EPH;
}else{
pX->iTable = iTab;
** operator or subquery.
*/
#ifndef SQLITE_OMIT_SUBQUERY
-SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
+SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr, int rMayHaveNull){
int testAddr = 0; /* One-time test address */
Vdbe *v = sqlite3GetVdbe(pParse);
if( v==0 ) return;
KeyInfo keyInfo;
int addr; /* Address of OP_OpenEphemeral instruction */
+ if( rMayHaveNull ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
+ }
+
affinity = sqlite3ExprAffinity(pExpr->pLeft);
/* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
dest.affinity = (int)affinity;
assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
- if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0, 0) ){
+ if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0) ){
return;
}
pEList = pExpr->pSelect->pEList;
int i;
ExprList *pList = pExpr->pList;
struct ExprList_item *pItem;
- int r1, r2;
+ int r1, r2, r3;
if( !affinity ){
affinity = SQLITE_AFF_NONE;
/* Evaluate the expression and insert it into the temp table */
pParse->disableColCache++;
- sqlite3ExprCode(pParse, pE2, r1);
+ r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
assert( pParse->disableColCache>0 );
pParse->disableColCache--;
- sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
- sqlite3ExprCacheAffinityChange(pParse, r1, 1);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, r3, 1);
sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
}
sqlite3ReleaseTempReg(pParse, r1);
sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
VdbeComment((v, "Init EXISTS result"));
}
- sqlite3ExprDelete(pSel->pLimit);
+ sqlite3ExprDelete(pParse->db, pSel->pLimit);
pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
- if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0, 0) ){
+ if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0) ){
return;
}
pExpr->iColumn = dest.iParm;
** z[n] character is guaranteed to be something that does not look
** like the continuation of the number.
*/
-static void codeInteger(Vdbe *v, const char *z, int n, int negFlag, int iMem){
- assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
- if( z ){
+static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
+ const char *z;
+ if( pExpr->flags & EP_IntValue ){
+ int i = pExpr->iTable;
+ if( negFlag ) i = -i;
+ sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
+ }else if( (z = (char*)pExpr->token.z)!=0 ){
int i;
+ int n = pExpr->token.n;
assert( !isdigit(z[n]) );
if( sqlite3GetInt32(z, &i) ){
if( negFlag ) i = -i;
}
/*
-** Generate code to moves content from one register to another.
-** Keep the column cache up-to-date.
+** Generate code to move content from registers iFrom...iFrom+nReg-1
+** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
*/
-SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo){
+SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
int i;
if( iFrom==iTo ) return;
- sqlite3VdbeAddOp2(pParse->pVdbe, OP_Move, iFrom, iTo);
+ sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
for(i=0; i<pParse->nColCache; i++){
- if( pParse->aColCache[i].iReg==iFrom ){
- pParse->aColCache[i].iReg = iTo;
+ int x = pParse->aColCache[i].iReg;
+ if( x>=iFrom && x<iFrom+nReg ){
+ pParse->aColCache[i].iReg += iTo-iFrom;
}
}
}
/*
+** Generate code to copy content from registers iFrom...iFrom+nReg-1
+** over to iTo..iTo+nReg-1.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
+ int i;
+ if( iFrom==iTo ) return;
+ for(i=0; i<nReg; i++){
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
+ }
+}
+
+/*
** Return true if any register in the range iFrom..iTo (inclusive)
** is used as part of the column cache.
*/
break;
}
case TK_INTEGER: {
- codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
+ codeInteger(v, pExpr, 0, target);
break;
}
case TK_FLOAT: {
Expr *pLeft = pExpr->pLeft;
assert( pLeft );
if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
- Token *p = &pLeft->token;
if( pLeft->op==TK_FLOAT ){
- codeReal(v, (char*)p->z, p->n, 1, target);
+ codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
}else{
- codeInteger(v, (char*)p->z, p->n, 1, target);
+ codeInteger(v, pLeft, 1, target);
}
}else{
regFree1 = r1 = sqlite3GetTempReg(pParse);
testcase( op==TK_EXISTS );
testcase( op==TK_SELECT );
if( pExpr->iColumn==0 ){
- sqlite3CodeSubselect(pParse, pExpr);
+ sqlite3CodeSubselect(pParse, pExpr, 0);
}
inReg = pExpr->iColumn;
break;
}
case TK_IN: {
- int j1, j2, j3, j4, j5;
+ int rNotFound = 0;
+ int rMayHaveNull = 0;
+ int j2, j3, j4, j5;
char affinity;
int eType;
- eType = sqlite3FindInIndex(pParse, pExpr, 0);
+ VdbeNoopComment((v, "begin IN expr r%d", target));
+ eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
+ if( rMayHaveNull ){
+ rNotFound = ++pParse->nMem;
+ }
/* Figure out the affinity to use to create a key from the results
** of the expression. affinityStr stores a static string suitable for
*/
affinity = comparisonAffinity(pExpr);
- sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
/* Code the <expr> from "<expr> IN (...)". The temporary table
** pExpr->iTable contains the values that make up the (...) set.
*/
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
- testcase( regFree1==0 );
- j1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
- sqlite3VdbeAddOp2(v, OP_Null, 0, target);
- j2 = sqlite3VdbeAddOp0(v, OP_Goto);
- sqlite3VdbeJumpHere(v, j1);
+ pParse->disableColCache++;
+ sqlite3ExprCode(pParse, pExpr->pLeft, target);
+ pParse->disableColCache--;
+ j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
if( eType==IN_INDEX_ROWID ){
- j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, r1);
- j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, r1);
+ j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
+ j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
j5 = sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeJumpHere(v, j3);
sqlite3VdbeJumpHere(v, j4);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
}else{
r2 = regFree2 = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
- sqlite3ExprCacheAffinityChange(pParse, r1, 1);
+
+ /* Create a record and test for set membership. If the set contains
+ ** the value, then jump to the end of the test code. The target
+ ** register still contains the true (1) value written to it earlier.
+ */
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
+
+ /* If the set membership test fails, then the result of the
+ ** "x IN (...)" expression must be either 0 or NULL. If the set
+ ** contains no NULL values, then the result is 0. If the set
+ ** contains one or more NULL values, then the result of the
+ ** expression is also NULL.
+ */
+ if( rNotFound==0 ){
+ /* This branch runs if it is known at compile time (now) that
+ ** the set contains no NULL values. This happens as the result
+ ** of a "NOT NULL" constraint in the database schema. No need
+ ** to test the data structure at runtime in this case.
+ */
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
+ }else{
+ /* This block populates the rNotFound register with either NULL
+ ** or 0 (an integer value). If the data structure contains one
+ ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
+ ** to 0. If register rMayHaveNull is already set to some value
+ ** other than NULL, then the test has already been run and
+ ** rNotFound is already populated.
+ */
+ static const char nullRecord[] = { 0x02, 0x00 };
+ j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
+ sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
+ nullRecord, P4_STATIC);
+ j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
+ sqlite3VdbeJumpHere(v, j4);
+ sqlite3VdbeJumpHere(v, j3);
+
+ /* Copy the value of register rNotFound (which is either NULL or 0)
+ ** into the target register. This will be the result of the
+ ** expression.
+ */
+ sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
+ }
}
- sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
sqlite3VdbeJumpHere(v, j2);
sqlite3VdbeJumpHere(v, j5);
+ VdbeComment((v, "end IN expr r%d", target));
break;
}
#endif
** Allocate or deallocate temporary use registers during code generation.
*/
SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){
- int i, r;
if( pParse->nTempReg==0 ){
return ++pParse->nMem;
}
- for(i=0; i<pParse->nTempReg; i++){
- r = pParse->aTempReg[i];
- if( usedAsColumnCache(pParse, r, r) ) continue;
- }
- if( i>=pParse->nTempReg ){
- return ++pParse->nMem;
- }
- while( i<pParse->nTempReg-1 ){
- pParse->aTempReg[i] = pParse->aTempReg[i+1];
- }
- pParse->nTempReg--;
- return r;
+ return pParse->aTempReg[--pParse->nTempReg];
}
SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
+ sqlite3ExprWritableRegister(pParse, iReg, iReg);
pParse->aTempReg[pParse->nTempReg++] = iReg;
}
}
** This file contains C code routines that used to generate VDBE code
** that implements the ALTER TABLE command.
**
-** $Id: alter.c,v 1.44 2008/05/09 14:17:52 drh Exp $
+** $Id: alter.c,v 1.47 2008/07/28 19:34:53 drh Exp $
*/
/*
/* The principle used to locate the table name in the CREATE TABLE
** statement is that the table name is the first non-space token that
- ** is immediately followed by a left parenthesis - TK_LP - or "USING" TK_USING.
+ ** is immediately followed by a TK_LP or TK_USING token.
*/
if( zSql ){
do {
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
zTableName, tname.z+tname.n);
- sqlite3_result_text(context, zRet, -1, sqlite3_free);
+ sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
}
}
*/
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
zTableName, tname.z+tname.n);
- sqlite3_result_text(context, zRet, -1, sqlite3_free);
+ sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
}
}
#endif /* !SQLITE_OMIT_TRIGGER */
** Register built-in functions used to help implement ALTER TABLE
*/
SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3 *db){
- static const struct {
- char *zName;
- signed char nArg;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
- } aFuncs[] = {
- { "sqlite_rename_table", 2, renameTableFunc},
+ sqlite3CreateFunc(db, "sqlite_rename_table", 2, SQLITE_UTF8, 0,
+ renameTableFunc, 0, 0);
#ifndef SQLITE_OMIT_TRIGGER
- { "sqlite_rename_trigger", 2, renameTriggerFunc},
+ sqlite3CreateFunc(db, "sqlite_rename_trigger", 2, SQLITE_UTF8, 0,
+ renameTriggerFunc, 0, 0);
#endif
- };
- int i;
-
- for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
- sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
- SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
- }
}
/*
}else{
tmp = zWhere;
zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->name);
- sqlite3_free(tmp);
+ sqlite3DbFree(db, tmp);
}
}
}
"sql = sqlite_rename_trigger(sql, %Q), "
"tbl_name = %Q "
"WHERE %s;", zName, zName, zWhere);
- sqlite3_free(zWhere);
+ sqlite3DbFree(db, zWhere);
}
#endif
reloadTableSchema(pParse, pTab, zName);
exit_rename_table:
- sqlite3SrcListDelete(pSrc);
- sqlite3_free(zName);
+ sqlite3SrcListDelete(db, pSrc);
+ sqlite3DbFree(db, zName);
}
zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
zTab
);
- sqlite3_free(zCol);
+ sqlite3DbFree(db, zCol);
}
/* If the default value of the new column is NULL, then set the file
if( !pNew ) goto exit_begin_add_column;
pParse->pNewTable = pNew;
pNew->nRef = 1;
+ pNew->db = db;
pNew->nCol = pTab->nCol;
assert( pNew->nCol>0 );
nAlloc = (((pNew->nCol-1)/8)*8)+8;
sqlite3ChangeCookie(pParse, iDb);
exit_begin_add_column:
- sqlite3SrcListDelete(pSrc);
+ sqlite3SrcListDelete(db, pSrc);
return;
}
#endif /* SQLITE_ALTER_TABLE */
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
-** @(#) $Id: analyze.c,v 1.42 2008/03/25 09:47:35 danielk1977 Exp $
+** @(#) $Id: analyze.c,v 1.43 2008/07/28 19:34:53 drh Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE
z = sqlite3NameFromToken(db, pName1);
if( z ){
pTab = sqlite3LocateTable(pParse, 0, z, 0);
- sqlite3_free(z);
+ sqlite3DbFree(db, z);
if( pTab ){
analyzeTable(pParse, pTab);
}
z = sqlite3NameFromToken(db, pTableName);
if( z ){
pTab = sqlite3LocateTable(pParse, 0, z, zDb);
- sqlite3_free(z);
+ sqlite3DbFree(db, z);
if( pTab ){
analyzeTable(pParse, pTab);
}
(void)sqlite3SafetyOff(db);
rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
(void)sqlite3SafetyOn(db);
- sqlite3_free(zSql);
+ sqlite3DbFree(db, zSql);
return rc;
}
*************************************************************************
** This file contains code used to implement the ATTACH and DETACH commands.
**
-** $Id: attach.c,v 1.75 2008/04/17 17:02:01 drh Exp $
+** $Id: attach.c,v 1.77 2008/07/28 19:34:53 drh Exp $
*/
#ifndef SQLITE_OMIT_ATTACH
** hash tables.
*/
if( db->aDb==db->aDbStatic ){
- aNew = sqlite3_malloc( sizeof(db->aDb[0])*3 );
- if( aNew==0 ){
- db->mallocFailed = 1;
- return;
- }
+ aNew = sqlite3DbMallocRaw(db, sizeof(db->aDb[0])*3 );
+ if( aNew==0 ) return;
memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
}else{
- aNew = sqlite3_realloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
- if( aNew==0 ){
- db->mallocFailed = 1;
- return;
- }
+ aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
+ if( aNew==0 ) return;
}
db->aDb = aNew;
aNew = &db->aDb[db->nDb++];
/* Return an error if we get here */
if( zErrDyn ){
sqlite3_result_error(context, zErrDyn, -1);
- sqlite3_free(zErrDyn);
+ sqlite3DbFree(db, zErrDyn);
}else{
zErr[sizeof(zErr)-1] = 0;
sqlite3_result_error(context, zErr, -1);
goto attach_end;
}
rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
- sqlite3_free(zAuthArg);
+ sqlite3DbFree(db, zAuthArg);
if(rc!=SQLITE_OK ){
goto attach_end;
}
}
attach_end:
- sqlite3ExprDelete(pFilename);
- sqlite3ExprDelete(pDbname);
- sqlite3ExprDelete(pKey);
+ sqlite3ExprDelete(db, pFilename);
+ sqlite3ExprDelete(db, pDbname);
+ sqlite3ExprDelete(db, pKey);
}
/*
** COMMIT
** ROLLBACK
**
-** $Id: build.c,v 1.484 2008/05/01 17:16:53 drh Exp $
+** $Id: build.c,v 1.493 2008/08/04 04:39:49 danielk1977 Exp $
*/
/*
if( db->mallocFailed ) return;
if( pParse->nested ) return;
if( pParse->nErr ) return;
- if( !pParse->pVdbe ){
- if( pParse->rc==SQLITE_OK && pParse->nErr ){
- pParse->rc = SQLITE_ERROR;
- return;
- }
- }
/* Begin by generating some termination code at the end of the
** vdbe program
SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
va_list ap;
char *zSql;
+ char *zErrMsg = 0;
+ sqlite3 *db = pParse->db;
# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
char saveBuf[SAVE_SZ];
if( pParse->nErr ) return;
assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
va_start(ap, zFormat);
- zSql = sqlite3VMPrintf(pParse->db, zFormat, ap);
+ zSql = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
if( zSql==0 ){
- pParse->db->mallocFailed = 1;
return; /* A malloc must have failed */
}
pParse->nested++;
memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
memset(&pParse->nVar, 0, SAVE_SZ);
- sqlite3RunParser(pParse, zSql, 0);
- sqlite3_free(zSql);
+ sqlite3RunParser(pParse, zSql, &zErrMsg);
+ sqlite3DbFree(db, zErrMsg);
+ sqlite3DbFree(db, zSql);
memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
pParse->nested--;
}
SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
Table *p = 0;
int i;
+ int nName;
assert( zName!=0 );
+ nName = sqlite3Strlen(db, zName) + 1;
for(i=OMIT_TEMPDB; i<db->nDb; i++){
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
- p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
+ p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
if( p ) break;
}
return p;
SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
Index *p = 0;
int i;
+ int nName = sqlite3Strlen(db, zName)+1;
for(i=OMIT_TEMPDB; i<db->nDb; i++){
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
Schema *pSchema = db->aDb[j].pSchema;
if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
assert( pSchema || (j==1 && !db->aDb[1].pBt) );
if( pSchema ){
- p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
+ p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
}
if( p ) break;
}
** Reclaim the memory used by an index
*/
static void freeIndex(Index *p){
- sqlite3_free(p->zColAff);
- sqlite3_free(p);
+ sqlite3 *db = p->pTable->db;
+ sqlite3DbFree(db, p->zColAff);
+ sqlite3DbFree(db, p);
}
/*
Index *pOld;
const char *zName = p->zName;
- pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
+ pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen(zName)+1, 0);
assert( pOld==0 || pOld==p );
freeIndex(p);
}
int len;
Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
- len = strlen(zIdxName);
+ len = sqlite3Strlen(db, zIdxName);
pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
if( pIndex ){
if( pIndex->pTable->pIndex==pIndex ){
for(i=j=2; i<db->nDb; i++){
struct Db *pDb = &db->aDb[i];
if( pDb->pBt==0 ){
- sqlite3_free(pDb->zName);
+ sqlite3DbFree(db, pDb->zName);
pDb->zName = 0;
continue;
}
db->nDb = j;
if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
- sqlite3_free(db->aDb);
+ sqlite3DbFree(db, db->aDb);
db->aDb = db->aDbStatic;
}
}
static void sqliteResetColumnNames(Table *pTable){
int i;
Column *pCol;
+ sqlite3 *db = pTable->db;
assert( pTable!=0 );
if( (pCol = pTable->aCol)!=0 ){
for(i=0; i<pTable->nCol; i++, pCol++){
- sqlite3_free(pCol->zName);
- sqlite3ExprDelete(pCol->pDflt);
- sqlite3_free(pCol->zType);
- sqlite3_free(pCol->zColl);
+ sqlite3DbFree(db, pCol->zName);
+ sqlite3ExprDelete(db, pCol->pDflt);
+ sqlite3DbFree(db, pCol->zType);
+ sqlite3DbFree(db, pCol->zColl);
}
- sqlite3_free(pTable->aCol);
+ sqlite3DbFree(db, pTable->aCol);
}
pTable->aCol = 0;
pTable->nCol = 0;
SQLITE_PRIVATE void sqlite3DeleteTable(Table *pTable){
Index *pIndex, *pNext;
FKey *pFKey, *pNextFKey;
+ sqlite3 *db;
if( pTable==0 ) return;
+ db = pTable->db;
/* Do not delete the table until the reference count reaches zero. */
pTable->nRef--;
pNextFKey = pFKey->pNextFrom;
assert( sqlite3HashFind(&pTable->pSchema->aFKey,
pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
- sqlite3_free(pFKey);
+ sqlite3DbFree(db, pFKey);
}
#endif
/* Delete the Table structure itself.
*/
sqliteResetColumnNames(pTable);
- sqlite3_free(pTable->zName);
- sqlite3_free(pTable->zColAff);
- sqlite3SelectDelete(pTable->pSelect);
+ sqlite3DbFree(db, pTable->zName);
+ sqlite3DbFree(db, pTable->zColAff);
+ sqlite3SelectDelete(db, pTable->pSelect);
#ifndef SQLITE_OMIT_CHECK
- sqlite3ExprDelete(pTable->pCheck);
+ sqlite3ExprDelete(db, pTable->pCheck);
#endif
sqlite3VtabClear(pTable);
- sqlite3_free(pTable);
+ sqlite3DbFree(db, pTable);
}
/*
break;
}
}
- sqlite3_free(zName);
+ sqlite3DbFree(db, zName);
}
return i;
}
pTable->iPKey = -1;
pTable->pSchema = db->aDb[iDb].pSchema;
pTable->nRef = 1;
+ pTable->db = db;
if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
pParse->pNewTable = pTable;
/* If an error occurs, we jump here */
begin_table_error:
- sqlite3_free(zName);
+ sqlite3DbFree(db, zName);
return;
}
for(i=0; i<p->nCol; i++){
if( STRICMP(z, p->aCol[i].zName) ){
sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
- sqlite3_free(z);
+ sqlite3DbFree(db, z);
return;
}
}
Column *aNew;
aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
if( aNew==0 ){
- sqlite3_free(z);
+ sqlite3DbFree(db, z);
return;
}
p->aCol = aNew;
Table *p;
int i;
Column *pCol;
+ sqlite3 *db;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
if( i<0 ) return;
pCol = &p->aCol[i];
- sqlite3_free(pCol->zType);
- pCol->zType = sqlite3NameFromToken(pParse->db, pType);
+ db = pParse->db;
+ sqlite3DbFree(db, pCol->zType);
+ pCol->zType = sqlite3NameFromToken(db, pType);
pCol->affinity = sqlite3AffinityType(pType);
}
SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
Table *p;
Column *pCol;
+ sqlite3 *db = pParse->db;
if( (p = pParse->pNewTable)!=0 ){
pCol = &(p->aCol[p->nCol-1]);
if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
pCol->zName);
}else{
Expr *pCopy;
- sqlite3 *db = pParse->db;
- sqlite3ExprDelete(pCol->pDflt);
+ sqlite3ExprDelete(db, pCol->pDflt);
pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
if( pCopy ){
sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
}
}
}
- sqlite3ExprDelete(pExpr);
+ sqlite3ExprDelete(db, pExpr);
}
/*
}
primary_key_exit:
- sqlite3ExprListDelete(pList);
+ sqlite3ExprListDelete(pParse->db, pList);
return;
}
Parse *pParse, /* Parsing context */
Expr *pCheckExpr /* The check expression */
){
+ sqlite3 *db = pParse->db;
#ifndef SQLITE_OMIT_CHECK
Table *pTab = pParse->pNewTable;
- sqlite3 *db = pParse->db;
if( pTab && !IN_DECLARE_VTAB ){
/* The CHECK expression must be duplicated so that tokens refer
** to malloced space and not the (ephemeral) text of the CREATE TABLE
sqlite3ExprDup(db, pCheckExpr));
}
#endif
- sqlite3ExprDelete(pCheckExpr);
+ sqlite3ExprDelete(db, pCheckExpr);
}
/*
Table *p;
int i;
char *zColl; /* Dequoted name of collation sequence */
+ sqlite3 *db;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
-
- zColl = sqlite3NameFromToken(pParse->db, pToken);
+ db = pParse->db;
+ zColl = sqlite3NameFromToken(db, pToken);
if( !zColl ) return;
if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
}
}
}else{
- sqlite3_free(zColl);
+ sqlite3DbFree(db, zColl);
}
}
pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
if( !pColl ){
if( nName<0 ){
- nName = strlen(zName);
+ nName = sqlite3Strlen(db, zName);
}
sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
pColl = 0;
zEnd = "\n)";
}
n += 35 + 6*p->nCol;
- zStmt = sqlite3_malloc( n );
+ zStmt = sqlite3Malloc( n );
if( zStmt==0 ){
db->mallocFailed = 1;
return 0;
SelectDest dest;
Table *pSelTab;
+ assert(pParse->nTab==0);
sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
sqlite3VdbeChangeP5(v, 1);
pParse->nTab = 2;
sqlite3SelectDestInit(&dest, SRT_Table, 1);
- sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
+ sqlite3Select(pParse, pSelect, &dest, 0, 0, 0);
sqlite3VdbeAddOp1(v, OP_Close, 1);
if( pParse->nErr==0 ){
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
zStmt,
pParse->regRowid
);
- sqlite3_free(zStmt);
+ sqlite3DbFree(db, zStmt);
sqlite3ChangeCookie(pParse, iDb);
#ifndef SQLITE_OMIT_AUTOINCREMENT
if( pParse->nVar>0 ){
sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
- sqlite3SelectDelete(pSelect);
+ sqlite3SelectDelete(db, pSelect);
return;
}
sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
p = pParse->pNewTable;
if( p==0 || pParse->nErr ){
- sqlite3SelectDelete(pSelect);
+ sqlite3SelectDelete(db, pSelect);
return;
}
sqlite3TwoPartName(pParse, pName1, pName2, &pName);
if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
&& sqlite3FixSelect(&sFix, pSelect)
){
- sqlite3SelectDelete(pSelect);
+ sqlite3SelectDelete(db, pSelect);
return;
}
** they will persist after the current sqlite3_exec() call returns.
*/
p->pSelect = sqlite3SelectDup(db, pSelect);
- sqlite3SelectDelete(pSelect);
+ sqlite3SelectDelete(db, pSelect);
if( db->mallocFailed ){
return;
}
pTable->nCol = 0;
nErr++;
}
- sqlite3SelectDelete(pSel);
+ sqlite3SelectDelete(db, pSel);
} else {
nErr++;
}
sqliteViewResetAll(db, iDb);
exit_drop_table:
- sqlite3SrcListDelete(pName);
+ sqlite3SrcListDelete(db, pName);
}
/*
int i;
int nCol;
char *z;
+ sqlite3 *db;
assert( pTo!=0 );
+ db = pParse->db;
if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
if( pFromCol==0 ){
int iCol = p->nCol-1;
nByte += strlen(pToCol->a[i].zName) + 1;
}
}
- pFKey = sqlite3DbMallocZero(pParse->db, nByte );
+ pFKey = sqlite3DbMallocZero(db, nByte );
if( pFKey==0 ){
goto fk_end;
}
pFKey = 0;
fk_end:
- sqlite3_free(pFKey);
+ sqlite3DbFree(db, pFKey);
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
- sqlite3ExprListDelete(pFromCol);
- sqlite3ExprListDelete(pToCol);
+ sqlite3ExprListDelete(db, pFromCol);
+ sqlite3ExprListDelete(db, pToCol);
}
/*
regRowid = regIdxKey + pIndex->nColumn;
j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
- 0, regRowid, (char*)regRecord, P4_INT32);
+ 0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32);
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
"indexed columns are not unique", P4_STATIC);
sqlite3VdbeJumpHere(v, j1);
goto exit_create_index;
}
}else{
- char zBuf[30];
int n;
Index *pLoop;
for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
- sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n);
- zName = 0;
- sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
+ zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
if( zName==0 ){
- db->mallocFailed = 1;
goto exit_create_index;
}
}
iMem,
zStmt
);
- sqlite3_free(zStmt);
+ sqlite3DbFree(db, zStmt);
/* Fill the index with data and reparse the schema. Code an OP_Expire
** to invalidate all pre-compiled statements.
if( pIndex ){
freeIndex(pIndex);
}
- sqlite3ExprListDelete(pList);
- sqlite3SrcListDelete(pTblName);
- sqlite3_free(zName);
+ sqlite3ExprListDelete(db, pList);
+ sqlite3SrcListDelete(db, pTblName);
+ sqlite3DbFree(db, zName);
return;
}
}
exit_drop_index:
- sqlite3SrcListDelete(pName);
+ sqlite3SrcListDelete(db, pName);
}
/*
&i
);
if( i<0 ){
- sqlite3IdListDelete(pList);
+ sqlite3IdListDelete(db, pList);
return 0;
}
pList->a[i].zName = sqlite3NameFromToken(db, pToken);
/*
** Delete an IdList.
*/
-SQLITE_PRIVATE void sqlite3IdListDelete(IdList *pList){
+SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
int i;
if( pList==0 ) return;
for(i=0; i<pList->nId; i++){
- sqlite3_free(pList->a[i].zName);
+ sqlite3DbFree(db, pList->a[i].zName);
}
- sqlite3_free(pList->a);
- sqlite3_free(pList);
+ sqlite3DbFree(db, pList->a);
+ sqlite3DbFree(db, pList);
}
/*
pNew = sqlite3DbRealloc(db, pList,
sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
if( pNew==0 ){
- sqlite3SrcListDelete(pList);
+ sqlite3SrcListDelete(db, pList);
return 0;
}
pList = pNew;
/*
** Delete an entire SrcList including all its substructure.
*/
-SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList *pList){
+SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
int i;
struct SrcList_item *pItem;
if( pList==0 ) return;
for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
- sqlite3_free(pItem->zDatabase);
- sqlite3_free(pItem->zName);
- sqlite3_free(pItem->zAlias);
+ sqlite3DbFree(db, pItem->zDatabase);
+ sqlite3DbFree(db, pItem->zName);
+ sqlite3DbFree(db, pItem->zAlias);
sqlite3DeleteTable(pItem->pTab);
- sqlite3SelectDelete(pItem->pSelect);
- sqlite3ExprDelete(pItem->pOn);
- sqlite3IdListDelete(pItem->pUsing);
+ sqlite3SelectDelete(db, pItem->pSelect);
+ sqlite3ExprDelete(db, pItem->pOn);
+ sqlite3IdListDelete(db, pItem->pUsing);
}
- sqlite3_free(pList);
+ sqlite3DbFree(db, pList);
}
/*
sqlite3 *db = pParse->db;
p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
if( p==0 || p->nSrc==0 ){
- sqlite3ExprDelete(pOn);
- sqlite3IdListDelete(pUsing);
- sqlite3SelectDelete(pSubquery);
+ sqlite3ExprDelete(db, pOn);
+ sqlite3IdListDelete(db, pUsing);
+ sqlite3SelectDelete(db, pSubquery);
return p;
}
pItem = &p->a[p->nSrc-1];
if( pColl ){
if( zColl ){
reindexDatabases(pParse, zColl);
- sqlite3_free(zColl);
+ sqlite3DbFree(db, zColl);
}
return;
}
- sqlite3_free(zColl);
+ sqlite3DbFree(db, zColl);
}
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
if( iDb<0 ) return;
pTab = sqlite3FindTable(db, z, zDb);
if( pTab ){
reindexTable(pParse, pTab, 0);
- sqlite3_free(z);
+ sqlite3DbFree(db, z);
return;
}
pIndex = sqlite3FindIndex(db, z, zDb);
- sqlite3_free(z);
+ sqlite3DbFree(db, z);
if( pIndex ){
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3RefillIndex(pParse, pIndex, -1);
** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
**
** If successful, a pointer to the new structure is returned. In this case
-** the caller is responsible for calling sqlite3_free() on the returned
+** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
** pointer. If an error occurs (out of memory or missing collation
** sequence), NULL is returned and the state of pParse updated to reflect
** the error.
int i;
int nCol = pIdx->nColumn;
int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
- KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes);
+ sqlite3 *db = pParse->db;
+ KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
if( pKey ){
pKey->db = pParse->db;
}
if( pParse->nErr ){
- sqlite3_free(pKey);
+ sqlite3DbFree(db, pKey);
pKey = 0;
}
return pKey;
** This file contains functions used to access the internal hash tables
** of user defined functions and collation sequences.
**
-** $Id: callback.c,v 1.23 2007/08/29 12:31:26 danielk1977 Exp $
+** $Id: callback.c,v 1.26 2008/07/28 19:34:53 drh Exp $
*/
*/
static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
assert( !db->xCollNeeded || !db->xCollNeeded16 );
- if( nName<0 ) nName = strlen(zName);
+ if( nName<0 ) nName = sqlite3Strlen(db, zName);
if( db->xCollNeeded ){
char *zExternal = sqlite3DbStrNDup(db, zName, nName);
if( !zExternal ) return;
db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
- sqlite3_free(zExternal);
+ sqlite3DbFree(db, zExternal);
}
#ifndef SQLITE_OMIT_UTF16
if( db->xCollNeeded16 ){
int create
){
CollSeq *pColl;
- if( nName<0 ) nName = strlen(zName);
+ if( nName<0 ) nName = sqlite3Strlen(db, zName);
pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
if( 0==pColl && create ){
assert( pDel==0 || pDel==pColl );
if( pDel!=0 ){
db->mallocFailed = 1;
- sqlite3_free(pDel);
+ sqlite3DbFree(db, pDel);
pColl = 0;
}
}
pBest->zName[nName] = 0;
if( pBest==sqlite3HashInsert(&db->aFunc,pBest->zName,nName,(void*)pBest) ){
db->mallocFailed = 1;
- sqlite3_free(pBest);
+ sqlite3DbFree(db, pBest);
return 0;
}
}
/*
** Free all resources held by the schema structure. The void* argument points
-** at a Schema struct. This function does not call sqlite3_free() on the
+** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the
** pointer itself, it just cleans up subsiduary resources (i.e. the contents
** of the schema hash tables).
+**
+** The Schema.cache_size variable is not cleared.
*/
SQLITE_PRIVATE void sqlite3SchemaFree(void *p){
Hash temp1;
sqlite3HashClear(&pSchema->aFKey);
sqlite3HashClear(&pSchema->idxHash);
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
- sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
+ sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem));
}
sqlite3HashClear(&temp2);
sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0);
** This file contains C code routines that are called by the parser
** in order to generate code for DELETE FROM statements.
**
-** $Id: delete.c,v 1.169 2008/04/28 18:46:43 drh Exp $
+** $Id: delete.c,v 1.171 2008/07/28 19:34:53 drh Exp $
*/
/*
pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
}
sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
- sqlite3Select(pParse, pDup, &dest, 0, 0, 0, 0);
- sqlite3SelectDelete(pDup);
+ sqlite3Select(pParse, pDup, &dest, 0, 0, 0);
+ sqlite3SelectDelete(db, pDup);
}
#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
delete_from_cleanup:
sqlite3AuthContextPop(&sContext);
- sqlite3SrcListDelete(pTabList);
- sqlite3ExprDelete(pWhere);
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprDelete(db, pWhere);
return;
}
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
** All other code has file scope.
**
-** $Id: func.c,v 1.192 2008/04/27 18:40:12 drh Exp $
+** $Id: func.c,v 1.196 2008/07/28 19:34:53 drh Exp $
*/
sqlite3_result_error_toobig(context);
z = 0;
}else{
- z = sqlite3_malloc(nByte);
+ z = sqlite3Malloc(nByte);
if( !z && nByte>0 ){
sqlite3_result_error_nomem(context);
}
nOut += nRep - nPattern;
if( nOut>=db->aLimit[SQLITE_LIMIT_LENGTH] ){
sqlite3_result_error_toobig(context);
- sqlite3_free(zOut);
+ sqlite3DbFree(db, zOut);
return;
}
zOld = zOut;
zOut = sqlite3_realloc(zOut, (int)nOut);
if( zOut==0 ){
sqlite3_result_error_nomem(context);
- sqlite3_free(zOld);
+ sqlite3DbFree(db, zOld);
return;
}
memcpy(&zOut[j], zRep, nRep);
}
}
if( nChar>0 ){
- flags = (int)sqlite3_user_data(context);
+ flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
if( flags & 1 ){
while( nIn>0 ){
int len;
const char *zVal;
StrAccum *pAccum;
const char *zSep;
- int nVal, nSep;
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ int nVal, nSep, i;
+ if( argc==0 || sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
if( pAccum ){
pAccum->useMalloc = 1;
pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
if( pAccum->nChar ){
- if( argc==2 ){
- zSep = (char*)sqlite3_value_text(argv[1]);
- nSep = sqlite3_value_bytes(argv[1]);
+ if( argc>1 ){
+ zSep = (char*)sqlite3_value_text(argv[argc-1]);
+ nSep = sqlite3_value_bytes(argv[argc-1]);
}else{
zSep = ",";
nSep = 1;
}
sqlite3StrAccumAppend(pAccum, zSep, nSep);
}
- zVal = (char*)sqlite3_value_text(argv[0]);
- nVal = sqlite3_value_bytes(argv[0]);
- sqlite3StrAccumAppend(pAccum, zVal, nVal);
+ i = 0;
+ do{
+ zVal = (char*)sqlite3_value_text(argv[i]);
+ nVal = sqlite3_value_bytes(argv[i]);
+ sqlite3StrAccumAppend(pAccum, zVal, nVal);
+ i++;
+ }while( i<argc-1 );
}
}
static void groupConcatFinalize(sqlite3_context *context){
{ "avg", 1, 0, 0, sumStep, avgFinalize },
{ "count", 0, 0, 0, countStep, countFinalize },
{ "count", 1, 0, 0, countStep, countFinalize },
- { "group_concat", 1, 0, 0, groupConcatStep, groupConcatFinalize },
- { "group_concat", 2, 0, 0, groupConcatStep, groupConcatFinalize },
+ { "group_concat", -1, 0, 0, groupConcatStep, groupConcatFinalize },
};
int i;
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
void *pArg;
u8 argType = aFuncs[i].argType;
- pArg = (void*)(int)argType;
+ pArg = SQLITE_INT_TO_PTR(argType);
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
if( aFuncs[i].needCollSeq ){
sqlite3AttachFunctions(db);
#endif
for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
- void *pArg = (void*)(int)aAggs[i].argType;
+ void *pArg = SQLITE_INT_TO_PTR(aAggs[i].argType);
sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8,
pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
if( aAggs[i].needCollSeq ){
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
-** $Id: insert.c,v 1.238 2008/04/28 18:46:43 drh Exp $
+** $Id: insert.c,v 1.248 2008/07/28 19:34:53 drh Exp $
*/
/*
int n;
Table *pTab = pIdx->pTable;
sqlite3 *db = sqlite3VdbeDb(v);
- pIdx->zColAff = (char *)sqlite3DbMallocRaw(db, pIdx->nColumn+2);
+ pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
if( !pIdx->zColAff ){
+ db->mallocFailed = 1;
return;
}
for(n=0; n<pIdx->nColumn; n++){
int i;
sqlite3 *db = sqlite3VdbeDb(v);
- zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1);
+ zColAff = (char *)sqlite3Malloc(pTab->nCol+1);
if( !zColAff ){
+ db->mallocFailed = 1;
return;
}
sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
addr = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
- sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+8);
+ sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+9);
sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
- sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+8);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
}
return memId;
**
** The code generated follows one of four templates. For a simple
** select with data coming from a VALUES clause, the code executes
-** once straight down through. The template looks like this:
+** once straight down through. Pseudo-code follows (we call this
+** the "1st template"):
**
** open write cursor to <table> and its indices
** puts VALUES clause expressions onto the stack
** schemas, including all the same indices, then a special optimization
** is invoked that copies raw records from <table2> over to <table1>.
** See the xferOptimization() function for the implementation of this
-** template. This is the second template.
+** template. This is the 2nd template.
**
** open a write cursor to <table>
** open read cursor on <table2>
** close cursors
** end foreach
**
-** The third template is for when the second template does not apply
+** The 3rd template is for when the second template does not apply
** and the SELECT clause does not read from <table> at any time.
** The generated code follows this template:
**
+** EOF <- 0
+** X <- A
** goto B
** A: setup for the SELECT
** loop over the rows in the SELECT
-** gosub C
+** load values into registers R..R+n
+** yield X
** end loop
** cleanup after the SELECT
-** goto D
-** B: open write cursor to <table> and its indices
+** EOF <- 1
+** yield X
** goto A
-** C: insert the select result into <table>
-** return
+** B: open write cursor to <table> and its indices
+** C: yield X
+** if EOF goto D
+** insert the select result into <table> from R..R+n
+** goto C
** D: cleanup
**
-** The fourth template is used if the insert statement takes its
+** The 4th template is used if the insert statement takes its
** values from a SELECT but the data is being inserted into a table
** that is also read as part of the SELECT. In the third form,
** we have to use a intermediate table to store the results of
** the select. The template is like this:
**
+** EOF <- 0
+** X <- A
** goto B
** A: setup for the SELECT
** loop over the tables in the SELECT
-** gosub C
+** load value into register R..R+n
+** yield X
** end loop
** cleanup after the SELECT
-** goto D
-** C: insert the select result into the intermediate table
-** return
-** B: open a cursor to an intermediate table
-** goto A
-** D: open write cursor to <table> and its indices
-** loop over the intermediate table
+** EOF <- 1
+** yield X
+** halt-error
+** B: open temp table
+** L: yield X
+** if EOF goto M
+** insert row from R..R+n into temp table
+** goto L
+** M: open write cursor to <table> and its indices
+** rewind temp table
+** C: loop over rows of intermediate table
** transfer values form intermediate table into <table>
-** end the loop
-** cleanup
+** end loop
+** D: cleanup
*/
SQLITE_PRIVATE void sqlite3Insert(
Parse *pParse, /* Parser context */
int endOfLoop; /* Label for the end of the insertion loop */
int useTempTable = 0; /* Store SELECT results in intermediate table */
int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
- int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
- int iSelectLoop = 0; /* Address of code that implements the SELECT */
- int iCleanup = 0; /* Address of the cleanup code */
- int iInsertBlock = 0; /* Address of the subroutine used to insert data */
+ int addrInsTop = 0; /* Jump to label "D" */
+ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
+ int addrSelect = 0; /* Address of coroutine that implements the SELECT */
+ SelectDest dest; /* Destination for SELECT on rhs of INSERT */
int newIdx = -1; /* Cursor for the NEW pseudo-table */
int iDb; /* Index of database holding TABLE */
Db *pDb; /* The database containing table being inserted into */
int regRowid; /* registers holding insert rowid */
int regData; /* register holding first column to insert */
int regRecord; /* Holds the assemblied row record */
+ int regEof; /* Register recording end of SELECT data */
int *aRegIdx = 0; /* One register allocated to each index */
**
** Then special optimizations can be applied that make the transfer
** very fast and which reduce fragmentation of indices.
+ **
+ ** This is the 2nd template.
*/
if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
assert( !triggers_exist );
regAutoinc = autoIncBegin(pParse, iDb, pTab);
/* Figure out how many columns of data are supplied. If the data
- ** is coming from a SELECT statement, then this step also generates
- ** all the code to implement the SELECT statement and invoke a subroutine
- ** to process each row of the result. (Template 2.) If the SELECT
- ** statement uses the the table that is being inserted into, then the
- ** subroutine is also coded here. That subroutine stores the SELECT
- ** results in a temporary table. (Template 3.)
+ ** is coming from a SELECT statement, then generate a co-routine that
+ ** produces a single row of the SELECT on each invocation. The
+ ** co-routine is the common header to the 3rd and 4th templates.
*/
if( pSelect ){
/* Data is coming from a SELECT. Generate code to implement that SELECT
+ ** as a co-routine. The code is common to both the 3rd and 4th
+ ** templates:
+ **
+ ** EOF <- 0
+ ** X <- A
+ ** goto B
+ ** A: setup for the SELECT
+ ** loop over the tables in the SELECT
+ ** load value into register R..R+n
+ ** yield X
+ ** end loop
+ ** cleanup after the SELECT
+ ** EOF <- 1
+ ** yield X
+ ** halt-error
+ **
+ ** On each invocation of the co-routine, it puts a single row of the
+ ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
+ ** (These output registers are allocated by sqlite3Select().) When
+ ** the SELECT completes, it sets the EOF flag stored in regEof.
*/
- SelectDest dest;
- int rc, iInitCode;
+ int rc, j1;
- iInitCode = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
- iSelectLoop = sqlite3VdbeCurrentAddr(v);
- iInsertBlock = sqlite3VdbeMakeLabel(v);
- sqlite3SelectDestInit(&dest, SRT_Subroutine, iInsertBlock);
+ regEof = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */
+ VdbeComment((v, "SELECT eof flag"));
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
+ addrSelect = sqlite3VdbeCurrentAddr(v)+2;
+ sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
+ j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
+ VdbeComment((v, "Jump over SELECT coroutine"));
/* Resolve the expressions in the SELECT statement and execute it. */
- rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
+ rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0);
if( rc || pParse->nErr || db->mallocFailed ){
goto insert_cleanup;
}
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */
+ sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */
+ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
+ VdbeComment((v, "End of SELECT coroutine"));
+ sqlite3VdbeJumpHere(v, j1); /* label B: */
regFromSelect = dest.iMem;
- iCleanup = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iCleanup);
assert( pSelect->pEList );
nColumn = pSelect->pEList->nExpr;
+ assert( dest.nMem==nColumn );
/* Set useTempTable to TRUE if the result of the SELECT statement
- ** should be written into a temporary table. Set to FALSE if each
- ** row of the SELECT can be written directly into the result table.
+ ** should be written into a temporary table (template 4). Set to
+ ** FALSE if each* row of the SELECT can be written directly into
+ ** the destination table (template 3).
**
** A temp table must be used if the table being updated is also one
** of the tables being read by the SELECT statement. Also use a
** temp table in the case of row triggers.
*/
- if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){
+ if( triggers_exist || readsTable(v, addrSelect, iDb, pTab) ){
useTempTable = 1;
}
if( useTempTable ){
- /* Generate the subroutine that SELECT calls to process each row of
- ** the result. Store the result in a temporary table
+ /* Invoke the coroutine to extract information from the SELECT
+ ** and add it to a transient table srcTab. The code generated
+ ** here is from the 4th template:
+ **
+ ** B: open temp table
+ ** L: yield X
+ ** if EOF goto M
+ ** insert row from R..R+n into temp table
+ ** goto L
+ ** M: ...
*/
- int regRec, regRowid;
+ int regRec; /* Register to hold packed record */
+ int regRowid; /* Register to hold temp table ROWID */
+ int addrTop; /* Label "L" */
+ int addrIf; /* Address of jump to M */
srcTab = pParse->nTab++;
regRec = sqlite3GetTempReg(pParse);
regRowid = sqlite3GetTempReg(pParse);
- sqlite3VdbeResolveLabel(v, iInsertBlock);
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
+ addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
+ addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
+ sqlite3VdbeJumpHere(v, addrIf);
sqlite3ReleaseTempReg(pParse, regRec);
sqlite3ReleaseTempReg(pParse, regRowid);
-
- /* The following code runs first because the GOTO at the very top
- ** of the program jumps to it. Create the temporary table, then jump
- ** back up and execute the SELECT code above.
- */
- sqlite3VdbeJumpHere(v, iInitCode);
- sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
- sqlite3VdbeResolveLabel(v, iCleanup);
- }else{
- sqlite3VdbeJumpHere(v, iInitCode);
}
}else{
/* This is the case if the data for the INSERT is coming from a VALUES
}
}
- /* If the data source is a temporary table, then we have to create
- ** a loop because there might be multiple rows of data. If the data
- ** source is a subroutine call from the SELECT statement, then we need
- ** to launch the SELECT statement processing.
- */
+ /* This is the top of the main insertion loop */
if( useTempTable ){
- iBreak = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp2(v, OP_Rewind, srcTab, iBreak);
- iCont = sqlite3VdbeCurrentAddr(v);
+ /* This block codes the top of loop only. The complete loop is the
+ ** following pseudocode (template 4):
+ **
+ ** rewind temp table
+ ** C: loop over rows of intermediate table
+ ** transfer values form intermediate table into <table>
+ ** end loop
+ ** D: ...
+ */
+ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
+ addrCont = sqlite3VdbeCurrentAddr(v);
}else if( pSelect ){
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
- sqlite3VdbeResolveLabel(v, iInsertBlock);
+ /* This block codes the top of loop only. The complete loop is the
+ ** following pseudocode (template 3):
+ **
+ ** C: yield X
+ ** if EOF goto D
+ ** insert the select result into <table> from R..R+n
+ ** goto C
+ ** D: ...
+ */
+ addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
+ addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
}
/* Allocate registers for holding the rowid of the new row,
VdbeOp *pOp;
sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
- if( pOp && pOp->opcode==OP_Null ){
+ if( pOp && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
appendFlag = 1;
pOp->opcode = OP_NewRowid;
pOp->p1 = baseCur;
*/
if( !appendFlag ){
int j1;
- j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
- sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
- sqlite3VdbeJumpHere(v, j1);
+ if( !IsVirtual(pTab) ){
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
+ sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
+ sqlite3VdbeJumpHere(v, j1);
+ }else{
+ j1 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
+ }
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
}
}else if( IsVirtual(pTab) ){
}
}
- /* The bottom of the loop, if the data source is a SELECT statement
+ /* The bottom of the main insertion loop, if the data source
+ ** is a SELECT statement.
*/
sqlite3VdbeResolveLabel(v, endOfLoop);
if( useTempTable ){
- sqlite3VdbeAddOp2(v, OP_Next, srcTab, iCont);
- sqlite3VdbeResolveLabel(v, iBreak);
- sqlite3VdbeAddOp2(v, OP_Close, srcTab, 0);
+ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
+ sqlite3VdbeJumpHere(v, addrInsTop);
+ sqlite3VdbeAddOp1(v, OP_Close, srcTab);
}else if( pSelect ){
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
- sqlite3VdbeResolveLabel(v, iCleanup);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
+ sqlite3VdbeJumpHere(v, addrInsTop);
}
if( !IsVirtual(pTab) && !isView ){
/* Close all tables opened */
- sqlite3VdbeAddOp2(v, OP_Close, baseCur, 0);
+ sqlite3VdbeAddOp1(v, OP_Close, baseCur);
for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
- sqlite3VdbeAddOp2(v, OP_Close, idx+baseCur, 0);
+ sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
}
}
}
insert_cleanup:
- sqlite3SrcListDelete(pTabList);
- sqlite3ExprListDelete(pList);
- sqlite3SelectDelete(pSelect);
- sqlite3IdListDelete(pColumn);
- sqlite3_free(aRegIdx);
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprListDelete(db, pList);
+ sqlite3SelectDelete(db, pSelect);
+ sqlite3IdListDelete(db, pColumn);
+ sqlite3DbFree(db, aRegIdx);
}
/*
case OE_Rollback:
case OE_Abort:
case OE_Fail: {
- char *zMsg = 0;
+ char *zMsg;
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
- sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
- " may not be NULL", (char*)0);
+ zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
+ pTab->zName, pTab->aCol[i].zName);
sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
break;
}
regR = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
- regR, (char*)aRegIdx[iCur],
+ regR, SQLITE_INT_TO_PTR(aRegIdx[iCur]),
P4_INT32);
/* Generate code that executes if the new index entry is not unique */
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
-** $Id: legacy.c,v 1.24 2008/03/21 18:01:14 drh Exp $
+** $Id: legacy.c,v 1.29 2008/08/02 03:50:39 drh Exp $
*/
int nRetry = 0;
int nCallback;
- if( zSql==0 ) return SQLITE_OK;
+ if( zSql==0 ) zSql = "";
sqlite3_mutex_enter(db->mutex);
+ sqlite3Error(db, SQLITE_OK, 0);
while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){
int nCol;
char **azVals = 0;
}
for(i=0; i<nCol; i++){
azCols[i] = (char *)sqlite3_column_name(pStmt, i);
- if( !azCols[i] ){
- db->mallocFailed = 1;
- goto exec_out;
- }
+ /* sqlite3VdbeSetColName() installs column names as UTF8
+ ** strings so there is no way for sqlite3_column_name() to fail. */
+ assert( azCols[i]!=0 );
}
nCallback++;
}
}
if( xCallback(pArg, nCol, azVals, azCols) ){
rc = SQLITE_ABORT;
+ sqlite3_finalize(pStmt);
+ pStmt = 0;
+ sqlite3Error(db, SQLITE_ABORT, 0);
goto exec_out;
}
}
}
}
- sqlite3_free(azCols);
+ sqlite3DbFree(db, azCols);
azCols = 0;
}
exec_out:
if( pStmt ) sqlite3_finalize(pStmt);
- if( azCols ) sqlite3_free(azCols);
+ sqlite3DbFree(db, azCols);
rc = sqlite3ApiExit(db, rc);
if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){
int nErrMsg = 1 + strlen(sqlite3_errmsg(db));
- *pzErrMsg = sqlite3_malloc(nErrMsg);
+ *pzErrMsg = sqlite3Malloc(nErrMsg);
if( *pzErrMsg ){
memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
}
*************************************************************************
** This file contains code used to dynamically load extensions into
** the SQLite library.
+**
+** $Id: loadext.c,v 1.53 2008/08/02 03:50:39 drh Exp $
*/
#ifndef SQLITE_CORE
** as extensions by SQLite should #include this file instead of
** sqlite3.h.
**
-** @(#) $Id: sqlite3ext.h,v 1.21 2008/03/19 21:45:51 drh Exp $
+** @(#) $Id: sqlite3ext.h,v 1.24 2008/06/30 15:09:29 danielk1977 Exp $
*/
#ifndef _SQLITE3EXT_H_
#define _SQLITE3EXT_H_
int (*complete)(const char*sql);
int (*complete16)(const void*sql);
int (*create_collation)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
- int (*create_collation16)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
+ int (*create_collation16)(sqlite3*,const void*,int,void*,int(*)(void*,int,const void*,int,const void*));
int (*create_function)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
int (*create_function16)(sqlite3*,const void*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
int (*test_control)(int, ...);
void (*randomness)(int,void*);
sqlite3 *(*context_db_handle)(sqlite3_context*);
+ int (*extended_result_codes)(sqlite3*,int);
+ int (*limit)(sqlite3*,int,int);
+ sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*);
+ const char *(*sql)(sqlite3_stmt*);
+ int (*status)(int,int*,int*,int);
};
/*
#define sqlite3_test_control sqlite3_api->test_control
#define sqlite3_randomness sqlite3_api->randomness
#define sqlite3_context_db_handle sqlite3_api->context_db_handle
+#define sqlite3_extended_result_codes sqlite3_api->extended_result_codes
+#define sqlite3_limit sqlite3_api->limit
+#define sqlite3_next_stmt sqlite3_api->next_stmt
+#define sqlite3_sql sqlite3_api->sql
+#define sqlite3_status sqlite3_api->status
#endif /* SQLITE_CORE */
-#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api;
+#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api = 0;
#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v;
#endif /* _SQLITE3EXT_H_ */
sqlite3_test_control,
sqlite3_randomness,
sqlite3_context_db_handle,
+
+ /*
+ ** Added for 3.6.0
+ */
+ sqlite3_extended_result_codes,
+ sqlite3_limit,
+ sqlite3_next_stmt,
+ sqlite3_sql,
+ sqlite3_status,
};
/*
**
** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
** error message text. The calling function should free this memory
-** by calling sqlite3_free().
+** by calling sqlite3DbFree(db, ).
*/
static int sqlite3LoadExtension(
sqlite3 *db, /* Load the extension into this database connection */
sqlite3_snprintf(sizeof(zErr)-1, zErr,
"unable to open shared library [%s]", zFile);
sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
- *pzErrMsg = sqlite3DbStrDup(db, zErr);
+ *pzErrMsg = sqlite3DbStrDup(0, zErr);
}
return SQLITE_ERROR;
}
sqlite3_snprintf(sizeof(zErr)-1, zErr,
"no entry point [%s] in shared library [%s]", zProc,zFile);
sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
- *pzErrMsg = sqlite3DbStrDup(db, zErr);
+ *pzErrMsg = sqlite3DbStrDup(0, zErr);
sqlite3OsDlClose(pVfs, handle);
}
return SQLITE_ERROR;
}
/* Append the new shared library handle to the db->aExtension array. */
- db->nExtension++;
- aHandle = sqlite3DbMallocZero(db, sizeof(handle)*db->nExtension);
+ aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1));
if( aHandle==0 ){
return SQLITE_NOMEM;
}
if( db->nExtension>0 ){
- memcpy(aHandle, db->aExtension, sizeof(handle)*(db->nExtension-1));
+ memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension);
}
- sqlite3_free(db->aExtension);
+ sqlite3DbFree(db, db->aExtension);
db->aExtension = aHandle;
- db->aExtension[db->nExtension-1] = handle;
+ db->aExtension[db->nExtension++] = handle;
return SQLITE_OK;
}
SQLITE_API int sqlite3_load_extension(
for(i=0; i<db->nExtension; i++){
sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
}
- sqlite3_free(db->aExtension);
+ sqlite3DbFree(db, db->aExtension);
}
/*
** loaded by every new database connection.
*/
SQLITE_API int sqlite3_auto_extension(void *xInit){
- int i;
int rc = SQLITE_OK;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ){
+ return rc;
+ }else
+#endif
+ {
+ int i;
#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
- sqlite3_mutex_enter(mutex);
- for(i=0; i<autoext.nExt; i++){
- if( autoext.aExt[i]==xInit ) break;
- }
- if( i==autoext.nExt ){
- int nByte = (autoext.nExt+1)*sizeof(autoext.aExt[0]);
- void **aNew;
- aNew = sqlite3_realloc(autoext.aExt, nByte);
- if( aNew==0 ){
- rc = SQLITE_NOMEM;
- }else{
- autoext.aExt = aNew;
- autoext.aExt[autoext.nExt] = xInit;
- autoext.nExt++;
+ sqlite3_mutex_enter(mutex);
+ for(i=0; i<autoext.nExt; i++){
+ if( autoext.aExt[i]==xInit ) break;
+ }
+ if( i==autoext.nExt ){
+ int nByte = (autoext.nExt+1)*sizeof(autoext.aExt[0]);
+ void **aNew;
+ aNew = sqlite3_realloc(autoext.aExt, nByte);
+ if( aNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ autoext.aExt = aNew;
+ autoext.aExt[autoext.nExt] = xInit;
+ autoext.nExt++;
+ }
}
+ sqlite3_mutex_leave(mutex);
+ assert( (rc&0xff)==rc );
+ return rc;
}
- sqlite3_mutex_leave(mutex);
- assert( (rc&0xff)==rc );
- return rc;
}
/*
** Reset the automatic extension loading mechanism.
*/
SQLITE_API void sqlite3_reset_auto_extension(void){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize()==SQLITE_OK )
+#endif
+ {
#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
- sqlite3_mutex_enter(mutex);
- sqlite3_free(autoext.aExt);
- autoext.aExt = 0;
- autoext.nExt = 0;
- sqlite3_mutex_leave(mutex);
+ sqlite3_mutex_enter(mutex);
+ sqlite3_free(autoext.aExt);
+ autoext.aExt = 0;
+ autoext.nExt = 0;
+ sqlite3_mutex_leave(mutex);
+ }
}
/*
for(i=0; go; i++){
char *zErrmsg = 0;
#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
sqlite3_mutex_enter(mutex);
if( i>=autoext.nExt ){
*************************************************************************
** This file contains code used to implement the PRAGMA command.
**
-** $Id: pragma.c,v 1.176 2008/04/17 20:59:38 drh Exp $
+** $Id: pragma.c,v 1.183 2008/07/28 19:34:53 drh Exp $
*/
/* Ignore this whole file if pragmas are disabled
static int invalidateTempStorage(Parse *pParse){
sqlite3 *db = pParse->db;
if( db->aDb[1].pBt!=0 ){
- if( !db->autoCommit ){
+ if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
"from within a transaction");
return SQLITE_ERROR;
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** If the TEMP database is open, close it and mark the database schema
-** as needing reloading. This must be done when using the TEMP_STORE
+** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
** or DEFAULT_TEMP_STORE pragmas.
*/
static int changeTempStorage(Parse *pParse, const char *zStorageType){
}else
/*
+ ** PRAGMA [database.]page_count
+ **
+ ** Return the number of pages in the specified database.
+ */
+ if( sqlite3StrICmp(zLeft,"page_count")==0 ){
+ Vdbe *v;
+ int iReg;
+ v = sqlite3GetVdbe(pParse);
+ if( !v || sqlite3ReadSchema(pParse) ) goto pragma_out;
+ sqlite3CodeVerifySchema(pParse, iDb);
+ iReg = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "page_count", P4_STATIC);
+ }else
+
+ /*
** PRAGMA [database.]locking_mode
** PRAGMA [database.]locking_mode = (normal|exclusive)
*/
}
}
if( pId2->n==0 && eMode==PAGER_JOURNALMODE_QUERY ){
- /* Simple "PRAGMA persistent_journal;" statement. This is a query for
+ /* Simple "PRAGMA journal_mode;" statement. This is a query for
** the current default journal mode (which may be different to
** the journal-mode of the main database).
*/
azModeName[eMode], P4_STATIC);
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
}else
+
+ /*
+ ** PRAGMA [database.]journal_size_limit
+ ** PRAGMA [database.]journal_size_limit=N
+ **
+ ** Get or set the (boolean) value of the database 'auto-vacuum' parameter.
+ */
+ if( sqlite3StrICmp(zLeft,"journal_size_limit")==0 ){
+ Pager *pPager = sqlite3BtreePager(pDb->pBt);
+ i64 iLimit = -2;
+ if( zRight ){
+ int iLimit32 = atoi(zRight);
+ if( iLimit32<-1 ){
+ iLimit32 = -1;
+ }
+ iLimit = iLimit32;
+ }
+ iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
+ returnSingleInt(pParse, "journal_size_limit", (int)iLimit);
+ }else
+
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
/*
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
}
}else{
- if( zRight[0]
- && sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE)==0
- ){
- sqlite3ErrorMsg(pParse, "not a writable directory");
- goto pragma_out;
+ if( zRight[0] ){
+ int res;
+ sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
+ if( res==0 ){
+ sqlite3ErrorMsg(pParse, "not a writable directory");
+ goto pragma_out;
+ }
}
- if( TEMP_STORE==0
- || (TEMP_STORE==1 && db->temp_store<=1)
- || (TEMP_STORE==2 && db->temp_store==1)
+ if( SQLITE_TEMP_STORE==0
+ || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
+ || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
){
invalidateTempStorage(pParse);
}
sqlite3_free(sqlite3_temp_directory);
if( zRight[0] ){
- sqlite3_temp_directory = zRight;
- zRight = 0;
+ sqlite3_temp_directory = sqlite3DbStrDup(0, zRight);
}else{
sqlite3_temp_directory = 0;
}
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
P4_DYNAMIC);
- sqlite3VdbeAddOp2(v, OP_Move, 2, 4);
+ sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1);
sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
sqlite3VdbeJumpHere(v, addr);
#endif
}
pragma_out:
- sqlite3_free(zLeft);
- sqlite3_free(zRight);
+ sqlite3DbFree(db, zLeft);
+ sqlite3DbFree(db, zRight);
}
#endif /* SQLITE_OMIT_PRAGMA || SQLITE_OMIT_PARSER */
** interface, and routines that contribute to loading the database schema
** from disk.
**
-** $Id: prepare.c,v 1.83 2008/04/03 14:36:26 danielk1977 Exp $
+** $Id: prepare.c,v 1.91 2008/08/02 03:50:39 drh Exp $
*/
/*
){
if( !pData->db->mallocFailed ){
if( zObj==0 ) zObj = "?";
- sqlite3SetString(pData->pzErrMsg, "malformed database schema (", zObj, ")",
- zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
+ sqlite3SetString(pData->pzErrMsg, pData->db,
+ "malformed database schema (%s)", zObj);
+ if( zExtra && zExtra[0] ){
+ *pData->pzErrMsg = sqlite3MAppendf(pData->db, *pData->pzErrMsg, "%s - %s",
+ *pData->pzErrMsg, zExtra);
+ }
}
pData->rc = SQLITE_CORRUPT;
}
*/
char *zErr;
int rc;
+ u8 lookasideEnabled;
assert( db->init.busy );
db->init.iDb = iDb;
db->init.newTnum = atoi(argv[1]);
+ lookasideEnabled = db->lookaside.bEnabled;
+ db->lookaside.bEnabled = 0;
rc = sqlite3_exec(db, argv[2], 0, 0, &zErr);
db->init.iDb = 0;
+ db->lookaside.bEnabled = lookasideEnabled;
assert( rc!=SQLITE_OK || zErr==0 );
if( SQLITE_OK!=rc ){
pData->rc = rc;
}else if( rc!=SQLITE_INTERRUPT ){
corruptSchema(pData, argv[0], zErr);
}
- sqlite3_free(zErr);
+ sqlite3DbFree(db, zErr);
return 1;
}
}else if( argv[0]==0 ){
sqlite3BtreeEnter(pDb->pBt);
rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, curMain);
if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
- sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
- goto leave_error_out;
+ sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
+ goto initone_error_out;
}
/* Get the database meta information.
*/
if( rc==SQLITE_OK ){
int i;
- for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){
+ for(i=0; i<sizeof(meta)/sizeof(meta[0]); i++){
rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
- }
- if( rc ){
- sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
- goto leave_error_out;
+ if( rc ){
+ sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
+ goto initone_error_out;
+ }
}
}else{
memset(meta, 0, sizeof(meta));
}else{
/* If opening an attached database, the encoding much match ENC(db) */
if( meta[4]!=ENC(db) ){
- sqlite3SetString(pzErrMsg, "attached databases must use the same"
- " text encoding as main database", (char*)0);
+ sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
+ " text encoding as main database");
rc = SQLITE_ERROR;
- goto leave_error_out;
+ goto initone_error_out;
}
}
}else{
}
pDb->pSchema->enc = ENC(db);
- size = meta[2];
- if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
- if( size<0 ) size = -size;
- pDb->pSchema->cache_size = size;
- sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ if( pDb->pSchema->cache_size==0 ){
+ size = meta[2];
+ if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
+ if( size<0 ) size = -size;
+ pDb->pSchema->cache_size = size;
+ sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ }
/*
** file_format==1 Version 3.0.0.
pDb->pSchema->file_format = 1;
}
if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
- sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
+ sqlite3SetString(pzErrMsg, db, "unsupported file format");
rc = SQLITE_ERROR;
- goto leave_error_out;
+ goto initone_error_out;
}
/* Ticket #2804: When we open a database in the newer file format,
#endif
if( rc==SQLITE_ABORT ) rc = initData.rc;
(void)sqlite3SafetyOn(db);
- sqlite3_free(zSql);
+ sqlite3DbFree(db, zSql);
#ifndef SQLITE_OMIT_ANALYZE
if( rc==SQLITE_OK ){
sqlite3AnalysisLoad(db, iDb);
#endif
}
if( db->mallocFailed ){
- /* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */
rc = SQLITE_NOMEM;
sqlite3ResetInternalSchema(db, 0);
}
** curMain and calling sqlite3BtreeEnter(). For an error that occurs
** before that point, jump to error_out.
*/
-leave_error_out:
+initone_error_out:
sqlite3BtreeCloseCursor(curMain);
sqlite3_free(curMain);
sqlite3BtreeLeave(pDb->pBt);
int cookie;
int allOk = 1;
- curTemp = (BtCursor *)sqlite3_malloc(sqlite3BtreeCursorSize());
+ curTemp = (BtCursor *)sqlite3Malloc(sqlite3BtreeCursorSize());
if( curTemp ){
assert( sqlite3_mutex_held(db->mutex) );
for(iDb=0; allOk && iDb<db->nDb; iDb++){
const char *zDb = db->aDb[i].zName;
sqlite3Error(db, SQLITE_LOCKED, "database schema is locked: %s", zDb);
(void)sqlite3SafetyOff(db);
- return SQLITE_LOCKED;
+ return sqlite3ApiExit(db, SQLITE_LOCKED);
}
}
}
memset(&sParse, 0, sizeof(sParse));
sParse.db = db;
- if( nBytes>=0 && zSql[nBytes-1]!=0 ){
+ if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
char *zSqlCopy;
int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
if( nBytes>mxLen ){
sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
(void)sqlite3SafetyOff(db);
- return SQLITE_TOOBIG;
+ return sqlite3ApiExit(db, SQLITE_TOOBIG);
}
zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
if( zSqlCopy ){
sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg);
- sqlite3_free(zSqlCopy);
+ sqlite3DbFree(db, zSqlCopy);
sParse.zTail = &zSql[sParse.zTail-zSqlCopy];
}else{
sParse.zTail = &zSql[nBytes];
if( zErrMsg ){
sqlite3Error(db, rc, "%s", zErrMsg);
- sqlite3_free(zErrMsg);
+ sqlite3DbFree(db, zErrMsg);
}else{
sqlite3Error(db, rc, 0);
}
int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8-zSql8);
*pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
}
- sqlite3_free(zSql8);
+ sqlite3DbFree(db, zSql8);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
-** $Id: select.c,v 1.429 2008/05/01 17:03:49 drh Exp $
+** $Id: select.c,v 1.463 2008/08/04 03:51:24 danielk1977 Exp $
*/
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.
*/
-static void clearSelect(Select *p){
- sqlite3ExprListDelete(p->pEList);
- sqlite3SrcListDelete(p->pSrc);
- sqlite3ExprDelete(p->pWhere);
- sqlite3ExprListDelete(p->pGroupBy);
- sqlite3ExprDelete(p->pHaving);
- sqlite3ExprListDelete(p->pOrderBy);
- sqlite3SelectDelete(p->pPrior);
- sqlite3ExprDelete(p->pLimit);
- sqlite3ExprDelete(p->pOffset);
+static void clearSelect(sqlite3 *db, Select *p){
+ sqlite3ExprListDelete(db, p->pEList);
+ sqlite3SrcListDelete(db, p->pSrc);
+ sqlite3ExprDelete(db, p->pWhere);
+ sqlite3ExprListDelete(db, p->pGroupBy);
+ sqlite3ExprDelete(db, p->pHaving);
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ sqlite3SelectDelete(db, p->pPrior);
+ sqlite3ExprDelete(db, p->pLimit);
+ sqlite3ExprDelete(db, p->pOffset);
}
/*
assert( pOffset==0 || pLimit!=0 );
pNew->pLimit = pLimit;
pNew->pOffset = pOffset;
- pNew->iLimit = -1;
- pNew->iOffset = -1;
pNew->addrOpenEphm[0] = -1;
pNew->addrOpenEphm[1] = -1;
pNew->addrOpenEphm[2] = -1;
if( pNew==&standin) {
- clearSelect(pNew);
+ clearSelect(db, pNew);
pNew = 0;
}
return pNew;
/*
** Delete the given Select structure and all of its substructures.
*/
-SQLITE_PRIVATE void sqlite3SelectDelete(Select *p){
+SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){
if( p ){
- clearSelect(p);
- sqlite3_free(p);
+ clearSelect(db, p);
+ sqlite3DbFree(db, p);
}
}
(jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
(jointype & JT_ERROR)!=0
){
- const char *zSp1 = " ";
- const char *zSp2 = " ";
- if( pB==0 ){ zSp1++; }
- if( pC==0 ){ zSp2++; }
+ const char *zSp = " ";
+ assert( pB!=0 );
+ if( pC==0 ){ zSp++; }
sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
- "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
+ "%T %T%s%T", pA, pB, zSp, pC);
jointype = JT_INNER;
}else if( jointype & JT_RIGHT ){
sqlite3ErrorMsg(pParse,
int regRecord = sqlite3GetTempReg(pParse);
sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
- sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1);
+ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
sqlite3ReleaseTempReg(pParse, regRecord);
sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
- if( pSelect->iLimit>=0 ){
+ if( pSelect->iLimit ){
int addr1, addr2;
int iLimit;
- if( pSelect->pOffset ){
+ if( pSelect->iOffset ){
iLimit = pSelect->iOffset+1;
}else{
iLimit = pSelect->iLimit;
sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
sqlite3VdbeJumpHere(v, addr2);
- pSelect->iLimit = -1;
+ pSelect->iLimit = 0;
}
}
Select *p, /* The SELECT statement being coded */
int iContinue /* Jump here to skip the current record */
){
- if( p->iOffset>=0 && iContinue!=0 ){
+ if( p->iOffset && iContinue!=0 ){
int addr;
sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
int distinct, /* If >=0, make sure results are distinct */
SelectDest *pDest, /* How to dispose of the results */
int iContinue, /* Jump here to continue with next row */
- int iBreak, /* Jump here to break out of the inner loop */
- char *aff /* affinity string if eDest is SRT_Union */
+ int iBreak /* Jump here to break out of the inner loop */
){
Vdbe *v = pParse->pVdbe;
int i;
if( v==0 ) return;
assert( pEList!=0 );
-
- /* If there was a LIMIT clause on the SELECT statement, then do the check
- ** to see if this row should be output.
- */
- hasDistinct = distinct>=0 && pEList->nExpr>0;
+ hasDistinct = distinct>=0;
if( pOrderBy==0 && !hasDistinct ){
codeOffset(v, p, iContinue);
}
nResultCol = pEList->nExpr;
}
if( pDest->iMem==0 ){
- pDest->iMem = sqlite3GetTempRange(pParse, nResultCol);
+ pDest->iMem = pParse->nMem+1;
pDest->nMem = nResultCol;
+ pParse->nMem += nResultCol;
}else if( pDest->nMem!=nResultCol ){
/* This happens when two SELECTs of a compound SELECT have differing
** numbers of result columns. The error message will be generated by
int r1;
r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
- if( aff ){
- sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC);
- }
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
sqlite3ReleaseTempReg(pParse, r1);
break;
** item into the set table with bogus data.
*/
case SRT_Set: {
- int addr2;
-
assert( nColumn==1 );
- addr2 = sqlite3VdbeAddOp1(v, OP_IsNull, regResult);
p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
if( pOrderBy ){
/* At first glance you would think we could optimize out the
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
sqlite3ReleaseTempReg(pParse, r1);
}
- sqlite3VdbeJumpHere(v, addr2);
break;
}
if( pOrderBy ){
pushOntoSorter(pParse, pOrderBy, p, regResult);
}else{
- sqlite3ExprCodeMove(pParse, regResult, iParm);
+ sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
/* The LIMIT clause will jump out of the loop for us */
}
break;
** case of a subroutine, the subroutine itself is responsible for
** popping the data from the stack.
*/
- case SRT_Subroutine:
+ case SRT_Coroutine:
case SRT_Callback: {
if( pOrderBy ){
int r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
pushOntoSorter(pParse, pOrderBy, p, r1);
sqlite3ReleaseTempReg(pParse, r1);
- }else if( eDest==SRT_Subroutine ){
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
+ }else if( eDest==SRT_Coroutine ){
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
}else{
sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
/* Jump to the end of the loop if the LIMIT is reached.
*/
- if( p->iLimit>=0 && pOrderBy==0 ){
+ if( p->iLimit ){
+ assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to
+ ** pushOntoSorter() would have cleared p->iLimit */
sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
}
int regRowid;
iTab = pOrderBy->iECursor;
- if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
+ if( eDest==SRT_Callback || eDest==SRT_Coroutine ){
pseudoTab = pParse->nTab++;
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback);
}
#ifndef SQLITE_OMIT_SUBQUERY
case SRT_Set: {
- int j1;
assert( nColumn==1 );
- j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regRow);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
- sqlite3VdbeJumpHere(v, j1);
break;
}
case SRT_Mem: {
assert( nColumn==1 );
- sqlite3ExprCodeMove(pParse, regRow, iParm);
+ sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
/* The LIMIT clause will terminate the loop for us */
break;
}
#endif
case SRT_Callback:
- case SRT_Subroutine: {
+ case SRT_Coroutine: {
int i;
sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
}else{
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
}
break;
}
sqlite3ReleaseTempReg(pParse, regRow);
sqlite3ReleaseTempReg(pParse, regRowid);
- /* Jump to the end of the loop when the LIMIT is reached
+ /* LIMIT has been implemented by the pushOntoSorter() routine.
*/
- if( p->iLimit>=0 ){
- sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
- sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, brk);
- }
+ assert( p->iLimit==0 );
/* The bottom of the loop
*/
sqlite3VdbeResolveLabel(v, cont);
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
sqlite3VdbeResolveLabel(v, brk);
- if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
+ if( eDest==SRT_Callback || eDest==SRT_Coroutine ){
sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
}
if( pEList->a[i].zName ){
char *zName = pEList->a[i].zName;
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
- continue;
- }
- if( p->op==TK_COLUMN && pTabList ){
+ }else if( p->op==TK_COLUMN && pTabList ){
Table *pTab;
char *zCol;
int iCol = p->iColumn;
}else{
zCol = pTab->aCol[iCol].zName;
}
- if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
+ if( !shortNames && !fullNames ){
sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
}else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
char *zName = 0;
zTab = pTabList->a[j].zAlias;
if( fullNames || zTab==0 ) zTab = pTab->zName;
- sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
+ zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol);
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
}else{
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
}
- }else if( p->span.z && p->span.z[0] ){
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
- /* sqlite3VdbeCompressSpace(v, addr); */
}else{
- char zName[30];
- assert( p->op!=TK_COLUMN || pTabList==0 );
- sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
}
}
generateColumnTypes(pParse, pTabList, pEList);
*/
SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
Table *pTab;
- int i, j;
+ int i, j, rc;
ExprList *pEList;
Column *aCol, *pCol;
sqlite3 *db = pParse->db;
+ int savedFlags;
- while( pSelect->pPrior ) pSelect = pSelect->pPrior;
- if( prepSelectStmt(pParse, pSelect) ){
- return 0;
+ savedFlags = db->flags;
+ db->flags &= ~SQLITE_FullColNames;
+ db->flags |= SQLITE_ShortColNames;
+ rc = sqlite3SelectResolve(pParse, pSelect, 0);
+ if( rc==SQLITE_OK ){
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+ rc = prepSelectStmt(pParse, pSelect);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3SelectResolve(pParse, pSelect, 0);
+ }
}
- if( sqlite3SelectResolve(pParse, pSelect, 0) ){
+ db->flags = savedFlags;
+ if( rc ){
return 0;
}
pTab = sqlite3DbMallocZero(db, sizeof(Table) );
if( pTab==0 ){
return 0;
}
+ pTab->db = db;
pTab->nRef = 1;
pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
pEList = pSelect->pEList;
pTab->nCol = pEList->nExpr;
assert( pTab->nCol>0 );
pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
+ testcase( aCol==0 );
for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
- Expr *p, *pR;
+ Expr *p;
char *zType;
char *zName;
int nName;
if( (zName = pEList->a[i].zName)!=0 ){
/* If the column contains an "AS <name>" phrase, use <name> as the name */
zName = sqlite3DbStrDup(db, zName);
- }else if( p->op==TK_DOT
- && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
- /* For columns of the from A.B use B as the name */
- zName = sqlite3MPrintf(db, "%T", &pR->token);
- }else if( p->span.z && p->span.z[0] ){
+ }else if( p->op==TK_COLUMN && p->pTab ){
+ /* For columns use the column name name */
+ int iCol = p->iColumn;
+ if( iCol<0 ) iCol = p->pTab->iPKey;
+ zName = sqlite3MPrintf(db, "%s", p->pTab->aCol[iCol].zName);
+ }else{
/* Use the original text of the column expression as its name */
zName = sqlite3MPrintf(db, "%T", &p->span);
- }else{
- /* If all else fails, make up a name */
- zName = sqlite3MPrintf(db, "column%d", i+1);
}
- if( !zName || db->mallocFailed ){
- db->mallocFailed = 1;
- sqlite3_free(zName);
- sqlite3DeleteTable(pTab);
- return 0;
+ if( db->mallocFailed ){
+ sqlite3DbFree(db, zName);
+ break;
}
sqlite3Dequote(zName);
nName = strlen(zName);
for(j=cnt=0; j<i; j++){
if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
+ char *zNewName;
zName[nName] = 0;
- zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
+ zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
+ sqlite3DbFree(db, zName);
+ zName = zNewName;
j = -1;
if( zName==0 ) break;
}
}
}
pTab->iPKey = -1;
+ if( db->mallocFailed ){
+ sqlite3DeleteTable(pTab);
+ return 0;
+ }
return pTab;
}
struct ExprList_item *a = pEList->a;
ExprList *pNew = 0;
int flags = pParse->db->flags;
- int longNames = (flags & SQLITE_FullColNames)!=0 &&
- (flags & SQLITE_ShortColNames)==0;
+ int longNames = (flags & SQLITE_FullColNames)!=0
+ && (flags & SQLITE_ShortColNames)==0;
for(k=0; k<pEList->nExpr; k++){
Expr *pE = a[k].pExpr;
if( zTabName==0 || zTabName[0]==0 ){
zTabName = pTab->zName;
}
- if( zTName && (zTabName==0 || zTabName[0]==0 ||
- sqlite3StrICmp(zTName, zTabName)!=0) ){
+ assert( zTabName );
+ if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
continue;
}
tableSeen = 1;
pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
if( pRight==0 ) break;
setQuotedToken(pParse, &pRight->token, zName);
- if( zTabName && (longNames || pTabList->nSrc>1) ){
+ if( longNames || pTabList->nSrc>1 ){
Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
if( pExpr==0 ) break;
setQuotedToken(pParse, &pLeft->token, zTabName);
+#if 1
setToken(&pExpr->span,
sqlite3MPrintf(db, "%s.%s", zTabName, zName));
pExpr->span.dyn = 1;
+#else
+ pExpr->span = pRight->token;
+ pExpr->span.dyn = 0;
+#endif
pExpr->token.z = 0;
pExpr->token.n = 0;
pExpr->token.dyn = 0;
}
rc = 1;
}
- sqlite3_free(zTName);
+ sqlite3DbFree(db, zTName);
}
}
- sqlite3ExprListDelete(pEList);
+ sqlite3ExprListDelete(db, pEList);
p->pEList = pNew;
}
#if SQLITE_MAX_COLUMN
** pE is a pointer to an expression which is a single term in
** ORDER BY or GROUP BY clause.
**
-** If pE evaluates to an integer constant i, then return i.
-** This is an indication to the caller that it should sort
-** by the i-th column of the result set.
+** At the point this routine is called, we already know that the
+** ORDER BY term is not an integer index into the result set. That
+** casee is handled by the calling routine.
**
** If pE is a well-formed expression and the SELECT statement
** is not compound, then return 0. This indicates to the
ExprList *pEList; /* The columns of the result set */
NameContext nc; /* Name context for resolving pE */
-
- /* If the term is an integer constant, return the value of that
- ** constant */
+ assert( sqlite3ExprIsInteger(pE, &i)==0 );
pEList = pSelect->pEList;
- if( sqlite3ExprIsInteger(pE, &i) ){
- if( i<=0 ){
- /* If i is too small, make it too big. That way the calling
- ** function still sees a value that is out of range, but does
- ** not confuse the column number with 0 or -1 result code.
- */
- i = pEList->nExpr+1;
- }
- return i;
- }
/* If the term is a simple identifier that try to match that identifier
** against a column name in the result set.
for(i=0; i<pEList->nExpr; i++){
char *zAs = pEList->a[i].zName;
if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
- sqlite3_free(zCol);
+ sqlite3DbFree(db, zCol);
return i+1;
}
}
- sqlite3_free(zCol);
+ sqlite3DbFree(db, zCol);
}
/* Resolve all names in the ORDER BY term expression
for(i=0; i<pOrderBy->nExpr; i++){
int iCol;
Expr *pE = pOrderBy->a[i].pExpr;
- iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
- if( iCol<0 ){
- return 1;
- }
- if( iCol>pEList->nExpr ){
- const char *zType = isOrder ? "ORDER" : "GROUP";
- sqlite3ErrorMsg(pParse,
- "%r %s BY term out of range - should be "
- "between 1 and %d", i+1, zType, pEList->nExpr);
- return 1;
+ if( sqlite3ExprIsInteger(pE, &iCol) ){
+ if( iCol<=0 || iCol>pEList->nExpr ){
+ const char *zType = isOrder ? "ORDER" : "GROUP";
+ sqlite3ErrorMsg(pParse,
+ "%r %s BY term out of range - should be "
+ "between 1 and %d", i+1, zType, pEList->nExpr);
+ return 1;
+ }
+ }else{
+ iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
+ if( iCol<0 ){
+ return 1;
+ }
}
if( iCol>0 ){
CollSeq *pColl = pE->pColl;
int flags = pE->flags & EP_ExpCollate;
- sqlite3ExprDelete(pE);
+ sqlite3ExprDelete(db, pE);
pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
pOrderBy->a[i].pExpr = pE;
if( pE && pColl && flags ){
** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return
** the number of errors seen.
**
-** The processing depends on whether the SELECT is simple or compound.
-** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY
-** clause needs to be an expression. If any expression is an integer
-** constant, then that expression is replaced by the corresponding
-** expression from the result set.
+** If iTable>0 then make the N-th term of the ORDER BY clause refer to
+** the N-th column of table iTable.
**
-** For compound SELECT statements, every expression needs to be of
-** type TK_COLUMN with a iTable value as given in the 4th parameter.
-** If any expression is an integer, that becomes the column number.
-** Otherwise, match the expression against result set columns from
-** the left-most SELECT.
+** If iTable==0 then transform each term of the ORDER BY clause to refer
+** to a column of the result set by number.
*/
static int processCompoundOrderBy(
Parse *pParse, /* Parsing context. Leave error messages here */
- Select *pSelect, /* The SELECT statement containing the ORDER BY */
- int iTable /* Output table for compound SELECT statements */
+ Select *pSelect /* The SELECT statement containing the ORDER BY */
){
int i;
ExprList *pOrderBy;
}
while( pSelect && moreToDo ){
moreToDo = 0;
+ pEList = pSelect->pEList;
+ if( pEList==0 ){
+ return 1;
+ }
for(i=0; i<pOrderBy->nExpr; i++){
int iCol = -1;
Expr *pE, *pDup;
if( pOrderBy->a[i].done ) continue;
pE = pOrderBy->a[i].pExpr;
- pDup = sqlite3ExprDup(db, pE);
- if( !db->mallocFailed ){
- assert(pDup);
- iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
- }
- sqlite3ExprDelete(pDup);
- if( iCol<0 ){
- return 1;
- }
- pEList = pSelect->pEList;
- if( pEList==0 ){
- return 1;
- }
- if( iCol>pEList->nExpr ){
- sqlite3ErrorMsg(pParse,
- "%r ORDER BY term out of range - should be "
- "between 1 and %d", i+1, pEList->nExpr);
- return 1;
+ if( sqlite3ExprIsInteger(pE, &iCol) ){
+ if( iCol<0 || iCol>pEList->nExpr ){
+ sqlite3ErrorMsg(pParse,
+ "%r ORDER BY term out of range - should be "
+ "between 1 and %d", i+1, pEList->nExpr);
+ return 1;
+ }
+ }else{
+ pDup = sqlite3ExprDup(db, pE);
+ if( !db->mallocFailed ){
+ assert(pDup);
+ iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
+ }
+ sqlite3ExprDelete(db, pDup);
+ if( iCol<0 ){
+ return 1;
+ }
}
if( iCol>0 ){
- pE->op = TK_COLUMN;
- pE->iTable = iTable;
- pE->iAgg = -1;
- pE->iColumn = iCol-1;
- pE->pTab = 0;
+ pE->op = TK_INTEGER;
+ pE->flags |= EP_IntValue;
+ pE->iTable = iCol;
pOrderBy->a[i].done = 1;
}else{
moreToDo = 1;
int iLimit = 0;
int iOffset;
int addr1;
+ if( p->iLimit ) return;
/*
** "LIMIT -1" always shows all rows. There is some
}
}
-/*
-** Allocate a virtual index to use for sorting.
-*/
-static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
- if( pOrderBy ){
- int addr;
- assert( pOrderBy->iECursor==0 );
- pOrderBy->iECursor = pParse->nTab++;
- addr = sqlite3VdbeAddOp2(pParse->pVdbe, OP_OpenEphemeral,
- pOrderBy->iECursor, pOrderBy->nExpr+1);
- assert( p->addrOpenEphm[2] == -1 );
- p->addrOpenEphm[2] = addr;
- }
-}
-
#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** Return the appropriate collating sequence for the iCol-th column of
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+/* Forward reference */
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+);
+
+
#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
-** This routine is called to process a query that is really the union
-** or intersection of two or more separate queries.
+** This routine is called to process a compound query form from
+** two or more separate queries using UNION, UNION ALL, EXCEPT, or
+** INTERSECT
**
** "p" points to the right-most of the two queries. the query on the
** left is p->pPrior. The left query could also be a compound query
static int multiSelect(
Parse *pParse, /* Parsing context */
Select *p, /* The right-most of SELECTs to be coded */
- SelectDest *pDest, /* What to do with query results */
- char *aff /* If eDest is SRT_Union, the affinity string */
+ SelectDest *pDest /* What to do with query results */
){
int rc = SQLITE_OK; /* Success code from a subroutine */
Select *pPrior; /* Another SELECT immediately to our left */
Vdbe *v; /* Generate code to this VDBE */
- int nCol; /* Number of columns in the result set */
- ExprList *pOrderBy; /* The ORDER BY clause on p */
- int aSetP2[2]; /* Set P2 value of these op to number of columns */
- int nSetP2 = 0; /* Number of slots in aSetP2[] used */
SelectDest dest; /* Alternative data destination */
-
- dest = *pDest;
+ Select *pDelete = 0; /* Chain of simple selects to delete */
+ sqlite3 *db; /* Database connection */
/* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
*/
- if( p==0 || p->pPrior==0 ){
- rc = 1;
- goto multi_select_end;
- }
+ assert( p && p->pPrior ); /* Calling function guarantees this much */
+ db = pParse->db;
pPrior = p->pPrior;
assert( pPrior->pRightmost!=pPrior );
assert( pPrior->pRightmost==p->pRightmost );
goto multi_select_end;
}
- /* Make sure we have a valid query engine. If not, create a new one.
- */
v = sqlite3GetVdbe(pParse);
- if( v==0 ){
- rc = 1;
- goto multi_select_end;
- }
+ assert( v!=0 ); /* The VDBE already created by calling function */
/* Create the destination temporary table if necessary
*/
+ dest = *pDest;
if( dest.eDest==SRT_EphemTab ){
assert( p->pEList );
- assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
- aSetP2[nSetP2++] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, 0);
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
dest.eDest = SRT_Table;
}
+ /* Make sure all SELECTs in the statement have the same number of elements
+ ** in their result sets.
+ */
+ assert( p->pEList && pPrior->pEList );
+ if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
+ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
+ " do not have the same number of result columns", selectOpName(p->op));
+ rc = 1;
+ goto multi_select_end;
+ }
+
+ /* Compound SELECTs that have an ORDER BY clause are handled separately.
+ */
+ if( p->pOrderBy ){
+ return multiSelectOrderBy(pParse, p, pDest);
+ }
+
/* Generate code for the left and right SELECT statements.
*/
- pOrderBy = p->pOrderBy;
switch( p->op ){
case TK_ALL: {
- if( pOrderBy==0 ){
- int addr = 0;
- assert( !pPrior->pLimit );
- pPrior->pLimit = p->pLimit;
- pPrior->pOffset = p->pOffset;
- rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0, aff);
- p->pLimit = 0;
- p->pOffset = 0;
- if( rc ){
- goto multi_select_end;
- }
- p->pPrior = 0;
- p->iLimit = pPrior->iLimit;
- p->iOffset = pPrior->iOffset;
- if( p->iLimit>=0 ){
- addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
- VdbeComment((v, "Jump ahead if LIMIT reached"));
- }
- rc = sqlite3Select(pParse, p, &dest, 0, 0, 0, aff);
- p->pPrior = pPrior;
- if( rc ){
- goto multi_select_end;
- }
- if( addr ){
- sqlite3VdbeJumpHere(v, addr);
- }
- break;
+ int addr = 0;
+ assert( !pPrior->pLimit );
+ pPrior->pLimit = p->pLimit;
+ pPrior->pOffset = p->pOffset;
+ rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0);
+ p->pLimit = 0;
+ p->pOffset = 0;
+ if( rc ){
+ goto multi_select_end;
}
- /* For UNION ALL ... ORDER BY fall through to the next case */
+ p->pPrior = 0;
+ p->iLimit = pPrior->iLimit;
+ p->iOffset = pPrior->iOffset;
+ if( p->iLimit ){
+ addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
+ VdbeComment((v, "Jump ahead if LIMIT reached"));
+ }
+ rc = sqlite3Select(pParse, p, &dest, 0, 0, 0);
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ if( rc ){
+ goto multi_select_end;
+ }
+ if( addr ){
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ break;
}
case TK_EXCEPT:
case TK_UNION: {
int addr;
SelectDest uniondest;
- priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
- if( dest.eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
+ priorOp = SRT_Union;
+ if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){
/* We can reuse a temporary table generated by a SELECT to our
** right.
*/
** intermediate results.
*/
unionTab = pParse->nTab++;
- if( processCompoundOrderBy(pParse, p, unionTab) ){
- rc = 1;
- goto multi_select_end;
- }
+ assert( p->pOrderBy==0 );
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
- if( priorOp==SRT_Table ){
- assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
- aSetP2[nSetP2++] = addr;
- }else{
- assert( p->addrOpenEphm[0] == -1 );
- p->addrOpenEphm[0] = addr;
- p->pRightmost->usesEphm = 1;
- }
- createSortingIndex(pParse, p, pOrderBy);
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ p->pRightmost->usesEphm = 1;
assert( p->pEList );
}
*/
assert( !pPrior->pOrderBy );
sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
- rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0, aff);
+ rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0);
if( rc ){
goto multi_select_end;
}
/* Code the current SELECT statement
*/
- switch( p->op ){
- case TK_EXCEPT: op = SRT_Except; break;
- case TK_UNION: op = SRT_Union; break;
- case TK_ALL: op = SRT_Table; break;
+ if( p->op==TK_EXCEPT ){
+ op = SRT_Except;
+ }else{
+ assert( p->op==TK_UNION );
+ op = SRT_Union;
}
p->pPrior = 0;
- p->pOrderBy = 0;
- p->disallowOrderBy = pOrderBy!=0;
+ p->disallowOrderBy = 0;
pLimit = p->pLimit;
p->pLimit = 0;
pOffset = p->pOffset;
p->pOffset = 0;
uniondest.eDest = op;
- rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0, aff);
+ rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0);
/* Query flattening in sqlite3Select() might refill p->pOrderBy.
** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
- sqlite3ExprListDelete(p->pOrderBy);
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ pDelete = p->pPrior;
p->pPrior = pPrior;
- p->pOrderBy = pOrderBy;
- sqlite3ExprDelete(p->pLimit);
+ p->pOrderBy = 0;
+ sqlite3ExprDelete(db, p->pLimit);
p->pLimit = pLimit;
p->pOffset = pOffset;
- p->iLimit = -1;
- p->iOffset = -1;
+ p->iLimit = 0;
+ p->iOffset = 0;
if( rc ){
goto multi_select_end;
}
sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
iStart = sqlite3VdbeCurrentAddr(v);
selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
- pOrderBy, -1, &dest, iCont, iBreak, 0);
+ 0, -1, &dest, iCont, iBreak);
sqlite3VdbeResolveLabel(v, iCont);
sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
sqlite3VdbeResolveLabel(v, iBreak);
*/
tab1 = pParse->nTab++;
tab2 = pParse->nTab++;
- if( processCompoundOrderBy(pParse, p, tab1) ){
- rc = 1;
- goto multi_select_end;
- }
- createSortingIndex(pParse, p, pOrderBy);
+ assert( p->pOrderBy==0 );
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
assert( p->addrOpenEphm[0] == -1 );
/* Code the SELECTs to our left into temporary table "tab1".
*/
sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
- rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0, aff);
+ rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0);
if( rc ){
goto multi_select_end;
}
pOffset = p->pOffset;
p->pOffset = 0;
intersectdest.iParm = tab2;
- rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0, aff);
+ rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0);
+ pDelete = p->pPrior;
p->pPrior = pPrior;
- sqlite3ExprDelete(p->pLimit);
+ sqlite3ExprDelete(db, p->pLimit);
p->pLimit = pLimit;
p->pOffset = pOffset;
if( rc ){
sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
sqlite3ReleaseTempReg(pParse, r1);
selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
- pOrderBy, -1, &dest, iCont, iBreak, 0);
+ 0, -1, &dest, iCont, iBreak);
sqlite3VdbeResolveLabel(v, iCont);
sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
sqlite3VdbeResolveLabel(v, iBreak);
}
}
- /* Make sure all SELECTs in the statement have the same number of elements
- ** in their result sets.
- */
- assert( p->pEList && pPrior->pEList );
- if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
- sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
- " do not have the same number of result columns", selectOpName(p->op));
- rc = 1;
- goto multi_select_end;
- }
-
- /* Set the number of columns in temporary tables
- */
- nCol = p->pEList->nExpr;
- while( nSetP2 ){
- sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
- }
-
- /* Compute collating sequences used by either the ORDER BY clause or
- ** by any temporary tables needed to implement the compound select.
- ** Attach the KeyInfo structure to all temporary tables. Invoke the
- ** ORDER BY processing if there is an ORDER BY clause.
+ /* Compute collating sequences used by
+ ** temporary tables needed to implement the compound select.
+ ** Attach the KeyInfo structure to all temporary tables.
**
** This section is run by the right-most SELECT statement only.
** SELECT statements to the left always skip this part. The right-most
** SELECT might also skip this part if it has no ORDER BY clause and
** no temp tables are required.
*/
- if( pOrderBy || p->usesEphm ){
+ if( p->usesEphm ){
int i; /* Loop counter */
KeyInfo *pKeyInfo; /* Collating sequence for the result set */
Select *pLoop; /* For looping through SELECT statements */
- int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */
CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
- CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */
+ int nCol; /* Number of columns in result set */
assert( p->pRightmost==p );
- nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
- pKeyInfo = sqlite3DbMallocZero(pParse->db,
- sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
+ nCol = p->pEList->nExpr;
+ pKeyInfo = sqlite3DbMallocZero(db,
+ sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
if( !pKeyInfo ){
rc = SQLITE_NOMEM;
goto multi_select_end;
}
- pKeyInfo->enc = ENC(pParse->db);
+ pKeyInfo->enc = ENC(db);
pKeyInfo->nField = nCol;
for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
*apColl = multiSelectCollSeq(pParse, p, i);
if( 0==*apColl ){
- *apColl = pParse->db->pDfltColl;
+ *apColl = db->pDfltColl;
}
}
pLoop->addrOpenEphm[i] = -1;
}
}
+ sqlite3DbFree(db, pKeyInfo);
+ }
- if( pOrderBy ){
- struct ExprList_item *pOTerm = pOrderBy->a;
- int nOrderByExpr = pOrderBy->nExpr;
- int addr;
- u8 *pSortOrder;
-
- /* Reuse the same pKeyInfo for the ORDER BY as was used above for
- ** the compound select statements. Except we have to change out the
- ** pKeyInfo->aColl[] values. Some of the aColl[] values will be
- ** reused when constructing the pKeyInfo for the ORDER BY, so make
- ** a copy. Sufficient space to hold both the nCol entries for
- ** the compound select and the nOrderbyExpr entries for the ORDER BY
- ** was allocated above. But we need to move the compound select
- ** entries out of the way before constructing the ORDER BY entries.
- ** Move the compound select entries into aCopy[] where they can be
- ** accessed and reused when constructing the ORDER BY entries.
- ** Because nCol might be greater than or less than nOrderByExpr
- ** we have to use memmove() when doing the copy.
- */
- aCopy = &pKeyInfo->aColl[nOrderByExpr];
- pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
- memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
-
- apColl = pKeyInfo->aColl;
- for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
- Expr *pExpr = pOTerm->pExpr;
- if( (pExpr->flags & EP_ExpCollate) ){
- assert( pExpr->pColl!=0 );
- *apColl = pExpr->pColl;
+multi_select_end:
+ pDest->iMem = dest.iMem;
+ pDest->nMem = dest.nMem;
+ sqlite3SelectDelete(db, pDelete);
+ return rc;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/*
+** Code an output subroutine for a coroutine implementation of a
+** SELECT statment.
+**
+** The data to be output is contained in pIn->iMem. There are
+** pIn->nMem columns to be output. pDest is where the output should
+** be sent.
+**
+** regReturn is the number of the register holding the subroutine
+** return address.
+**
+** If regPrev>0 then it is a the first register in a vector that
+** records the previous output. mem[regPrev] is a flag that is false
+** if there has been no previous output. If regPrev>0 then code is
+** generated to suppress duplicates. pKeyInfo is used for comparing
+** keys.
+**
+** If the LIMIT found in p->iLimit is reached, jump immediately to
+** iBreak.
+*/
+static int generateOutputSubroutine(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ SelectDest *pIn, /* Coroutine supplying data */
+ SelectDest *pDest, /* Where to send the data */
+ int regReturn, /* The return address register */
+ int regPrev, /* Previous result register. No uniqueness if 0 */
+ KeyInfo *pKeyInfo, /* For comparing with previous entry */
+ int p4type, /* The p4 type for pKeyInfo */
+ int iBreak /* Jump here if we hit the LIMIT */
+){
+ Vdbe *v = pParse->pVdbe;
+ int iContinue;
+ int addr;
+
+ addr = sqlite3VdbeCurrentAddr(v);
+ iContinue = sqlite3VdbeMakeLabel(v);
+
+ /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
+ */
+ if( regPrev ){
+ int j1, j2;
+ j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
+ j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
+ (char*)pKeyInfo, p4type);
+ sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
+ }
+ if( pParse->db->mallocFailed ) return 0;
+
+ /* Suppress the the first OFFSET entries if there is an OFFSET clause
+ */
+ codeOffset(v, p, iContinue);
+
+ switch( pDest->eDest ){
+ /* Store the result as data using a unique key.
+ */
+ case SRT_Table:
+ case SRT_EphemTab: {
+ int r1 = sqlite3GetTempReg(pParse);
+ int r2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+ ** then there should be a single item on the stack. Write this
+ ** item into the set table with bogus data.
+ */
+ case SRT_Set: {
+ int r1;
+ assert( pIn->nMem==1 );
+ p->affinity =
+ sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+#if 0 /* Never occurs on an ORDER BY query */
+ /* If any row exist in the result set, record that fact and abort.
+ */
+ case SRT_Exists: {
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+#endif
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell and break out
+ ** of the scan loop.
+ */
+ case SRT_Mem: {
+ assert( pIn->nMem==1 );
+ sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
+ /* The LIMIT clause will jump out of the loop for us */
+ break;
+ }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+ /* Send the data to the callback function or to a subroutine. In the
+ ** case of a subroutine, the subroutine itself is responsible for
+ ** popping the data from the stack.
+ */
+ case SRT_Coroutine: {
+ if( pDest->iMem==0 ){
+ pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
+ pDest->nMem = pIn->nMem;
+ }
+ sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
+ break;
+ }
+
+ case SRT_Callback: {
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
+ sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
+ break;
+ }
+
+#if !defined(SQLITE_OMIT_TRIGGER)
+ /* Discard the results. This is used for SELECT statements inside
+ ** the body of a TRIGGER. The purpose of such selects is to call
+ ** user-defined functions that have side effects. We do not care
+ ** about the actual results of the select.
+ */
+ default: {
+ break;
+ }
+#endif
+ }
+
+ /* Jump to the end of the loop if the LIMIT is reached.
+ */
+ if( p->iLimit ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
+ sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
+ }
+
+ /* Generate the subroutine return
+ */
+ sqlite3VdbeResolveLabel(v, iContinue);
+ sqlite3VdbeAddOp1(v, OP_Return, regReturn);
+
+ return addr;
+}
+
+/*
+** Alternative compound select code generator for cases when there
+** is an ORDER BY clause.
+**
+** We assume a query of the following form:
+**
+** <selectA> <operator> <selectB> ORDER BY <orderbylist>
+**
+** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
+** is to code both <selectA> and <selectB> with the ORDER BY clause as
+** co-routines. Then run the co-routines in parallel and merge the results
+** into the output. In addition to the two coroutines (called selectA and
+** selectB) there are 7 subroutines:
+**
+** outA: Move the output of the selectA coroutine into the output
+** of the compound query.
+**
+** outB: Move the output of the selectB coroutine into the output
+** of the compound query. (Only generated for UNION and
+** UNION ALL. EXCEPT and INSERTSECT never output a row that
+** appears only in B.)
+**
+** AltB: Called when there is data from both coroutines and A<B.
+**
+** AeqB: Called when there is data from both coroutines and A==B.
+**
+** AgtB: Called when there is data from both coroutines and A>B.
+**
+** EofA: Called when data is exhausted from selectA.
+**
+** EofB: Called when data is exhausted from selectB.
+**
+** The implementation of the latter five subroutines depend on which
+** <operator> is used:
+**
+**
+** UNION ALL UNION EXCEPT INTERSECT
+** ------------- ----------------- -------------- -----------------
+** AltB: outA, nextA outA, nextA outA, nextA nextA
+**
+** AeqB: outA, nextA nextA nextA outA, nextA
+**
+** AgtB: outB, nextB outB, nextB nextB nextB
+**
+** EofA: outB, nextB outB, nextB halt halt
+**
+** EofB: outA, nextA outA, nextA outA, nextA halt
+**
+** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
+** causes an immediate jump to EofA and an EOF on B following nextB causes
+** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
+** following nextX causes a jump to the end of the select processing.
+**
+** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
+** within the output subroutine. The regPrev register set holds the previously
+** output value. A comparison is made against this value and the output
+** is skipped if the next results would be the same as the previous.
+**
+** The implementation plan is to implement the two coroutines and seven
+** subroutines first, then put the control logic at the bottom. Like this:
+**
+** goto Init
+** coA: coroutine for left query (A)
+** coB: coroutine for right query (B)
+** outA: output one row of A
+** outB: output one row of B (UNION and UNION ALL only)
+** EofA: ...
+** EofB: ...
+** AltB: ...
+** AeqB: ...
+** AgtB: ...
+** Init: initialize coroutine registers
+** yield coA
+** if eof(A) goto EofA
+** yield coB
+** if eof(B) goto EofB
+** Cmpr: Compare A, B
+** Jump AltB, AeqB, AgtB
+** End: ...
+**
+** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
+** actually called using Gosub and they do not Return. EofA and EofB loop
+** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
+** and AgtB jump to either L2 or to one of EofA or EofB.
+*/
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int i, j; /* Loop counters */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Vdbe *v; /* Generate code to this VDBE */
+ SelectDest destA; /* Destination for coroutine A */
+ SelectDest destB; /* Destination for coroutine B */
+ int regAddrA; /* Address register for select-A coroutine */
+ int regEofA; /* Flag to indicate when select-A is complete */
+ int regAddrB; /* Address register for select-B coroutine */
+ int regEofB; /* Flag to indicate when select-B is complete */
+ int addrSelectA; /* Address of the select-A coroutine */
+ int addrSelectB; /* Address of the select-B coroutine */
+ int regOutA; /* Address register for the output-A subroutine */
+ int regOutB; /* Address register for the output-B subroutine */
+ int addrOutA; /* Address of the output-A subroutine */
+ int addrOutB; /* Address of the output-B subroutine */
+ int addrEofA; /* Address of the select-A-exhausted subroutine */
+ int addrEofB; /* Address of the select-B-exhausted subroutine */
+ int addrAltB; /* Address of the A<B subroutine */
+ int addrAeqB; /* Address of the A==B subroutine */
+ int addrAgtB; /* Address of the A>B subroutine */
+ int regLimitA; /* Limit register for select-A */
+ int regLimitB; /* Limit register for select-A */
+ int regPrev; /* A range of registers to hold previous output */
+ int savedLimit; /* Saved value of p->iLimit */
+ int savedOffset; /* Saved value of p->iOffset */
+ int labelCmpr; /* Label for the start of the merge algorithm */
+ int labelEnd; /* Label for the end of the overall SELECT stmt */
+ int j1; /* Jump instructions that get retargetted */
+ int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
+ KeyInfo *pKeyDup; /* Comparison information for duplicate removal */
+ KeyInfo *pKeyMerge; /* Comparison information for merging rows */
+ sqlite3 *db; /* Database connection */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ int *aPermute; /* Mapping from ORDER BY terms to result set columns */
+ u8 NotUsed; /* Dummy variables */
+
+ assert( p->pOrderBy!=0 );
+ db = pParse->db;
+ v = pParse->pVdbe;
+ if( v==0 ) return SQLITE_NOMEM;
+ labelEnd = sqlite3VdbeMakeLabel(v);
+ labelCmpr = sqlite3VdbeMakeLabel(v);
+
+
+ /* Patch up the ORDER BY clause
+ */
+ op = p->op;
+ pPrior = p->pPrior;
+ assert( pPrior->pOrderBy==0 );
+ pOrderBy = p->pOrderBy;
+ assert( pOrderBy );
+ if( processCompoundOrderBy(pParse, p) ){
+ return SQLITE_ERROR;
+ }
+ nOrderBy = pOrderBy->nExpr;
+
+ /* For operators other than UNION ALL we have to make sure that
+ ** the ORDER BY clause covers every term of the result set. Add
+ ** terms to the ORDER BY clause as necessary.
+ */
+ if( op!=TK_ALL ){
+ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
+ for(j=0; j<nOrderBy; j++){
+ Expr *pTerm = pOrderBy->a[j].pExpr;
+ assert( pTerm->op==TK_INTEGER );
+ assert( (pTerm->flags & EP_IntValue)!=0 );
+ if( pTerm->iTable==i ) break;
+ }
+ if( j==nOrderBy ){
+ Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
+ if( pNew==0 ) return SQLITE_NOMEM;
+ pNew->flags |= EP_IntValue;
+ pNew->iTable = i;
+ pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
+ nOrderBy++;
+ }
+ }
+ }
+
+ /* Compute the comparison permutation and keyinfo that is used with
+ ** the permutation in order to comparisons to determine if the next
+ ** row of results comes from selectA or selectB. Also add explicit
+ ** collations to the ORDER BY clause terms so that when the subqueries
+ ** to the right and the left are evaluated, they use the correct
+ ** collation.
+ */
+ aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
+ if( aPermute ){
+ for(i=0; i<nOrderBy; i++){
+ Expr *pTerm = pOrderBy->a[i].pExpr;
+ assert( pTerm->op==TK_INTEGER );
+ assert( (pTerm->flags & EP_IntValue)!=0 );
+ aPermute[i] = pTerm->iTable-1;
+ assert( aPermute[i]>=0 && aPermute[i]<p->pEList->nExpr );
+ }
+ pKeyMerge =
+ sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
+ if( pKeyMerge ){
+ pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
+ pKeyMerge->nField = nOrderBy;
+ pKeyMerge->enc = ENC(db);
+ for(i=0; i<nOrderBy; i++){
+ CollSeq *pColl;
+ Expr *pTerm = pOrderBy->a[i].pExpr;
+ if( pTerm->flags & EP_ExpCollate ){
+ pColl = pTerm->pColl;
}else{
- *apColl = aCopy[pExpr->iColumn];
+ pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
+ pTerm->flags |= EP_ExpCollate;
+ pTerm->pColl = pColl;
}
- *pSortOrder = pOTerm->sortOrder;
+ pKeyMerge->aColl[i] = pColl;
+ pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
}
- assert( p->pRightmost==p );
- assert( p->addrOpenEphm[2]>=0 );
- addr = p->addrOpenEphm[2];
- sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
- pKeyInfo->nField = nOrderByExpr;
- sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
- pKeyInfo = 0;
- generateSortTail(pParse, p, v, p->pEList->nExpr, &dest);
}
+ }else{
+ pKeyMerge = 0;
+ }
+
+ /* Reattach the ORDER BY clause to the query.
+ */
+ p->pOrderBy = pOrderBy;
+ pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy);
+
+ /* Allocate a range of temporary registers and the KeyInfo needed
+ ** for the logic that removes duplicate result rows when the
+ ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
+ */
+ if( op==TK_ALL ){
+ regPrev = 0;
+ }else{
+ int nExpr = p->pEList->nExpr;
+ assert( nOrderBy>=nExpr );
+ regPrev = sqlite3GetTempRange(pParse, nExpr+1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
+ pKeyDup = sqlite3DbMallocZero(db,
+ sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
+ if( pKeyDup ){
+ pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
+ pKeyDup->nField = nExpr;
+ pKeyDup->enc = ENC(db);
+ for(i=0; i<nExpr; i++){
+ pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
+ pKeyDup->aSortOrder[i] = 0;
+ }
+ }
+ }
+
+ /* Separate the left and the right query from one another
+ */
+ p->pPrior = 0;
+ pPrior->pRightmost = 0;
+ processOrderGroupBy(pParse, p, p->pOrderBy, 1, &NotUsed);
+ if( pPrior->pPrior==0 ){
+ processOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, 1, &NotUsed);
+ }
+
+ /* Compute the limit registers */
+ computeLimitRegisters(pParse, p, labelEnd);
+ if( p->iLimit && op==TK_ALL ){
+ regLimitA = ++pParse->nMem;
+ regLimitB = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
+ regLimitA);
+ sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
+ }else{
+ regLimitA = regLimitB = 0;
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = 0;
+ sqlite3ExprDelete(db, p->pOffset);
+ p->pOffset = 0;
+
+ regAddrA = ++pParse->nMem;
+ regEofA = ++pParse->nMem;
+ regAddrB = ++pParse->nMem;
+ regEofB = ++pParse->nMem;
+ regOutA = ++pParse->nMem;
+ regOutB = ++pParse->nMem;
+ sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
+ sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
+
+ /* Jump past the various subroutines and coroutines to the main
+ ** merge loop
+ */
+ j1 = sqlite3VdbeAddOp0(v, OP_Goto);
+ addrSelectA = sqlite3VdbeCurrentAddr(v);
+
+
+ /* Generate a coroutine to evaluate the SELECT statement to the
+ ** left of the compound operator - the "A" select.
+ */
+ VdbeNoopComment((v, "Begin coroutine for left SELECT"));
+ pPrior->iLimit = regLimitA;
+ sqlite3Select(pParse, pPrior, &destA, 0, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ VdbeNoopComment((v, "End coroutine for left SELECT"));
+
+ /* Generate a coroutine to evaluate the SELECT statement on
+ ** the right - the "B" select
+ */
+ addrSelectB = sqlite3VdbeCurrentAddr(v);
+ VdbeNoopComment((v, "Begin coroutine for right SELECT"));
+ savedLimit = p->iLimit;
+ savedOffset = p->iOffset;
+ p->iLimit = regLimitB;
+ p->iOffset = 0;
+ sqlite3Select(pParse, p, &destB, 0, 0, 0);
+ p->iLimit = savedLimit;
+ p->iOffset = savedOffset;
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+ VdbeNoopComment((v, "End coroutine for right SELECT"));
+
+ /* Generate a subroutine that outputs the current row of the A
+ ** select as the next output row of the compound select.
+ */
+ VdbeNoopComment((v, "Output routine for A"));
+ addrOutA = generateOutputSubroutine(pParse,
+ p, &destA, pDest, regOutA,
+ regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
+
+ /* Generate a subroutine that outputs the current row of the B
+ ** select as the next output row of the compound select.
+ */
+ if( op==TK_ALL || op==TK_UNION ){
+ VdbeNoopComment((v, "Output routine for B"));
+ addrOutB = generateOutputSubroutine(pParse,
+ p, &destB, pDest, regOutB,
+ regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
+ }
- sqlite3_free(pKeyInfo);
+ /* Generate a subroutine to run when the results from select A
+ ** are exhausted and only data in select B remains.
+ */
+ VdbeNoopComment((v, "eof-A subroutine"));
+ if( op==TK_EXCEPT || op==TK_INTERSECT ){
+ addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
+ }else{
+ addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
}
-multi_select_end:
- pDest->iMem = dest.iMem;
- pDest->nMem = dest.nMem;
- return rc;
+ /* Generate a subroutine to run when the results from select B
+ ** are exhausted and only data in select A remains.
+ */
+ if( op==TK_INTERSECT ){
+ addrEofB = addrEofA;
+ }else{
+ VdbeNoopComment((v, "eof-B subroutine"));
+ addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
+ }
+
+ /* Generate code to handle the case of A<B
+ */
+ VdbeNoopComment((v, "A-lt-B subroutine"));
+ addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+
+ /* Generate code to handle the case of A==B
+ */
+ if( op==TK_ALL ){
+ addrAeqB = addrAltB;
+ }else if( op==TK_INTERSECT ){
+ addrAeqB = addrAltB;
+ addrAltB++;
+ }else{
+ VdbeNoopComment((v, "A-eq-B subroutine"));
+ addrAeqB =
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+ }
+
+ /* Generate code to handle the case of A>B
+ */
+ VdbeNoopComment((v, "A-gt-B subroutine"));
+ addrAgtB = sqlite3VdbeCurrentAddr(v);
+ if( op==TK_ALL || op==TK_UNION ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ }
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+ sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+
+ /* This code runs once to initialize everything.
+ */
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
+ sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+ sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
+
+ /* Implement the main merge loop
+ */
+ sqlite3VdbeResolveLabel(v, labelCmpr);
+ sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
+ sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
+ (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
+ sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
+
+ /* Release temporary registers
+ */
+ if( regPrev ){
+ sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
+ }
+
+ /* Jump to the this point in order to terminate the query.
+ */
+ sqlite3VdbeResolveLabel(v, labelEnd);
+
+ /* Set the number of output columns
+ */
+ if( pDest->eDest==SRT_Callback ){
+ Select *pFirst = pPrior;
+ while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+ generateColumnNames(pParse, 0, pFirst->pEList);
+ }
+
+ /* Reassembly the compound query so that it will be freed correctly
+ ** by the calling function */
+ if( p->pPrior ){
+ sqlite3SelectDelete(db, p->pPrior);
+ }
+ p->pPrior = pPrior;
+
+ /*** TBD: Insert subroutine calls to close cursors on incomplete
+ **** subqueries ****/
+ return SQLITE_OK;
}
-#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+#endif
-#ifndef SQLITE_OMIT_VIEW
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/* Forward Declarations */
static void substExprList(sqlite3*, ExprList*, int, ExprList*);
static void substSelect(sqlite3*, Select *, int, ExprList *);
substExpr(db, p->pWhere, iTable, pEList);
substSelect(db, p->pPrior, iTable, pEList);
}
-#endif /* !defined(SQLITE_OMIT_VIEW) */
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
-#ifndef SQLITE_OMIT_VIEW
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/*
** This routine attempts to flatten subqueries in order to speed
** execution. It returns 1 if it makes changes and 0 if no flattening
** not contain ORDER BY. (Ticket #2942) This used to not matter
** until we introduced the group_concat() function.
**
+** (17) The sub-query is not a compound select, or it is a UNION ALL
+** compound clause made up entirely of non-aggregate queries, and
+** the parent query:
+**
+** * is not itself part of a compound select,
+** * is not an aggregate or DISTINCT query, and
+** * has no other tables or sub-selects in the FROM clause.
+**
+** The parent and sub-query may contain WHERE clauses. Subject to
+** rules (11), (13) and (14), they may also contain ORDER BY,
+** LIMIT and OFFSET clauses.
+**
+** (18) If the sub-query is a compound select, then all terms of the
+** ORDER by clause of the parent must be simple references to
+** columns of the sub-query.
+**
** In this routine, the "p" parameter is a pointer to the outer query.
** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
** the subquery before this routine runs.
*/
static int flattenSubquery(
- sqlite3 *db, /* Database connection */
+ Parse *pParse, /* Parsing context */
Select *p, /* The parent or outer SELECT statement */
int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
int isAgg, /* True if outer SELECT uses aggregate functions */
int subqueryIsAgg /* True if the subquery uses aggregate functions */
){
+ const char *zSavedAuthContext = pParse->zAuthContext;
+ Select *pParent;
Select *pSub; /* The inner query or "subquery" */
+ Select *pSub1; /* Pointer to the rightmost select in sub-query */
SrcList *pSrc; /* The FROM clause of the outer query */
SrcList *pSubSrc; /* The FROM clause of the subquery */
ExprList *pList; /* The result set of the outer query */
int i; /* Loop counter */
Expr *pWhere; /* The WHERE clause */
struct SrcList_item *pSubitem; /* The subquery */
+ sqlite3 *db = pParse->db;
/* Check to see if flattening is permitted. Return 0 if not.
*/
pSrc = p->pSrc;
assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
pSubitem = &pSrc->a[iFrom];
+ iParent = pSubitem->iCursor;
pSub = pSubitem->pSelect;
assert( pSub!=0 );
if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
return 0;
}
- /* If we reach this point, it means flattening is permitted for the
- ** iFrom-th entry of the FROM clause in the outer query.
+ /* Restriction 17: If the sub-query is a compound SELECT, then it must
+ ** use only the UNION ALL operator. And none of the simple select queries
+ ** that make up the compound SELECT are allowed to be aggregate or distinct
+ ** queries.
*/
+ if( pSub->pPrior ){
+ if( p->pPrior || isAgg || p->isDistinct || pSrc->nSrc!=1 ){
+ return 0;
+ }
+ for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
+ if( pSub1->isAgg || pSub1->isDistinct
+ || (pSub1->pPrior && pSub1->op!=TK_ALL)
+ || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
+ ){
+ return 0;
+ }
+ }
+
+ /* Restriction 18. */
+ if( p->pOrderBy ){
+ int ii;
+ for(ii=0; ii<p->pOrderBy->nExpr; ii++){
+ Expr *pExpr = p->pOrderBy->a[ii].pExpr;
+ if( pExpr->op!=TK_COLUMN || pExpr->iTable!=iParent ){
+ return 0;
+ }
+ }
+ }
+ }
+
+ pParse->zAuthContext = pSubitem->zName;
+ sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
+ pParse->zAuthContext = zSavedAuthContext;
+
+ /* If the sub-query is a compound SELECT statement, then it must be
+ ** a UNION ALL and the parent query must be of the form:
+ **
+ ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
+ **
+ ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
+ ** creates N copies of the parent query without any ORDER BY, LIMIT or
+ ** OFFSET clauses and joins them to the left-hand-side of the original
+ ** using UNION ALL operators. In this case N is the number of simple
+ ** select statements in the compound sub-query.
+ */
+ for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
+ Select *pNew;
+ ExprList *pOrderBy = p->pOrderBy;
+ Expr *pLimit = p->pLimit;
+ Expr *pOffset = p->pOffset;
+ Select *pPrior = p->pPrior;
+ p->pOrderBy = 0;
+ p->pSrc = 0;
+ p->pPrior = 0;
+ p->pLimit = 0;
+ pNew = sqlite3SelectDup(db, p);
+ pNew->pPrior = pPrior;
+ p->pPrior = pNew;
+ p->pOrderBy = pOrderBy;
+ p->op = TK_ALL;
+ p->pSrc = pSrc;
+ p->pLimit = pLimit;
+ p->pOffset = pOffset;
+ p->pRightmost = 0;
+ pNew->pRightmost = 0;
+ }
- /* Move all of the FROM elements of the subquery into the
- ** the FROM clause of the outer query. Before doing this, remember
- ** the cursor number for the original outer query FROM element in
- ** iParent. The iParent cursor will never be used. Subsequent code
- ** will scan expressions looking for iParent references and replace
- ** those references with expressions that resolve to the subquery FROM
- ** elements we are now copying in.
+ /* If we reach this point, it means flattening is permitted for the
+ ** iFrom-th entry of the FROM clause in the outer query.
*/
- iParent = pSubitem->iCursor;
- {
+ pSub = pSub1 = pSubitem->pSelect;
+ for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
int nSubSrc = pSubSrc->nSrc;
- int jointype = pSubitem->jointype;
-
- sqlite3DeleteTable(pSubitem->pTab);
- sqlite3_free(pSubitem->zDatabase);
- sqlite3_free(pSubitem->zName);
- sqlite3_free(pSubitem->zAlias);
- pSubitem->pTab = 0;
- pSubitem->zDatabase = 0;
- pSubitem->zName = 0;
- pSubitem->zAlias = 0;
- if( nSubSrc>1 ){
+ int jointype = 0;
+ pSubSrc = pSub->pSrc;
+ pSrc = pParent->pSrc;
+
+ /* Move all of the FROM elements of the subquery into the
+ ** the FROM clause of the outer query. Before doing this, remember
+ ** the cursor number for the original outer query FROM element in
+ ** iParent. The iParent cursor will never be used. Subsequent code
+ ** will scan expressions looking for iParent references and replace
+ ** those references with expressions that resolve to the subquery FROM
+ ** elements we are now copying in.
+ */
+ if( pSrc ){
+ pSubitem = &pSrc->a[iFrom];
+ nSubSrc = pSubSrc->nSrc;
+ jointype = pSubitem->jointype;
+ sqlite3DeleteTable(pSubitem->pTab);
+ sqlite3DbFree(db, pSubitem->zDatabase);
+ sqlite3DbFree(db, pSubitem->zName);
+ sqlite3DbFree(db, pSubitem->zAlias);
+ pSubitem->pTab = 0;
+ pSubitem->zDatabase = 0;
+ pSubitem->zName = 0;
+ pSubitem->zAlias = 0;
+ }
+ if( nSubSrc!=1 || !pSrc ){
int extra = nSubSrc - 1;
- for(i=1; i<nSubSrc; i++){
+ for(i=(pSrc?1:0); i<nSubSrc; i++){
pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
if( pSrc==0 ){
- p->pSrc = 0;
+ pParent->pSrc = 0;
return 1;
}
}
- p->pSrc = pSrc;
+ pParent->pSrc = pSrc;
for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
pSrc->a[i] = pSrc->a[i-extra];
}
memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
}
pSrc->a[iFrom].jointype = jointype;
- }
-
- /* Now begin substituting subquery result set expressions for
- ** references to the iParent in the outer query.
- **
- ** Example:
- **
- ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
- ** \ \_____________ subquery __________/ /
- ** \_____________________ outer query ______________________________/
- **
- ** We look at every expression in the outer query and every place we see
- ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
- */
- pList = p->pEList;
- for(i=0; i<pList->nExpr; i++){
- Expr *pExpr;
- if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
- pList->a[i].zName =
- sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
+
+ /* Now begin substituting subquery result set expressions for
+ ** references to the iParent in the outer query.
+ **
+ ** Example:
+ **
+ ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
+ ** \ \_____________ subquery __________/ /
+ ** \_____________________ outer query ______________________________/
+ **
+ ** We look at every expression in the outer query and every place we see
+ ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
+ */
+ pList = pParent->pEList;
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pExpr;
+ if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
+ pList->a[i].zName =
+ sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
+ }
+ }
+ substExprList(db, pParent->pEList, iParent, pSub->pEList);
+ if( isAgg ){
+ substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
+ substExpr(db, pParent->pHaving, iParent, pSub->pEList);
+ }
+ if( pSub->pOrderBy ){
+ assert( pParent->pOrderBy==0 );
+ pParent->pOrderBy = pSub->pOrderBy;
+ pSub->pOrderBy = 0;
+ }else if( pParent->pOrderBy ){
+ substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
+ }
+ if( pSub->pWhere ){
+ pWhere = sqlite3ExprDup(db, pSub->pWhere);
+ }else{
+ pWhere = 0;
+ }
+ if( subqueryIsAgg ){
+ assert( pParent->pHaving==0 );
+ pParent->pHaving = pParent->pWhere;
+ pParent->pWhere = pWhere;
+ substExpr(db, pParent->pHaving, iParent, pSub->pEList);
+ pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
+ sqlite3ExprDup(db, pSub->pHaving));
+ assert( pParent->pGroupBy==0 );
+ pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
+ }else{
+ substExpr(db, pParent->pWhere, iParent, pSub->pEList);
+ pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
+ }
+
+ /* The flattened query is distinct if either the inner or the
+ ** outer query is distinct.
+ */
+ pParent->isDistinct = pParent->isDistinct || pSub->isDistinct;
+
+ /*
+ ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
+ **
+ ** One is tempted to try to add a and b to combine the limits. But this
+ ** does not work if either limit is negative.
+ */
+ if( pSub->pLimit ){
+ pParent->pLimit = pSub->pLimit;
+ pSub->pLimit = 0;
}
- }
- substExprList(db, p->pEList, iParent, pSub->pEList);
- if( isAgg ){
- substExprList(db, p->pGroupBy, iParent, pSub->pEList);
- substExpr(db, p->pHaving, iParent, pSub->pEList);
- }
- if( pSub->pOrderBy ){
- assert( p->pOrderBy==0 );
- p->pOrderBy = pSub->pOrderBy;
- pSub->pOrderBy = 0;
- }else if( p->pOrderBy ){
- substExprList(db, p->pOrderBy, iParent, pSub->pEList);
- }
- if( pSub->pWhere ){
- pWhere = sqlite3ExprDup(db, pSub->pWhere);
- }else{
- pWhere = 0;
- }
- if( subqueryIsAgg ){
- assert( p->pHaving==0 );
- p->pHaving = p->pWhere;
- p->pWhere = pWhere;
- substExpr(db, p->pHaving, iParent, pSub->pEList);
- p->pHaving = sqlite3ExprAnd(db, p->pHaving,
- sqlite3ExprDup(db, pSub->pHaving));
- assert( p->pGroupBy==0 );
- p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
- }else{
- substExpr(db, p->pWhere, iParent, pSub->pEList);
- p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere);
- }
-
- /* The flattened query is distinct if either the inner or the
- ** outer query is distinct.
- */
- p->isDistinct = p->isDistinct || pSub->isDistinct;
-
- /*
- ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
- **
- ** One is tempted to try to add a and b to combine the limits. But this
- ** does not work if either limit is negative.
- */
- if( pSub->pLimit ){
- p->pLimit = pSub->pLimit;
- pSub->pLimit = 0;
}
/* Finially, delete what is left of the subquery and return
** success.
*/
- sqlite3SelectDelete(pSub);
+ sqlite3SelectDelete(db, pSub1);
+
return 1;
}
-#endif /* SQLITE_OMIT_VIEW */
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
/*
** Analyze the SELECT statement passed as an argument to see if it
pAggInfo->directMode = 0;
}
-#if 0
-/*
-** This function is used when a SELECT statement is used to create a
-** temporary table for iterating through when running an INSTEAD OF
-** UPDATE or INSTEAD OF DELETE trigger.
-**
-** If possible, the SELECT statement is modified so that NULL values
-** are stored in the temporary table for all columns for which the
-** corresponding bit in argument mask is not set. If mask takes the
-** special value 0xffffffff, then all columns are populated.
-*/
-SQLITE_PRIVATE void sqlite3SelectMask(Parse *pParse, Select *p, u32 mask){
- if( p && !p->pPrior && !p->isDistinct && mask!=0xffffffff ){
- ExprList *pEList;
- int i;
- sqlite3SelectResolve(pParse, p, 0);
- pEList = p->pEList;
- for(i=0; pEList && i<pEList->nExpr && i<32; i++){
- if( !(mask&((u32)1<<i)) ){
- sqlite3ExprDelete(pEList->a[i].pExpr);
- pEList->a[i].pExpr = sqlite3Expr(pParse->db, TK_NULL, 0, 0, 0);
- }
- }
- }
-}
-#endif
-
/*
** Generate code for the given SELECT statement.
**
**
** SRT_Mem Store first result in memory cell pDest->iParm
**
-** SRT_Set Store non-null results as keys of table pDest->iParm.
+** SRT_Set Store results as keys of table pDest->iParm.
** Apply the affinity pDest->affinity before storing them.
**
** SRT_Union Store results as a key in a temporary table pDest->iParm.
** the result there. The cursor is left open after
** returning.
**
-** SRT_Subroutine For each row returned, push the results onto the
-** vdbe stack and call the subroutine (via OP_Gosub)
-** at address pDest->iParm.
+** SRT_Coroutine Invoke a co-routine to compute a single row of
+** the result
**
** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
** set is not empty.
SelectDest *pDest, /* What to do with the query results */
Select *pParent, /* Another SELECT for which this is a sub-query */
int parentTab, /* Index in pParent->pSrc of this query */
- int *pParentAgg, /* True if pParent uses aggregate functions */
- char *aff /* If eDest is SRT_Union, the affinity string */
+ int *pParentAgg /* True if pParent uses aggregate functions */
){
int i, j; /* Loop counters */
WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
}
p->pOrderBy = pOrderBy;
-#ifndef SQLITE_OMIT_COMPOUND_SELECT
- /* If there is are a sequence of queries, do the earlier ones first.
- */
- if( p->pPrior ){
- if( p->pRightmost==0 ){
- Select *pLoop, *pRight = 0;
- int cnt = 0;
- int mxSelect;
- for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
- pLoop->pRightmost = p;
- pLoop->pNext = pRight;
- pRight = pLoop;
- }
- mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
- if( mxSelect && cnt>mxSelect ){
- sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
- return 1;
- }
- }
- return multiSelect(pParse, p, pDest, aff);
- }
-#endif
/* Make local copies of the parameters for this query.
*/
pTabList = p->pSrc;
- pWhere = p->pWhere;
- pGroupBy = p->pGroupBy;
- pHaving = p->pHaving;
isAgg = p->isAgg;
- isDistinct = p->isDistinct;
pEList = p->pEList;
if( pEList==0 ) goto select_end;
*/
if( pParse->nErr>0 ) goto select_end;
- /* If writing to memory or generating a set
- ** only a single column may be output.
- */
-#ifndef SQLITE_OMIT_SUBQUERY
- if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
- goto select_end;
- }
-#endif
-
/* ORDER BY is ignored for some destinations.
*/
if( IgnorableOrderby(pDest) ){
/* Generate code for all sub-queries in the FROM clause
*/
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
- for(i=0; i<pTabList->nSrc; i++){
- const char *zSavedAuthContext = 0;
- int needRestoreContext;
+ for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
struct SrcList_item *pItem = &pTabList->a[i];
SelectDest dest;
-
- if( pItem->pSelect==0 || pItem->isPopulated ) continue;
- if( pItem->zName!=0 ){
- zSavedAuthContext = pParse->zAuthContext;
- pParse->zAuthContext = pItem->zName;
- needRestoreContext = 1;
- }else{
- needRestoreContext = 0;
+ Select *pSub = pItem->pSelect;
+ int isAggSub;
+ char *zName = pItem->zName;
+
+ if( pSub==0 || pItem->isPopulated ) continue;
+ if( zName!=0 ){ /* An sql view */
+ const char *zSavedAuthContext = pParse->zAuthContext;
+ pParse->zAuthContext = zName;
+ rc = sqlite3SelectResolve(pParse, pSub, 0);
+ pParse->zAuthContext = zSavedAuthContext;
+ if( rc ){
+ goto select_end;
+ }
}
+
/* Increment Parse.nHeight by the height of the largest expression
** tree refered to by this, the parent select. The child select
** may contain expression trees of at most
** an exact limit.
*/
pParse->nHeight += sqlite3SelectExprHeight(p);
- sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
- sqlite3Select(pParse, pItem->pSelect, &dest, p, i, &isAgg, 0);
- if( db->mallocFailed ){
+
+ /* Check to see if the subquery can be absorbed into the parent. */
+ isAggSub = pSub->isAgg;
+ if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
+ if( isAggSub ){
+ p->isAgg = isAgg = 1;
+ }
+ i = -1;
+ }else{
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
+ sqlite3Select(pParse, pSub, &dest, p, i, &isAgg);
+ }
+ if( pParse->nErr || db->mallocFailed ){
goto select_end;
}
pParse->nHeight -= sqlite3SelectExprHeight(p);
- if( needRestoreContext ){
- pParse->zAuthContext = zSavedAuthContext;
- }
pTabList = p->pSrc;
- pWhere = p->pWhere;
if( !IgnorableOrderby(pDest) ){
pOrderBy = p->pOrderBy;
}
- pGroupBy = p->pGroupBy;
- pHaving = p->pHaving;
- isDistinct = p->isDistinct;
}
+ pEList = p->pEList;
#endif
+ pWhere = p->pWhere;
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ isDistinct = p->isDistinct;
- /* Check to see if this is a subquery that can be "flattened" into its parent.
- ** If flattening is a possiblity, do so and return immediately.
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ /* If there is are a sequence of queries, do the earlier ones first.
*/
-#ifndef SQLITE_OMIT_VIEW
- if( pParent && pParentAgg &&
- flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){
- if( isAgg ) *pParentAgg = 1;
+ if( p->pPrior ){
+ if( p->pRightmost==0 ){
+ Select *pLoop, *pRight = 0;
+ int cnt = 0;
+ int mxSelect;
+ for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
+ pLoop->pRightmost = p;
+ pLoop->pNext = pRight;
+ pRight = pLoop;
+ }
+ mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
+ if( mxSelect && cnt>mxSelect ){
+ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
+ return 1;
+ }
+ }
+ return multiSelect(pParse, p, pDest);
+ }
+#endif
+
+ /* If writing to memory or generating a set
+ ** only a single column may be output.
+ */
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
goto select_end;
}
#endif
*/
assert(!isDistinct);
selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
- pWInfo->iContinue, pWInfo->iBreak, aff);
+ pWInfo->iContinue, pWInfo->iBreak);
/* End the database scan loop.
*/
/* The following variables hold addresses or labels for parts of the
** virtual machine program we are putting together */
int addrOutputRow; /* Start of subroutine that outputs a result row */
+ int regOutputRow; /* Return address register for output subroutine */
int addrSetAbort; /* Set the abort flag and return */
int addrInitializeLoop; /* Start of code that initializes the input loop */
int addrTopOfLoop; /* Top of the input loop */
- int addrGroupByChange; /* Code that runs when any GROUP BY term changes */
- int addrProcessRow; /* Code to process a single input row */
int addrEnd; /* End of all processing */
int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
int addrReset; /* Subroutine for resetting the accumulator */
+ int regReset; /* Return address register for reset subroutine */
addrEnd = sqlite3VdbeMakeLabel(v);
*/
if( pGroupBy ){
KeyInfo *pKeyInfo; /* Keying information for the group by clause */
+ int j1;
/* Create labels that we will be needing
*/
-
addrInitializeLoop = sqlite3VdbeMakeLabel(v);
- addrGroupByChange = sqlite3VdbeMakeLabel(v);
- addrProcessRow = sqlite3VdbeMakeLabel(v);
/* If there is a GROUP BY clause we might need a sorting index to
** implement it. Allocate that sorting index now. If it turns out
addrSetAbort = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
VdbeComment((v, "set abort flag"));
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
+ regOutputRow = ++pParse->nMem;
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
addrOutputRow = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
VdbeComment((v, "Groupby result generator entry point"));
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
finalizeAggFunctions(pParse, &sAggInfo);
if( pHaving ){
sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
}
selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
distinct, pDest,
- addrOutputRow+1, addrSetAbort, aff);
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
+ addrOutputRow+1, addrSetAbort);
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
VdbeComment((v, "end groupby result generator"));
/* Generate a subroutine that will reset the group-by accumulator
*/
addrReset = sqlite3VdbeCurrentAddr(v);
+ regReset = ++pParse->nMem;
resetAccumulator(pParse, &sAggInfo);
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
+ sqlite3VdbeAddOp1(v, OP_Return, regReset);
/* Begin a loop that will extract all source rows in GROUP BY order.
** This might involve two separate loops with an OP_Sort in between, or
** in the right order to begin with.
*/
sqlite3VdbeResolveLabel(v, addrInitializeLoop);
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
if( pWInfo==0 ) goto select_end;
if( pGroupBy==0 ){
struct AggInfo_col *pCol = &sAggInfo.aCol[i];
if( pCol->iSorterColumn>=j ){
int r1 = j + regBase;
- int r2 = sqlite3ExprCodeGetColumn(pParse,
+#ifndef NDEBUG
+ int r2 =
+#endif
+ sqlite3ExprCodeGetColumn(pParse,
pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
- if( r1!=r2 ){
- sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
- }
j++;
+
+ /* sAggInfo.aCol[] only contains one entry per column. So
+ ** The reference to pCol->iColumn,pCol->iTable must have been
+ ** the first reference to that column. Hence,
+ ** sqliteExprCodeGetColumn is guaranteed to put the result in
+ ** the column requested.
+ */
+ assert( r1==r2 );
}
}
regRecord = sqlite3GetTempReg(pParse);
sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
}
}
- for(j=pGroupBy->nExpr-1; j>=0; j--){
- if( j==0 ){
- sqlite3VdbeAddOp3(v, OP_Eq, iAMem+j, addrProcessRow, iBMem+j);
- }else{
- sqlite3VdbeAddOp3(v, OP_Ne, iAMem+j, addrGroupByChange, iBMem+j);
- }
- sqlite3VdbeChangeP4(v, -1, (void*)pKeyInfo->aColl[j], P4_COLLSEQ);
- sqlite3VdbeChangeP5(v, SQLITE_NULLEQUAL);
- }
+ sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
+ (char*)pKeyInfo, P4_KEYINFO);
+ j1 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
/* Generate code that runs whenever the GROUP BY changes.
- ** Change in the GROUP BY are detected by the previous code
+ ** Changes in the GROUP BY are detected by the previous code
** block. If there were no changes, this block is skipped.
**
** This code copies current group by terms in b0,b1,b2,...
** and resets the aggregate accumulator registers in preparation
** for the next GROUP BY batch.
*/
- sqlite3VdbeResolveLabel(v, addrGroupByChange);
- for(j=0; j<pGroupBy->nExpr; j++){
- sqlite3ExprCodeMove(pParse, iBMem+j, iAMem+j);
- }
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
+ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
VdbeComment((v, "output one row"));
sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
VdbeComment((v, "check abort flag"));
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
VdbeComment((v, "reset accumulator"));
/* Update the aggregate accumulators based on the content of
** the current row
*/
- sqlite3VdbeResolveLabel(v, addrProcessRow);
+ sqlite3VdbeJumpHere(v, j1);
updateAccumulator(pParse, &sAggInfo);
sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
VdbeComment((v, "indicate data in accumulator"));
/* Output the final row of result
*/
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
VdbeComment((v, "output final row"));
} /* endif pGroupBy */
if( flag ){
pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
if( pMinMax && !db->mallocFailed ){
- pMinMax->a[0].sortOrder = ((flag==WHERE_ORDERBY_MIN)?0:1);
+ pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN;
pMinMax->a[0].pExpr->op = TK_COLUMN;
}
}
resetAccumulator(pParse, &sAggInfo);
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
if( pWInfo==0 ){
- sqlite3ExprListDelete(pDel);
+ sqlite3ExprListDelete(db, pDel);
goto select_end;
}
updateAccumulator(pParse, &sAggInfo);
if( !pMinMax && flag ){
sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
- VdbeComment((v, "%s() by index", (flag==WHERE_ORDERBY_MIN?"min":"max")));
+ VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max")));
}
sqlite3WhereEnd(pWInfo);
finalizeAggFunctions(pParse, &sAggInfo);
sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
}
selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
- pDest, addrEnd, addrEnd, aff);
+ pDest, addrEnd, addrEnd);
- sqlite3ExprListDelete(pDel);
+ sqlite3ExprListDelete(db, pDel);
}
sqlite3VdbeResolveLabel(v, addrEnd);
generateColumnNames(pParse, pTabList, pEList);
}
- sqlite3_free(sAggInfo.aCol);
- sqlite3_free(sAggInfo.aFunc);
+ sqlite3DbFree(db, sAggInfo.aCol);
+ sqlite3DbFree(db, sAggInfo.aFunc);
return rc;
}
**
** These routines are in a separate files so that they will not be linked
** if they are not used.
+**
+** $Id: table.c,v 1.36 2008/07/08 22:28:49 shane Exp $
*/
#ifndef SQLITE_OMIT_GET_TABLE
res.azResult[0] = 0;
rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
- res.azResult[0] = (char*)res.nData;
+ res.azResult[0] = SQLITE_INT_TO_PTR(res.nData);
if( (rc&0xff)==SQLITE_ABORT ){
sqlite3_free_table(&res.azResult[1]);
if( res.zErrMsg ){
int i, n;
azResult--;
assert( azResult!=0 );
- n = (int)azResult[0];
+ n = SQLITE_PTR_TO_INT(azResult[0]);
for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
sqlite3_free(azResult);
}
** May you share freely, never taking more than you give.
**
*************************************************************************
-*
+**
+**
+** $Id: trigger.c,v 1.128 2008/07/28 19:34:54 drh Exp $
*/
#ifndef SQLITE_OMIT_TRIGGER
/*
** Delete a linked list of TriggerStep structures.
*/
-SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep *pTriggerStep){
+SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3 *db, TriggerStep *pTriggerStep){
while( pTriggerStep ){
TriggerStep * pTmp = pTriggerStep;
pTriggerStep = pTriggerStep->pNext;
- if( pTmp->target.dyn ) sqlite3_free((char*)pTmp->target.z);
- sqlite3ExprDelete(pTmp->pWhere);
- sqlite3ExprListDelete(pTmp->pExprList);
- sqlite3SelectDelete(pTmp->pSelect);
- sqlite3IdListDelete(pTmp->pIdList);
+ if( pTmp->target.dyn ) sqlite3DbFree(db, (char*)pTmp->target.z);
+ sqlite3ExprDelete(db, pTmp->pWhere);
+ sqlite3ExprListDelete(db, pTmp->pExprList);
+ sqlite3SelectDelete(db, pTmp->pSelect);
+ sqlite3IdListDelete(db, pTmp->pIdList);
- sqlite3_free(pTmp);
+ sqlite3DbFree(db, pTmp);
}
}
pParse->pNewTrigger = pTrigger;
trigger_cleanup:
- sqlite3_free(zName);
- sqlite3SrcListDelete(pTableName);
- sqlite3IdListDelete(pColumns);
- sqlite3ExprDelete(pWhen);
+ sqlite3DbFree(db, zName);
+ sqlite3SrcListDelete(db, pTableName);
+ sqlite3IdListDelete(db, pColumns);
+ sqlite3ExprDelete(db, pWhen);
if( !pParse->pNewTrigger ){
- sqlite3DeleteTrigger(pTrigger);
+ sqlite3DeleteTrigger(db, pTrigger);
}else{
assert( pParse->pNewTrigger==pTrigger );
}
"INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pTrig->name,
pTrig->table, z);
- sqlite3_free(z);
+ sqlite3DbFree(db, z);
sqlite3ChangeCookie(pParse, iDb);
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
db, "type='trigger' AND name='%q'", pTrig->name), P4_DYNAMIC
}
triggerfinish_cleanup:
- sqlite3DeleteTrigger(pTrig);
+ sqlite3DeleteTrigger(db, pTrig);
assert( !pParse->pNewTrigger );
- sqlite3DeleteTriggerStep(pStepList);
+ sqlite3DeleteTriggerStep(db, pStepList);
}
/*
}
if( p->pSelect ){
Select *pNew = sqlite3SelectDup(db, p->pSelect);
- sqlite3SelectDelete(p->pSelect);
+ sqlite3SelectDelete(db, p->pSelect);
p->pSelect = pNew;
}
if( p->pWhere ){
Expr *pNew = sqlite3ExprDup(db, p->pWhere);
- sqlite3ExprDelete(p->pWhere);
+ sqlite3ExprDelete(db, p->pWhere);
p->pWhere = pNew;
}
if( p->pExprList ){
ExprList *pNew = sqlite3ExprListDup(db, p->pExprList);
- sqlite3ExprListDelete(p->pExprList);
+ sqlite3ExprListDelete(db, p->pExprList);
p->pExprList = pNew;
}
if( p->pIdList ){
IdList *pNew = sqlite3IdListDup(db, p->pIdList);
- sqlite3IdListDelete(p->pIdList);
+ sqlite3IdListDelete(db, p->pIdList);
p->pIdList = pNew;
}
}
SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
if( pTriggerStep==0 ) {
- sqlite3SelectDelete(pSelect);
+ sqlite3SelectDelete(db, pSelect);
return 0;
}
pTriggerStep->orconf = orconf;
sqlitePersistTriggerStep(db, pTriggerStep);
}else{
- sqlite3IdListDelete(pColumn);
- sqlite3ExprListDelete(pEList);
- sqlite3SelectDelete(pSelect);
+ sqlite3IdListDelete(db, pColumn);
+ sqlite3ExprListDelete(db, pEList);
+ sqlite3SelectDelete(db, pSelect);
}
return pTriggerStep;
){
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
if( pTriggerStep==0 ){
- sqlite3ExprListDelete(pEList);
- sqlite3ExprDelete(pWhere);
+ sqlite3ExprListDelete(db, pEList);
+ sqlite3ExprDelete(db, pWhere);
return 0;
}
){
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
if( pTriggerStep==0 ){
- sqlite3ExprDelete(pWhere);
+ sqlite3ExprDelete(db, pWhere);
return 0;
}
/*
** Recursively delete a Trigger structure
*/
-SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger *pTrigger){
+SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){
if( pTrigger==0 ) return;
- sqlite3DeleteTriggerStep(pTrigger->step_list);
- sqlite3_free(pTrigger->name);
- sqlite3_free(pTrigger->table);
- sqlite3ExprDelete(pTrigger->pWhen);
- sqlite3IdListDelete(pTrigger->pColumns);
- if( pTrigger->nameToken.dyn ) sqlite3_free((char*)pTrigger->nameToken.z);
- sqlite3_free(pTrigger);
+ sqlite3DeleteTriggerStep(db, pTrigger->step_list);
+ sqlite3DbFree(db, pTrigger->name);
+ sqlite3DbFree(db, pTrigger->table);
+ sqlite3ExprDelete(db, pTrigger->pWhen);
+ sqlite3IdListDelete(db, pTrigger->pColumns);
+ if( pTrigger->nameToken.dyn ) sqlite3DbFree(db, (char*)pTrigger->nameToken.z);
+ sqlite3DbFree(db, pTrigger);
}
/*
sqlite3DropTriggerPtr(pParse, pTrigger);
drop_trigger_cleanup:
- sqlite3SrcListDelete(pName);
+ sqlite3SrcListDelete(db, pName);
}
/*
}
assert(cc);
}
- sqlite3DeleteTrigger(pTrigger);
+ sqlite3DeleteTrigger(db, pTrigger);
db->flags |= SQLITE_InternChanges;
}
}
sqlite3SelectDestInit(&dest, SRT_Discard, 0);
sqlite3SelectResolve(pParse, ss, 0);
- sqlite3Select(pParse, ss, &dest, 0, 0, 0, 0);
- sqlite3SelectDelete(ss);
+ sqlite3Select(pParse, ss, &dest, 0, 0, 0);
+ sqlite3SelectDelete(db, ss);
}
break;
}
whenExpr = sqlite3ExprDup(db, p->pWhen);
if( db->mallocFailed || sqlite3ExprResolveNames(&sNC, whenExpr) ){
pParse->trigStack = trigStackEntry.pNext;
- sqlite3ExprDelete(whenExpr);
+ sqlite3ExprDelete(db, whenExpr);
return 1;
}
sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
- sqlite3ExprDelete(whenExpr);
+ sqlite3ExprDelete(db, whenExpr);
codeTriggerProgram(pParse, p->step_list, orconf);
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
**
-** $Id: update.c,v 1.178 2008/04/28 18:46:43 drh Exp $
+** $Id: update.c,v 1.181 2008/07/28 19:34:54 drh Exp $
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
sqlite3ExprCacheAffinityChange(pParse, regCols, pTab->nCol);
}
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
- if( pParse->nErr ) goto update_cleanup;
+ /* if( pParse->nErr ) goto update_cleanup; */
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRow, regRowid);
sqlite3ReleaseTempReg(pParse, regRowid);
sqlite3ReleaseTempReg(pParse, regRow);
update_cleanup:
sqlite3AuthContextPop(&sContext);
- sqlite3_free(aRegIdx);
- sqlite3_free(aXRef);
- sqlite3SrcListDelete(pTabList);
- sqlite3ExprListDelete(pChanges);
- sqlite3ExprDelete(pWhere);
+ sqlite3DbFree(db, aRegIdx);
+ sqlite3DbFree(db, aXRef);
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprListDelete(db, pChanges);
+ sqlite3ExprDelete(db, pWhere);
return;
}
/* fill the ephemeral table
*/
sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
- sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
+ sqlite3Select(pParse, pSelect, &dest, 0, 0, 0);
/* Generate code to scan the ephemeral table and call VUpdate. */
iReg = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
/* Cleanup */
- sqlite3SelectDelete(pSelect);
+ sqlite3SelectDelete(db, pSelect);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
** Most of the code in this file may be omitted by defining the
** SQLITE_OMIT_VACUUM macro.
**
-** $Id: vacuum.c,v 1.78 2008/04/30 16:38:23 drh Exp $
+** $Id: vacuum.c,v 1.81 2008/07/08 19:34:07 drh Exp $
*/
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
Btree *pTemp; /* The temporary database we vacuum into */
char *zSql = 0; /* SQL statements */
int saved_flags; /* Saved value of the db->flags */
+ int saved_nChange; /* Saved value of db->nChange */
+ int saved_nTotalChange; /* Saved value of db->nTotalChange */
Db *pDb = 0; /* Database to detach at end of vacuum */
int nRes;
/* Save the current value of the write-schema flag before setting it. */
saved_flags = db->flags;
+ saved_nChange = db->nChange;
+ saved_nTotalChange = db->nTotalChange;
db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
if( !db->autoCommit ){
- sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction",
- (char*)0);
+ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
rc = SQLITE_ERROR;
goto end_of_vacuum;
}
pTemp = db->aDb[db->nDb-1].pBt;
nRes = sqlite3BtreeGetReserve(pMain);
+
+ /* A VACUUM cannot change the pagesize of an encrypted database. */
+#ifdef SQLITE_HAS_CODEC
+ if( db->nextPagesize ){
+ extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
+ int nKey;
+ char *zKey;
+ sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
+ if( nKey ) db->nextPagesize = 0;
+ }
+#endif
+
if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes)
|| sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes)
|| db->mallocFailed
end_of_vacuum:
/* Restore the original value of db->flags */
db->flags = saved_flags;
+ db->nChange = saved_nChange;
+ db->nTotalChange = saved_nTotalChange;
/* Currently there is an SQL level transaction open on the vacuum
** database. No locks are held on any other files (since the main file
*************************************************************************
** This file contains code used to help implement virtual tables.
**
-** $Id: vtab.c,v 1.69 2008/05/05 13:23:04 drh Exp $
+** $Id: vtab.c,v 1.74 2008/08/02 03:50:39 drh Exp $
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
nName = strlen(zName);
pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
if( pMod ){
+ Module *pDel;
char *zCopy = (char *)(&pMod[1]);
memcpy(zCopy, zName, nName+1);
pMod->zName = zCopy;
pMod->pModule = pModule;
pMod->pAux = pAux;
pMod->xDestroy = xDestroy;
- pMod = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
- if( pMod && pMod->xDestroy ){
- pMod->xDestroy(pMod->pAux);
+ pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
+ if( pDel && pDel->xDestroy ){
+ pDel->xDestroy(pDel->pAux);
+ }
+ sqlite3DbFree(db, pDel);
+ if( pDel==pMod ){
+ db->mallocFailed = 1;
}
- sqlite3_free(pMod);
sqlite3ResetInternalSchema(db, 0);
}
rc = sqlite3ApiExit(db, SQLITE_OK);
*/
SQLITE_PRIVATE void sqlite3VtabClear(Table *p){
sqlite3_vtab *pVtab = p->pVtab;
+ sqlite3 *db = p->db;
if( pVtab ){
assert( p->pMod && p->pMod->pModule );
- sqlite3VtabUnlock(p->pSchema->db, pVtab);
+ sqlite3VtabUnlock(db, pVtab);
p->pVtab = 0;
}
if( p->azModuleArg ){
int i;
for(i=0; i<p->nModuleArg; i++){
- sqlite3_free(p->azModuleArg[i]);
+ sqlite3DbFree(db, p->azModuleArg[i]);
}
- sqlite3_free(p->azModuleArg);
+ sqlite3DbFree(db, p->azModuleArg);
}
}
if( azModuleArg==0 ){
int j;
for(j=0; j<i; j++){
- sqlite3_free(pTable->azModuleArg[j]);
+ sqlite3DbFree(db, pTable->azModuleArg[j]);
}
- sqlite3_free(zArg);
- sqlite3_free(pTable->azModuleArg);
+ sqlite3DbFree(db, zArg);
+ sqlite3DbFree(db, pTable->azModuleArg);
pTable->nModuleArg = 0;
}else{
azModuleArg[i] = zArg;
zStmt,
pParse->regRowid
);
- sqlite3_free(zStmt);
+ sqlite3DbFree(db, zStmt);
v = sqlite3GetVdbe(pParse);
sqlite3ChangeCookie(pParse, iDb);
*pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
}else {
*pzErr = sqlite3MPrintf(db, "%s", zErr);
- sqlite3_free(zErr);
+ sqlite3DbFree(db, zErr);
}
}else if( db->pVTab ){
const char *zFormat = "vtable constructor did not declare schema: %s";
rc = rc2;
}
db->pVTab = 0;
- sqlite3_free(zModuleName);
+ sqlite3DbFree(db, zModuleName);
/* If everything went according to plan, loop through the columns
** of the table to see if any of them contain the token "hidden".
if( rc!=SQLITE_OK ){
sqlite3ErrorMsg(pParse, "%s", zErr);
}
- sqlite3_free(zErr);
+ sqlite3DbFree(db, zErr);
}
return rc;
**
** If an error occurs, *pzErr is set to point an an English language
** description of the error and an SQLITE_XXX error code is returned.
-** In this case the caller must call sqlite3_free() on *pzErr.
+** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
*/
SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
int rc = SQLITE_OK;
db->pVTab = 0;
} else {
sqlite3Error(db, SQLITE_ERROR, zErr);
- sqlite3_free(zErr);
+ sqlite3DbFree(db, zErr);
rc = SQLITE_ERROR;
}
sParse.declareVtab = 0;
if( x ) x(pVtab);
sqlite3VtabUnlock(db, pVtab);
}
- sqlite3_free(db->aVTrans);
+ sqlite3DbFree(db, db->aVTrans);
db->nVTrans = 0;
db->aVTrans = 0;
}
}
/*
-** If argument rc2 is not SQLITE_OK, then return it and do nothing.
-** Otherwise, invoke the xSync method of all virtual tables in the
-** sqlite3.aVTrans array. Return the error code for the first error
-** that occurs, or SQLITE_OK if all xSync operations are successful.
+** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
+** array. Return the error code for the first error that occurs, or
+** SQLITE_OK if all xSync operations are successful.
+**
+** Set *pzErrmsg to point to a buffer that should be released using
+** sqlite3DbFree() containing an error message, if one is available.
*/
-SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, int rc2){
+SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
int i;
int rc = SQLITE_OK;
int rcsafety;
sqlite3_vtab **aVTrans = db->aVTrans;
- if( rc2!=SQLITE_OK ) return rc2;
rc = sqlite3SafetyOff(db);
db->aVTrans = 0;
x = pVtab->pModule->xSync;
if( x ){
rc = x(pVtab);
+ sqlite3DbFree(db, *pzErrmsg);
+ *pzErrmsg = pVtab->zErrMsg;
+ pVtab->zErrMsg = 0;
}
}
db->aVTrans = aVTrans;
/* Invoke the xBegin method */
rc = pModule->xBegin(pVtab);
- if( rc!=SQLITE_OK ){
- return rc;
+ if( rc==SQLITE_OK ){
+ rc = addToVTrans(db, pVtab);
}
-
- rc = addToVTrans(db, pVtab);
}
return rc;
}
*z = sqlite3UpperToLower[*z];
}
rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
- sqlite3_free(zLowerName);
+ sqlite3DbFree(db, zLowerName);
+ if( pVtab->zErrMsg ){
+ sqlite3Error(db, rc, "%s", pVtab->zErrMsg);
+ sqlite3DbFree(db, pVtab->zErrMsg);
+ pVtab->zErrMsg = 0;
+ }
}
if( rc==0 ){
return pDef;
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
-** the WHERE clause of SQL statements. This module is reponsible for
+** the WHERE clause of SQL statements. This module is responsible for
** generating the code that loops through a table looking for applicable
** rows. Indices are selected and used to speed the search when doing
** so is applicable. Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
-** $Id: where.c,v 1.302 2008/04/19 14:40:44 drh Exp $
+** $Id: where.c,v 1.319 2008/08/01 17:37:41 danielk1977 Exp $
*/
/*
*/
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
SQLITE_PRIVATE int sqlite3WhereTrace = 0;
+#endif
+#if 0
# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
#else
# define WHERETRACE(X)
/*
** Allowed values of WhereTerm.flags
*/
-#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */
+#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
#define TERM_CODED 0x04 /* This term is already coded */
#define TERM_COPIED 0x08 /* Has a child */
static void whereClauseClear(WhereClause *pWC){
int i;
WhereTerm *a;
+ sqlite3 *db = pWC->pParse->db;
for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
if( a->flags & TERM_DYNAMIC ){
- sqlite3ExprDelete(a->pExpr);
+ sqlite3ExprDelete(db, a->pExpr);
}
}
if( pWC->a!=pWC->aStatic ){
- sqlite3_free(pWC->a);
+ sqlite3DbFree(db, pWC->a);
}
}
** for freeing the expression p is assumed by the WhereClause object.
**
** WARNING: This routine might reallocate the space used to store
-** WhereTerms. All pointers to WhereTerms should be invalided after
+** WhereTerms. All pointers to WhereTerms should be invalidated after
** calling this routine. Such pointers may be reinitialized by referencing
** the pWC->a[] array.
*/
int idx;
if( pWC->nTerm>=pWC->nSlot ){
WhereTerm *pOld = pWC->a;
- pWC->a = sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
+ sqlite3 *db = pWC->pParse->db;
+ pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
if( pWC->a==0 ){
- pWC->pParse->db->mallocFailed = 1;
if( flags & TERM_DYNAMIC ){
- sqlite3ExprDelete(p);
+ sqlite3ExprDelete(db, p);
}
pWC->a = pOld;
return 0;
}
memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
if( pOld!=pWC->aStatic ){
- sqlite3_free(pOld);
+ sqlite3DbFree(db, pOld);
}
pWC->nSlot *= 2;
}
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
/*
-** Commute a comparision operator. Expressions of the form "X op Y"
+** Commute a comparison operator. Expressions of the form "X op Y"
** are converted into "Y op X".
**
** If a collation sequence is associated with either the left or right
){
WhereTerm *pTerm;
int k;
+ assert( iCur>=0 );
for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
if( pTerm->leftCursor==iCur
&& (pTerm->prereqRight & notReady)==0
&& pTerm->leftColumn==iColumn
&& (pTerm->eOperator & op)!=0
){
- if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
+ if( pIdx && pTerm->eOperator!=WO_ISNULL ){
Expr *pX = pTerm->pExpr;
CollSeq *pColl;
char idxaff;
pColl = pParse->db->pDfltColl;
}
- for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
- assert( j<pIdx->nColumn );
+ for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
+ if( NEVER(j>=pIdx->nColumn) ) return 0;
+ }
if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
}
return pTerm;
** a=<expr1> OR a=<expr2> OR b=<expr3> OR ...
**
** The pOrTerm input to this routine corresponds to a single term of
-** this OR clause. In order for the term to be a condidate for
+** this OR clause. In order for the term to be a candidate for
** conversion to an IN operator, the following must be true:
**
** * The left-hand side of the term must be the column which
** This routine merely checks to see if pOrTerm has a duplicate that
** might qualify. If there is a duplicate that has not yet been
** disqualified, then return true. If there are no duplicates, or
-** the duplicate has also been disqualifed, return false.
+** the duplicate has also been disqualified, return false.
*/
static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
if( pOrTerm->flags & TERM_COPIED ){
int idxNew;
pDup = sqlite3ExprDup(db, pExpr);
if( db->mallocFailed ){
- sqlite3ExprDelete(pDup);
+ sqlite3ExprDelete(db, pDup);
return;
}
idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
ExprList *pList = 0;
Expr *pNew, *pDup;
Expr *pLeft = 0;
- for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
+ for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0; i--, pOrTerm++){
if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
pWC->a[idxNew].iParent = idxTerm;
pTerm->nChild = 1;
}else{
- sqlite3ExprListDelete(pList);
+ sqlite3ExprListDelete(db, pList);
}
}
or_not_possible:
** x>='abc' AND x<'abd' AND x LIKE 'abc%'
**
** The last character of the prefix "abc" is incremented to form the
- ** termination condidtion "abd". This trick of incrementing the last
- ** is not 255 and if the character set is not EBCDIC.
+ ** termination condition "abd".
*/
if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete, &noCase) ){
Expr *pLeft, *pRight;
assert( pStr2->token.dyn );
pC = (u8*)&pStr2->token.z[nPattern-1];
c = *pC;
- if( noCase ) c = sqlite3UpperToLower[c];
+ if( noCase ){
+ if( c=='@' ) isComplete = 0;
+ c = sqlite3UpperToLower[c];
+ }
*pC = c + 1;
}
pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
** ORDER BY term, that is OK. Just ignore that column of the index
*/
continue;
+ }else if( i==pIdx->nColumn ){
+ /* Index column i is the rowid. All other terms match. */
+ break;
}else{
/* If an index column fails to match and is not constrained by ==
** then the index cannot satisfy the ORDER BY constraint.
/*
** Prepare a crude estimate of the logarithm of the input value.
** The results need not be exact. This is only used for estimating
-** the total cost of performing operatings with O(logN) or O(NlogN)
+** the total cost of performing operations with O(logN) or O(NlogN)
** complexity. Because N is just a guess, it is no great tragedy if
** logN is a little off.
*/
sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
){
Table *pTab = pSrc->pTab;
+ sqlite3_vtab *pVtab = pTab->pVtab;
sqlite3_index_info *pIdxInfo;
struct sqlite3_index_constraint *pIdxCons;
struct sqlite3_index_orderby *pIdxOrderBy;
** sqlite3ViewGetColumnNames() would have picked up the error.
*/
assert( pTab->azModuleArg && pTab->azModuleArg[0] );
- assert( pTab->pVtab );
+ assert( pVtab );
#if 0
if( pTab->pVtab==0 ){
sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
(void)sqlite3SafetyOff(pParse->db);
WHERETRACE(("xBestIndex for %s\n", pTab->zName));
TRACE_IDX_INPUTS(pIdxInfo);
- rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
+ rc = pVtab->pModule->xBestIndex(pVtab, pIdxInfo);
TRACE_IDX_OUTPUTS(pIdxInfo);
(void)sqlite3SafetyOn(pParse->db);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM ){
+ pParse->db->mallocFailed = 1;
+ }else if( !pVtab->zErrMsg ){
+ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
+ }else{
+ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
+ }
+ }
+ sqlite3DbFree(pParse->db, pVtab->zErrMsg);
+ pVtab->zErrMsg = 0;
+
for(i=0; i<pIdxInfo->nConstraint; i++){
if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){
sqlite3ErrorMsg(pParse,
}
}
- if( rc!=SQLITE_OK ){
- if( rc==SQLITE_NOMEM ){
- pParse->db->mallocFailed = 1;
- }else {
- sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
- }
- }
*(int*)&pIdxInfo->nOrderBy = nOrderBy;
-
return pIdxInfo->estimatedCost;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
int eqTermMask; /* Mask of valid equality operators */
double cost; /* Cost of using pProbe */
- WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
+ WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName, notReady));
lowestCost = SQLITE_BIG_DBL;
pProbe = pSrc->pTab->pIndex;
flags |= WHERE_COLUMN_IN;
if( pExpr->pSelect!=0 ){
inMultiplier *= 25;
- }else if( pExpr->pList!=0 ){
+ }else if( ALWAYS(pExpr->pList) ){
inMultiplier *= pExpr->pList->nExpr + 1;
}
}
*/
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
if( pTerm
- && (pTerm->flags & TERM_CODED)==0
+ && ALWAYS((pTerm->flags & TERM_CODED)==0)
&& (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
){
pTerm->flags |= TERM_CODED;
assert( pX->op==TK_IN );
iReg = iTarget;
- eType = sqlite3FindInIndex(pParse, pX, 1);
+ eType = sqlite3FindInIndex(pParse, pX, 0);
iTab = pX->iTable;
sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
int r1;
int k = pIdx->aiColumn[j];
pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
- if( pTerm==0 ) break;
+ if( NEVER(pTerm==0) ) break;
assert( (pTerm->flags & TERM_CODED)==0 );
r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
if( r1!=regBase+j ){
static void whereInfoFree(WhereInfo *pWInfo){
if( pWInfo ){
int i;
+ sqlite3 *db = pWInfo->pParse->db;
for(i=0; i<pWInfo->nLevel; i++){
sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
if( pInfo ){
assert( pInfo->needToFreeIdxStr==0 );
- sqlite3_free(pInfo);
+ sqlite3DbFree(db, pInfo);
}
}
- sqlite3_free(pWInfo);
+ sqlite3DbFree(db, pWInfo);
}
}
}
if( doNotReorder ) break;
}
- WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
+ WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
pLevel-pWInfo->a));
if( (bestFlags & WHERE_ORDERBY)!=0 ){
*ppOrderBy = 0;
struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
if( pItem->zAlias ){
- zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias);
+ zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
}
if( (pIx = pLevel->pIdx)!=0 ){
- zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName);
+ zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", zMsg, pIx->zName);
}else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
- zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg);
+ zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
else if( pLevel->pBestIdx ){
sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
- zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
+ zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
pBestIdx->idxNum, pBestIdx->idxStr);
}
#endif
if( pLevel->flags & WHERE_ORDERBY ){
- zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
+ zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
}
sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
}
pBestIdx->aConstraint;
iReg = sqlite3GetTempRange(pParse, nConstraint+2);
+ pParse->disableColCache++;
for(j=1; j<=nConstraint; j++){
int k;
for(k=0; k<nConstraint; k++){
if( aUsage[k].argvIndex==j ){
int iTerm = aConstraint[k].iTermOffset;
+ assert( pParse->disableColCache );
sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1);
break;
}
}
if( k==nConstraint ) break;
}
+ assert( pParse->disableColCache );
+ pParse->disableColCache--;
sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg);
sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr,
pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
pBestIdx->needToFreeIdxStr = 0;
- for(j=0; j<pBestIdx->nConstraint; j++){
+ for(j=0; j<nConstraint; j++){
if( aUsage[j].omit ){
int iTerm = aConstraint[j].iTermOffset;
disableTerm(pLevel, &wc.a[iTerm]);
if( (wflags&WHERE_ORDERBY_MIN)!=0
&& (pLevel->flags&WHERE_ORDERBY)
&& (pIdx->nColumn>nEq)
- && (pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq])
){
+ assert( pOrderBy->nExpr==1 );
+ assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] );
isMinQuery = 1;
}
if( pRangeStart ){
int dcc = pParse->disableColCache;
if( pRangeEnd ){
- pParse->disableColCache = 1;
+ pParse->disableColCache++;
}
sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq);
pParse->disableColCache = dcc;
testcase( op==OP_MoveLe );
testcase( op==OP_MoveLt );
sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
- (char*)nConstraint, P4_INT32);
+ SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
/* Load the value for the inequality constraint at the end of the
** range (if any).
testcase( op==OP_IdxGE );
testcase( op==OP_IdxLT );
sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
- (char*)nConstraint, P4_INT32);
+ SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
sqlite3VdbeChangeP5(v, endEq!=bRev);
/* If there are inequality constraints, check that the value
** sqlite3WhereBegin() for additional information.
*/
SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){
- Vdbe *v = pWInfo->pParse->pVdbe;
+ Parse *pParse = pWInfo->pParse;
+ Vdbe *v = pParse->pVdbe;
int i;
WhereLevel *pLevel;
SrcList *pTabList = pWInfo->pTabList;
+ sqlite3 *db = pParse->db;
/* Generate loop termination code.
*/
- sqlite3ExprClearColumnCache(pWInfo->pParse, -1);
+ sqlite3ExprClearColumnCache(pParse, -1);
for(i=pTabList->nSrc-1; i>=0; i--){
pLevel = &pWInfo->a[i];
sqlite3VdbeResolveLabel(v, pLevel->cont);
sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr);
sqlite3VdbeJumpHere(v, pIn->topAddr-1);
}
- sqlite3_free(pLevel->aInLoop);
+ sqlite3DbFree(db, pLevel->aInLoop);
}
sqlite3VdbeResolveLabel(v, pLevel->brk);
if( pLevel->iLeftJoin ){
/* Driver template for the LEMON parser generator.
** The author disclaims copyright to this source code.
*/
-/* First off, code is include which follows the "include" declaration
-** in the input file. */
+/* First off, code is included that follows the "include" declaration
+** in the input grammar file. */
/*
struct TrigEvent yy370;
SrcList* yy373;
struct {int value; int mask;} yy405;
- Token yy410;
IdList* yy432;
} YYMINORTYPE;
#ifndef YYSTACKDEPTH
** YYMINORTYPE objects to zero. */
static const YYMINORTYPE yyzerominor;
-/* Next are that tables used to determine what action to take based on the
+/* Next are the tables used to determine what action to take based on the
** current state and lookahead token. These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
**
** %fallback ID X Y Z.
**
-** appears in the grammer, then ID becomes a fallback token for X, Y,
+** appears in the grammar, then ID becomes a fallback token for X, Y,
** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.
** It is sometimes called the "minor" token.
*/
struct yyStackEntry {
- int stateno; /* The state-number */
- int major; /* The major token value. This is the code
- ** number for the token at this stack level */
- YYMINORTYPE minor; /* The user-supplied minor token value. This
- ** is the value of the token */
+ YYACTIONTYPE stateno; /* The state-number */
+ YYCODETYPE major; /* The major token value. This is the code
+ ** number for the token at this stack level */
+ YYMINORTYPE minor; /* The user-supplied minor token value. This
+ ** is the value of the token */
};
typedef struct yyStackEntry yyStackEntry;
** the following structure */
struct yyParser {
int yyidx; /* Index of top element in stack */
+#ifdef YYTRACKMAXSTACKDEPTH
+ int yyidxMax; /* Maximum value of yyidx */
+#endif
int yyerrcnt; /* Shifts left before out of the error */
sqlite3ParserARG_SDECL /* A place to hold %extra_argument */
#if YYSTACKDEPTH<=0
pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
if( pParser ){
pParser->yyidx = -1;
+#ifdef YYTRACKMAXSTACKDEPTH
+ pParser->yyidxMax = 0;
+#endif
#if YYSTACKDEPTH<=0
yyGrowStack(pParser);
#endif
** "yymajor" is the symbol code, and "yypminor" is a pointer to
** the value.
*/
-static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){
+static void yy_destructor(
+ yyParser *yypParser, /* The parser */
+ YYCODETYPE yymajor, /* Type code for object to destroy */
+ YYMINORTYPE *yypminor /* The object to be destroyed */
+){
+ sqlite3ParserARG_FETCH;
switch( yymajor ){
/* Here is inserted the actions which take place when a
** terminal or non-terminal is destroyed. This can happen
** inside the C code.
*/
case 155: /* select */
+ case 189: /* oneselect */
+ case 206: /* seltablist_paren */
{
-sqlite3SelectDelete((yypminor->yy219));
+sqlite3SelectDelete(pParse->db, (yypminor->yy219));
}
break;
case 169: /* term */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
case 170: /* expr */
+ case 194: /* where_opt */
+ case 196: /* having_opt */
+ case 204: /* on_opt */
+ case 210: /* sortitem */
+ case 218: /* escape */
+ case 221: /* case_operand */
+ case 223: /* case_else */
+ case 235: /* when_clause */
+ case 238: /* key_opt */
{
-sqlite3ExprDelete((yypminor->yy172));
+sqlite3ExprDelete(pParse->db, (yypminor->yy172));
}
break;
case 174: /* idxlist_opt */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
case 182: /* idxlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 188: /* fullname */
-{
-sqlite3SrcListDelete((yypminor->yy373));
-}
- break;
- case 189: /* oneselect */
-{
-sqlite3SelectDelete((yypminor->yy219));
-}
- break;
case 192: /* selcollist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 193: /* from */
-{
-sqlite3SrcListDelete((yypminor->yy373));
-}
- break;
- case 194: /* where_opt */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
case 195: /* groupby_opt */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 196: /* having_opt */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
case 197: /* orderby_opt */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
case 199: /* sclp */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 201: /* seltablist */
-{
-sqlite3SrcListDelete((yypminor->yy373));
-}
- break;
- case 202: /* stl_prefix */
-{
-sqlite3SrcListDelete((yypminor->yy373));
-}
- break;
- case 204: /* on_opt */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 205: /* using_opt */
-{
-sqlite3IdListDelete((yypminor->yy432));
-}
- break;
- case 206: /* seltablist_paren */
-{
-sqlite3SelectDelete((yypminor->yy219));
-}
- break;
- case 208: /* inscollist */
-{
-sqlite3IdListDelete((yypminor->yy432));
-}
- break;
case 209: /* sortlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 210: /* sortitem */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
case 211: /* nexprlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
case 212: /* setlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 214: /* inscollist_opt */
-{
-sqlite3IdListDelete((yypminor->yy432));
-}
- break;
case 215: /* itemlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
case 216: /* exprlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 218: /* escape */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 221: /* case_operand */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
case 222: /* case_exprlist */
{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 223: /* case_else */
-{
-sqlite3ExprDelete((yypminor->yy172));
+sqlite3ExprListDelete(pParse->db, (yypminor->yy174));
}
break;
- case 231: /* trigger_cmd_list */
-{
-sqlite3DeleteTriggerStep((yypminor->yy243));
-}
- break;
- case 233: /* trigger_event */
+ case 188: /* fullname */
+ case 193: /* from */
+ case 201: /* seltablist */
+ case 202: /* stl_prefix */
{
-sqlite3IdListDelete((yypminor->yy370).b);
+sqlite3SrcListDelete(pParse->db, (yypminor->yy373));
}
break;
- case 235: /* when_clause */
+ case 205: /* using_opt */
+ case 208: /* inscollist */
+ case 214: /* inscollist_opt */
{
-sqlite3ExprDelete((yypminor->yy172));
+sqlite3IdListDelete(pParse->db, (yypminor->yy432));
}
break;
+ case 231: /* trigger_cmd_list */
case 236: /* trigger_cmd */
{
-sqlite3DeleteTriggerStep((yypminor->yy243));
+sqlite3DeleteTriggerStep(pParse->db, (yypminor->yy243));
}
break;
- case 238: /* key_opt */
+ case 233: /* trigger_event */
{
-sqlite3ExprDelete((yypminor->yy172));
+sqlite3IdListDelete(pParse->db, (yypminor->yy370).b);
}
break;
default: break; /* If no destructor action specified: do nothing */
}
#endif
yymajor = yytos->major;
- yy_destructor( yymajor, &yytos->minor);
+ yy_destructor(pParser, yymajor, &yytos->minor);
pParser->yyidx--;
return yymajor;
}
}
/*
+** Return the peak depth of the stack for a parser.
+*/
+#ifdef YYTRACKMAXSTACKDEPTH
+SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){
+ yyParser *pParser = (yyParser*)p;
+ return pParser->yyidxMax;
+}
+#endif
+
+/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
**
yyParser *yypParser, /* The parser to be shifted */
int yyNewState, /* The new state to shift in */
int yyMajor, /* The major token to shift in */
- YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */
+ YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */
){
yyStackEntry *yytos;
yypParser->yyidx++;
+#ifdef YYTRACKMAXSTACKDEPTH
+ if( yypParser->yyidx>yypParser->yyidxMax ){
+ yypParser->yyidxMax = yypParser->yyidx;
+ }
+#endif
#if YYSTACKDEPTH>0
if( yypParser->yyidx>=YYSTACKDEPTH ){
yyStackOverflow(yypParser, yypMinor);
break;
case 21: /* create_table ::= CREATE temp TABLE ifnotexists nm dbnm */
{
- sqlite3StartTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,yymsp[-4].minor.yy46,0,0,yymsp[-2].minor.yy46);
+ sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy46,0,0,yymsp[-2].minor.yy46);
}
break;
case 22: /* ifnotexists ::= */
break;
case 26: /* create_table_args ::= LP columnlist conslist_opt RP */
{
- sqlite3EndTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy0,0);
+ sqlite3EndTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0);
}
break;
case 27: /* create_table_args ::= AS select */
{
sqlite3EndTable(pParse,0,0,yymsp[0].minor.yy219);
- sqlite3SelectDelete(yymsp[0].minor.yy219);
+ sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy219);
}
break;
case 30: /* column ::= columnid type carglist */
{
- yygotominor.yy410.z = yymsp[-2].minor.yy410.z;
- yygotominor.yy410.n = (pParse->sLastToken.z-yymsp[-2].minor.yy410.z) + pParse->sLastToken.n;
+ yygotominor.yy0.z = yymsp[-2].minor.yy0.z;
+ yygotominor.yy0.n = (pParse->sLastToken.z-yymsp[-2].minor.yy0.z) + pParse->sLastToken.n;
}
break;
case 31: /* columnid ::= nm */
{
- sqlite3AddColumn(pParse,&yymsp[0].minor.yy410);
- yygotominor.yy410 = yymsp[0].minor.yy410;
+ sqlite3AddColumn(pParse,&yymsp[0].minor.yy0);
+ yygotominor.yy0 = yymsp[0].minor.yy0;
}
break;
case 32: /* id ::= ID */
case 34: /* nm ::= ID */
case 35: /* nm ::= STRING */
case 36: /* nm ::= JOIN_KW */
- case 257: /* number ::= INTEGER|FLOAT */
-{yygotominor.yy410 = yymsp[0].minor.yy0;}
- break;
- case 38: /* type ::= typetoken */
-{sqlite3AddColumnType(pParse,&yymsp[0].minor.yy410);}
- break;
case 39: /* typetoken ::= typename */
case 42: /* typename ::= ids */
case 119: /* as ::= AS nm */
case 254: /* nmnum ::= nm */
case 255: /* plus_num ::= plus_opt number */
case 256: /* minus_num ::= MINUS number */
-{yygotominor.yy410 = yymsp[0].minor.yy410;}
+ case 257: /* number ::= INTEGER|FLOAT */
+{yygotominor.yy0 = yymsp[0].minor.yy0;}
+ break;
+ case 38: /* type ::= typetoken */
+{sqlite3AddColumnType(pParse,&yymsp[0].minor.yy0);}
break;
case 40: /* typetoken ::= typename LP signed RP */
{
- yygotominor.yy410.z = yymsp[-3].minor.yy410.z;
- yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy410.z;
+ yygotominor.yy0.z = yymsp[-3].minor.yy0.z;
+ yygotominor.yy0.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy0.z;
}
break;
case 41: /* typetoken ::= typename LP signed COMMA signed RP */
{
- yygotominor.yy410.z = yymsp[-5].minor.yy410.z;
- yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy410.z;
+ yygotominor.yy0.z = yymsp[-5].minor.yy0.z;
+ yygotominor.yy0.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy0.z;
}
break;
case 43: /* typename ::= typename ids */
-{yygotominor.yy410.z=yymsp[-1].minor.yy410.z; yygotominor.yy410.n=yymsp[0].minor.yy410.n+(yymsp[0].minor.yy410.z-yymsp[-1].minor.yy410.z);}
+{yygotominor.yy0.z=yymsp[-1].minor.yy0.z; yygotominor.yy0.n=yymsp[0].minor.yy0.n+(yymsp[0].minor.yy0.z-yymsp[-1].minor.yy0.z);}
break;
case 50: /* ccons ::= DEFAULT term */
case 52: /* ccons ::= DEFAULT PLUS term */
break;
case 54: /* ccons ::= DEFAULT id */
{
- Expr *p = sqlite3PExpr(pParse, TK_STRING, 0, 0, &yymsp[0].minor.yy410);
+ Expr *p = sqlite3PExpr(pParse, TK_STRING, 0, 0, &yymsp[0].minor.yy0);
sqlite3AddDefaultValue(pParse,p);
}
break;
{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy172);}
break;
case 60: /* ccons ::= REFERENCES nm idxlist_opt refargs */
-{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy410,yymsp[-1].minor.yy174,yymsp[0].minor.yy46);}
+{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy174,yymsp[0].minor.yy46);}
break;
case 61: /* ccons ::= defer_subclause */
{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy46);}
break;
case 62: /* ccons ::= COLLATE ids */
-{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy410);}
+{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy0);}
break;
case 65: /* refargs ::= */
{ yygotominor.yy46 = OE_Restrict * 0x010101; }
{yygotominor.yy46 = yymsp[0].minor.yy46;}
break;
case 80: /* conslist_opt ::= */
-{yygotominor.yy410.n = 0; yygotominor.yy410.z = 0;}
+{yygotominor.yy0.n = 0; yygotominor.yy0.z = 0;}
break;
case 81: /* conslist_opt ::= COMMA conslist */
-{yygotominor.yy410 = yymsp[-1].minor.yy0;}
+{yygotominor.yy0 = yymsp[-1].minor.yy0;}
break;
case 86: /* tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf */
{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy174,yymsp[0].minor.yy46,yymsp[-2].minor.yy46,0);}
break;
case 89: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */
{
- sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy174, &yymsp[-3].minor.yy410, yymsp[-2].minor.yy174, yymsp[-1].minor.yy46);
+ sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy174, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy174, yymsp[-1].minor.yy46);
sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy46);
}
break;
break;
case 102: /* cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select */
{
- sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, yymsp[0].minor.yy219, yymsp[-6].minor.yy46, yymsp[-4].minor.yy46);
+ sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, yymsp[0].minor.yy219, yymsp[-6].minor.yy46, yymsp[-4].minor.yy46);
}
break;
case 103: /* cmd ::= DROP VIEW ifexists fullname */
case 104: /* cmd ::= select */
{
SelectDest dest = {SRT_Callback, 0, 0, 0, 0};
- sqlite3Select(pParse, yymsp[0].minor.yy219, &dest, 0, 0, 0, 0);
- sqlite3SelectDelete(yymsp[0].minor.yy219);
+ sqlite3Select(pParse, yymsp[0].minor.yy219, &dest, 0, 0, 0);
+ sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy219);
}
break;
case 105: /* select ::= oneselect */
yymsp[0].minor.yy219->op = yymsp[-1].minor.yy46;
yymsp[0].minor.yy219->pPrior = yymsp[-2].minor.yy219;
}else{
- sqlite3SelectDelete(yymsp[-2].minor.yy219);
+ sqlite3SelectDelete(pParse->db, yymsp[-2].minor.yy219);
}
yygotominor.yy219 = yymsp[0].minor.yy219;
}
break;
case 116: /* selcollist ::= sclp expr as */
{
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[-1].minor.yy172,yymsp[0].minor.yy410.n?&yymsp[0].minor.yy410:0);
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[-1].minor.yy172,yymsp[0].minor.yy0.n?&yymsp[0].minor.yy0:0);
}
break;
case 117: /* selcollist ::= sclp STAR */
break;
case 118: /* selcollist ::= sclp nm DOT STAR */
{
- Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0);
- Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
+ Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &yymsp[0].minor.yy0);
+ Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy174, pDot, 0);
}
break;
case 121: /* as ::= */
-{yygotominor.yy410.n = 0;}
+{yygotominor.yy0.n = 0;}
break;
case 122: /* from ::= */
{yygotominor.yy373 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy373));}
break;
case 126: /* seltablist ::= stl_prefix nm dbnm as on_opt using_opt */
{
- yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy373,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,0,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
+ yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy373,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,0,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
}
break;
case 127: /* seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt */
{
- yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy373,0,0,&yymsp[-2].minor.yy410,yymsp[-4].minor.yy219,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
+ yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy373,0,0,&yymsp[-2].minor.yy0,yymsp[-4].minor.yy219,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
}
break;
case 129: /* seltablist_paren ::= seltablist */
}
break;
case 130: /* dbnm ::= */
-{yygotominor.yy410.z=0; yygotominor.yy410.n=0;}
+{yygotominor.yy0.z=0; yygotominor.yy0.n=0;}
break;
case 132: /* fullname ::= nm dbnm */
-{yygotominor.yy373 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);}
+{yygotominor.yy373 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);}
break;
case 133: /* joinop ::= COMMA|JOIN */
{ yygotominor.yy46 = JT_INNER; }
{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
break;
case 135: /* joinop ::= JOIN_KW nm JOIN */
-{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy410,0); }
+{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); }
break;
case 136: /* joinop ::= JOIN_KW nm nm JOIN */
-{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy410,&yymsp[-1].minor.yy410); }
+{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); }
break;
case 137: /* on_opt ::= ON expr */
case 145: /* sortitem ::= expr */
}
break;
case 161: /* setlist ::= setlist COMMA nm EQ expr */
-{yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
+{yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174,yymsp[0].minor.yy172,&yymsp[-2].minor.yy0);}
break;
case 162: /* setlist ::= nm EQ expr */
-{yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
+{yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,&yymsp[-2].minor.yy0);}
break;
case 163: /* cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP */
{sqlite3Insert(pParse, yymsp[-5].minor.yy373, yymsp[-1].minor.yy174, 0, yymsp[-4].minor.yy432, yymsp[-7].minor.yy46);}
{yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,0);}
break;
case 172: /* inscollist ::= inscollist COMMA nm */
-{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy432,&yymsp[0].minor.yy410);}
+{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy432,&yymsp[0].minor.yy0);}
break;
case 173: /* inscollist ::= nm */
-{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy410);}
+{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy0);}
break;
case 175: /* expr ::= LP expr RP */
{yygotominor.yy172 = yymsp[-1].minor.yy172; sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); }
break;
case 179: /* expr ::= nm DOT nm */
{
- Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
- Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
+ Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
+ Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
}
break;
case 180: /* expr ::= nm DOT nm DOT nm */
{
- Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy410);
- Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
- Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
+ Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy0);
+ Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
+ Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
}
break;
case 185: /* expr ::= expr COLLATE ids */
{
- yygotominor.yy172 = sqlite3ExprSetColl(pParse, yymsp[-2].minor.yy172, &yymsp[0].minor.yy410);
+ yygotominor.yy172 = sqlite3ExprSetColl(pParse, yymsp[-2].minor.yy172, &yymsp[0].minor.yy0);
}
break;
case 186: /* expr ::= CAST LP expr AS typetoken RP */
{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy172, 0, &yymsp[-1].minor.yy410);
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy172, 0, &yymsp[-1].minor.yy0);
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);
}
break;
if( yygotominor.yy172 ){
yygotominor.yy172->pList = pList;
}else{
- sqlite3ExprListDelete(pList);
+ sqlite3ExprListDelete(pParse->db, pList);
}
if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy172->span);
yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
if( yygotominor.yy172 ){
yygotominor.yy172->pList = yymsp[-1].minor.yy174;
- sqlite3ExprSetHeight(yygotominor.yy172);
+ sqlite3ExprSetHeight(pParse, yygotominor.yy172);
}else{
- sqlite3ExprListDelete(yymsp[-1].minor.yy174);
+ sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy174);
}
if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
yygotominor.yy172 = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
if( yygotominor.yy172 ){
yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
- sqlite3ExprSetHeight(yygotominor.yy172);
+ sqlite3ExprSetHeight(pParse, yygotominor.yy172);
}else{
- sqlite3SelectDelete(yymsp[-1].minor.yy219);
+ sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy219);
}
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
}
yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
if( yygotominor.yy172 ){
yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
- sqlite3ExprSetHeight(yygotominor.yy172);
+ sqlite3ExprSetHeight(pParse, yygotominor.yy172);
}else{
- sqlite3SelectDelete(yymsp[-1].minor.yy219);
+ sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy219);
}
if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
break;
case 221: /* expr ::= expr in_op nm dbnm */
{
- SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);
+ SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);
yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy172, 0, 0);
if( yygotominor.yy172 ){
yygotominor.yy172->pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
- sqlite3ExprSetHeight(yygotominor.yy172);
+ sqlite3ExprSetHeight(pParse, yygotominor.yy172);
}else{
- sqlite3SrcListDelete(pSrc);
+ sqlite3SrcListDelete(pParse->db, pSrc);
}
if( yymsp[-2].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,yymsp[0].minor.yy410.z?&yymsp[0].minor.yy410:&yymsp[-1].minor.yy410);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,yymsp[0].minor.yy0.z?&yymsp[0].minor.yy0:&yymsp[-1].minor.yy0);
}
break;
case 222: /* expr ::= EXISTS LP select RP */
if( p ){
p->pSelect = yymsp[-1].minor.yy219;
sqlite3ExprSpan(p,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
- sqlite3ExprSetHeight(yygotominor.yy172);
+ sqlite3ExprSetHeight(pParse, yygotominor.yy172);
}else{
- sqlite3SelectDelete(yymsp[-1].minor.yy219);
+ sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy219);
}
}
break;
yygotominor.yy172 = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, 0);
if( yygotominor.yy172 ){
yygotominor.yy172->pList = yymsp[-2].minor.yy174;
- sqlite3ExprSetHeight(yygotominor.yy172);
+ sqlite3ExprSetHeight(pParse, yygotominor.yy172);
}else{
- sqlite3ExprListDelete(yymsp[-2].minor.yy174);
+ sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy174);
}
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0);
}
break;
case 234: /* cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP */
{
- sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy410, &yymsp[-5].minor.yy410,
- sqlite3SrcListAppend(pParse->db,0,&yymsp[-3].minor.yy410,0), yymsp[-1].minor.yy174, yymsp[-9].minor.yy46,
+ sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy0, &yymsp[-5].minor.yy0,
+ sqlite3SrcListAppend(pParse->db,0,&yymsp[-3].minor.yy0,0), yymsp[-1].minor.yy174, yymsp[-9].minor.yy46,
&yymsp[-10].minor.yy0, &yymsp[0].minor.yy0, SQLITE_SO_ASC, yymsp[-7].minor.yy46);
}
break;
case 239: /* idxlist ::= idxlist COMMA idxitem collate sortorder */
{
Expr *p = 0;
- if( yymsp[-1].minor.yy410.n>0 ){
+ if( yymsp[-1].minor.yy0.n>0 ){
p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
- sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
+ sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy0);
}
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, p, &yymsp[-2].minor.yy410);
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, p, &yymsp[-2].minor.yy0);
sqlite3ExprListCheckLength(pParse, yygotominor.yy174, "index");
if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
}
case 240: /* idxlist ::= idxitem collate sortorder */
{
Expr *p = 0;
- if( yymsp[-1].minor.yy410.n>0 ){
+ if( yymsp[-1].minor.yy0.n>0 ){
p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
- sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
+ sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy0);
}
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, p, &yymsp[-2].minor.yy410);
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, p, &yymsp[-2].minor.yy0);
sqlite3ExprListCheckLength(pParse, yygotominor.yy174, "index");
if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
}
break;
case 242: /* collate ::= */
-{yygotominor.yy410.z = 0; yygotominor.yy410.n = 0;}
+{yygotominor.yy0.z = 0; yygotominor.yy0.n = 0;}
break;
case 244: /* cmd ::= DROP INDEX ifexists fullname */
{sqlite3DropIndex(pParse, yymsp[0].minor.yy373, yymsp[-1].minor.yy46);}
{sqlite3Vacuum(pParse);}
break;
case 247: /* cmd ::= PRAGMA nm dbnm EQ nmnum */
-{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,0);}
- break;
case 248: /* cmd ::= PRAGMA nm dbnm EQ ON */
case 249: /* cmd ::= PRAGMA nm dbnm EQ DELETE */
-{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy0,0);}
+{sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,0);}
break;
case 250: /* cmd ::= PRAGMA nm dbnm EQ minus_num */
{
- sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,1);
+ sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,1);
}
break;
case 251: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */
-{sqlite3Pragma(pParse,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-1].minor.yy410,0);}
+{sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,0);}
break;
case 252: /* cmd ::= PRAGMA nm dbnm */
-{sqlite3Pragma(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,0,0);}
+{sqlite3Pragma(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0,0);}
break;
case 260: /* cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END */
{
Token all;
- all.z = yymsp[-3].minor.yy410.z;
- all.n = (yymsp[0].minor.yy0.z - yymsp[-3].minor.yy410.z) + yymsp[0].minor.yy0.n;
+ all.z = yymsp[-3].minor.yy0.z;
+ all.n = (yymsp[0].minor.yy0.z - yymsp[-3].minor.yy0.z) + yymsp[0].minor.yy0.n;
sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy243, &all);
}
break;
case 261: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
{
- sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy410, &yymsp[-6].minor.yy410, yymsp[-5].minor.yy46, yymsp[-4].minor.yy370.a, yymsp[-4].minor.yy370.b, yymsp[-2].minor.yy373, yymsp[0].minor.yy172, yymsp[-10].minor.yy46, yymsp[-8].minor.yy46);
- yygotominor.yy410 = (yymsp[-6].minor.yy410.n==0?yymsp[-7].minor.yy410:yymsp[-6].minor.yy410);
+ sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, yymsp[-5].minor.yy46, yymsp[-4].minor.yy370.a, yymsp[-4].minor.yy370.b, yymsp[-2].minor.yy373, yymsp[0].minor.yy172, yymsp[-10].minor.yy46, yymsp[-8].minor.yy46);
+ yygotominor.yy0 = (yymsp[-6].minor.yy0.n==0?yymsp[-7].minor.yy0:yymsp[-6].minor.yy0);
}
break;
case 262: /* trigger_time ::= BEFORE */
{ yygotominor.yy243 = 0; }
break;
case 275: /* trigger_cmd ::= UPDATE orconf nm SET setlist where_opt */
-{ yygotominor.yy243 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-3].minor.yy410, yymsp[-1].minor.yy174, yymsp[0].minor.yy172, yymsp[-4].minor.yy46); }
+{ yygotominor.yy243 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-3].minor.yy0, yymsp[-1].minor.yy174, yymsp[0].minor.yy172, yymsp[-4].minor.yy46); }
break;
case 276: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP */
-{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-5].minor.yy410, yymsp[-4].minor.yy432, yymsp[-1].minor.yy174, 0, yymsp[-7].minor.yy46);}
+{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy432, yymsp[-1].minor.yy174, 0, yymsp[-7].minor.yy46);}
break;
case 277: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt select */
-{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy410, yymsp[-1].minor.yy432, 0, yymsp[0].minor.yy219, yymsp[-4].minor.yy46);}
+{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy432, 0, yymsp[0].minor.yy219, yymsp[-4].minor.yy46);}
break;
case 278: /* trigger_cmd ::= DELETE FROM nm where_opt */
-{yygotominor.yy243 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-1].minor.yy410, yymsp[0].minor.yy172);}
+{yygotominor.yy243 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-1].minor.yy0, yymsp[0].minor.yy172);}
break;
case 279: /* trigger_cmd ::= select */
{yygotominor.yy243 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy219); }
break;
case 281: /* expr ::= RAISE LP raisetype COMMA nm RP */
{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy410);
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy0);
if( yygotominor.yy172 ) {
yygotominor.yy172->iColumn = yymsp[-3].minor.yy46;
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
{sqlite3Reindex(pParse, 0, 0);}
break;
case 293: /* cmd ::= REINDEX nm dbnm */
-{sqlite3Reindex(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
+{sqlite3Reindex(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
break;
case 294: /* cmd ::= ANALYZE */
{sqlite3Analyze(pParse, 0, 0);}
break;
case 295: /* cmd ::= ANALYZE nm dbnm */
-{sqlite3Analyze(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
+{sqlite3Analyze(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
break;
case 296: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
{
- sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy373,&yymsp[0].minor.yy410);
+ sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy373,&yymsp[0].minor.yy0);
}
break;
case 297: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
{
- sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy410);
+ sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy0);
}
break;
case 298: /* add_column_fullname ::= fullname */
break;
case 303: /* create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm */
{
- sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, &yymsp[0].minor.yy410);
+ sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0);
}
break;
case 306: /* vtabarg ::= */
yyTracePrompt,yyTokenName[yymajor]);
}
#endif
- yy_destructor(yymajor,&yyminorunion);
+ yy_destructor(yypParser, yymajor,&yyminorunion);
yymajor = YYNOCODE;
}else{
while(
yy_pop_parser_stack(yypParser);
}
if( yypParser->yyidx < 0 || yymajor==0 ){
- yy_destructor(yymajor,&yyminorunion);
+ yy_destructor(yypParser,yymajor,&yyminorunion);
yy_parse_failed(yypParser);
yymajor = YYNOCODE;
}else if( yymx!=YYERRORSYMBOL ){
yy_syntax_error(yypParser,yymajor,yyminorunion);
}
yypParser->yyerrcnt = 3;
- yy_destructor(yymajor,&yyminorunion);
+ yy_destructor(yypParser,yymajor,&yyminorunion);
if( yyendofinput ){
yy_parse_failed(yypParser);
}
** individual tokens and sends those tokens one-by-one over to the
** parser for analysis.
**
-** $Id: tokenize.c,v 1.142 2008/04/28 18:46:43 drh Exp $
+** $Id: tokenize.c,v 1.148 2008/07/28 19:34:54 drh Exp $
*/
/*
/*
** Run the parser on the given SQL string. The parser structure is
** passed in. An SQLITE_ status code is returned. If an error occurs
-** and pzErrMsg!=NULL then an error message might be written into
-** memory obtained from sqlite3_malloc() and *pzErrMsg made to point to that
-** error message. Or maybe not.
+** then an and attempt is made to write an error message into
+** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
+** error message.
*/
SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
int nErr = 0;
pParse->rc = SQLITE_OK;
pParse->zTail = pParse->zSql = zSql;
i = 0;
- pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3_malloc);
+ assert( pzErrMsg!=0 );
+ pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc);
if( pEngine==0 ){
db->mallocFailed = 1;
return SQLITE_NOMEM;
case TK_COMMENT: {
if( db->u1.isInterrupted ){
pParse->rc = SQLITE_INTERRUPT;
- sqlite3SetString(pzErrMsg, "interrupt", (char*)0);
+ sqlite3SetString(pzErrMsg, db, "interrupt");
goto abort_parse;
}
break;
}
case TK_ILLEGAL: {
- if( pzErrMsg ){
- sqlite3_free(*pzErrMsg);
- *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
- &pParse->sLastToken);
- }
+ sqlite3DbFree(db, *pzErrMsg);
+ *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
+ &pParse->sLastToken);
nErr++;
goto abort_parse;
}
}
sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
}
+#ifdef YYTRACKMAXSTACKDEPTH
+ sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
+ sqlite3ParserStackPeak(pEngine)
+ );
+#endif /* YYDEBUG */
sqlite3ParserFree(pEngine, sqlite3_free);
if( db->mallocFailed ){
pParse->rc = SQLITE_NOMEM;
}
if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
- sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char*)0);
+ sqlite3SetString(&pParse->zErrMsg, db, "%s", sqlite3ErrStr(pParse->rc));
}
if( pParse->zErrMsg ){
- if( pzErrMsg && *pzErrMsg==0 ){
+ if( *pzErrMsg==0 ){
*pzErrMsg = pParse->zErrMsg;
}else{
- sqlite3_free(pParse->zErrMsg);
+ sqlite3DbFree(db, pParse->zErrMsg);
}
pParse->zErrMsg = 0;
nErr++;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
if( pParse->nested==0 ){
- sqlite3_free(pParse->aTableLock);
+ sqlite3DbFree(db, pParse->aTableLock);
pParse->aTableLock = 0;
pParse->nTableLock = 0;
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
- sqlite3_free(pParse->apVtabLock);
+ sqlite3DbFree(db, pParse->apVtabLock);
#endif
if( !IN_DECLARE_VTAB ){
sqlite3DeleteTable(pParse->pNewTable);
}
- sqlite3DeleteTrigger(pParse->pNewTrigger);
- sqlite3_free(pParse->apVarExpr);
+ sqlite3DeleteTrigger(db, pParse->pNewTrigger);
+ sqlite3DbFree(db, pParse->apVarExpr);
if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
pParse->rc = SQLITE_ERROR;
}
** separating it out, the code will be automatically omitted from
** static links that do not use it.
**
-** $Id: complete.c,v 1.6 2007/08/27 23:26:59 drh Exp $
+** $Id: complete.c,v 1.7 2008/06/13 18:24:27 drh Exp $
*/
#ifndef SQLITE_OMIT_COMPLETE
char const *zSql8;
int rc = SQLITE_NOMEM;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
pVal = sqlite3ValueNew(0);
sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
if( zSql8 ){
rc = sqlite3_complete(zSql8);
+ }else{
+ rc = SQLITE_NOMEM;
}
sqlite3ValueFree(pVal);
return sqlite3ApiExit(0, rc);
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
-** $Id: main.c,v 1.439 2008/05/13 13:27:34 drh Exp $
+** $Id: main.c,v 1.486 2008/08/04 20:13:27 drh Exp $
*/
+
#ifdef SQLITE_ENABLE_FTS3
/************** Include fts3.h in the middle of main.c ***********************/
/************** Begin file fts3.h ********************************************/
/************** End of fts3.h ************************************************/
/************** Continuing where we left off in main.c ***********************/
#endif
+#ifdef SQLITE_ENABLE_RTREE
+/************** Include rtree.h in the middle of main.c **********************/
+/************** Begin file rtree.h *******************************************/
+/*
+** 2008 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file is used by programs that want to link against the
+** RTREE library. All it does is declare the sqlite3RtreeInit() interface.
+*/
+
+#if 0
+extern "C" {
+#endif /* __cplusplus */
+
+SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db);
+
+#if 0
+} /* extern "C" */
+#endif /* __cplusplus */
+
+/************** End of rtree.h ***********************************************/
+/************** Continuing where we left off in main.c ***********************/
+#endif
/*
** The version of the library
SQLITE_API char *sqlite3_temp_directory = 0;
/*
+** Initialize SQLite.
+**
+** This routine must be called to initialize the memory allocation,
+** VFS, and mutex subsystesms prior to doing any serious work with
+** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT
+** this routine will be called automatically by key routines such as
+** sqlite3_open().
+**
+** This routine is a no-op except on its very first call for the process,
+** or for the first call after a call to sqlite3_shutdown.
+*/
+SQLITE_API int sqlite3_initialize(void){
+ static int inProgress = 0;
+ int rc;
+
+ /* If SQLite is already initialized, this call is a no-op. */
+ if( sqlite3Config.isInit ) return SQLITE_OK;
+
+ /* Make sure the mutex system is initialized. */
+ rc = sqlite3MutexInit();
+
+ if( rc==SQLITE_OK ){
+
+ /* Initialize the malloc() system and the recursive pInitMutex mutex.
+ ** This operation is protected by the STATIC_MASTER mutex.
+ */
+ sqlite3_mutex *pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex_enter(pMaster);
+ if( !sqlite3Config.isMallocInit ){
+ rc = sqlite3MallocInit();
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3Config.isMallocInit = 1;
+ if( !sqlite3Config.pInitMutex ){
+ sqlite3Config.pInitMutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
+ if( sqlite3Config.bCoreMutex && !sqlite3Config.pInitMutex ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+ }
+ sqlite3_mutex_leave(pMaster);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Enter the recursive pInitMutex mutex. After doing so, if the
+ ** sqlite3Config.isInit flag is true, then some other thread has
+ ** finished doing the initialization. If the inProgress flag is
+ ** true, then this function is being called recursively from within
+ ** the sqlite3_os_init() call below. In either case, exit early.
+ */
+ sqlite3_mutex_enter(sqlite3Config.pInitMutex);
+ if( sqlite3Config.isInit || inProgress ){
+ sqlite3_mutex_leave(sqlite3Config.pInitMutex);
+ return SQLITE_OK;
+ }
+ sqlite3StatusReset();
+ inProgress = 1;
+ rc = sqlite3_os_init();
+ inProgress = 0;
+ sqlite3Config.isInit = (rc==SQLITE_OK ? 1 : 0);
+ sqlite3_mutex_leave(sqlite3Config.pInitMutex);
+ }
+
+ /* Check NaN support. */
+#ifndef NDEBUG
+ /* This section of code's only "output" is via assert() statements. */
+ if ( rc==SQLITE_OK ){
+ u64 x = (((u64)1)<<63)-1;
+ double y;
+ assert(sizeof(x)==8);
+ assert(sizeof(x)==sizeof(y));
+ memcpy(&y, &x, 8);
+ assert( sqlite3IsNaN(y) );
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Undo the effects of sqlite3_initialize(). Must not be called while
+** there are outstanding database connections or memory allocations or
+** while any part of SQLite is otherwise in use in any thread. This
+** routine is not threadsafe. Not by a long shot.
+*/
+SQLITE_API int sqlite3_shutdown(void){
+ sqlite3_mutex_free(sqlite3Config.pInitMutex);
+ sqlite3Config.pInitMutex = 0;
+ sqlite3Config.isMallocInit = 0;
+ if( sqlite3Config.isInit ){
+ sqlite3_os_end();
+ }
+ if( sqlite3Config.m.xShutdown ){
+ sqlite3MallocEnd();
+ }
+ if( sqlite3Config.mutex.xMutexEnd ){
+ sqlite3MutexEnd();
+ }
+ sqlite3Config.isInit = 0;
+ return SQLITE_OK;
+}
+
+/*
+** This API allows applications to modify the global configuration of
+** the SQLite library at run-time.
+**
+** This routine should only be called when there are no outstanding
+** database connections or memory allocations. This routine is not
+** threadsafe. Failure to heed these warnings can lead to unpredictable
+** behavior.
+*/
+SQLITE_API int sqlite3_config(int op, ...){
+ va_list ap;
+ int rc = SQLITE_OK;
+
+ /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while
+ ** the SQLite library is in use. */
+ if( sqlite3Config.isInit ) return SQLITE_MISUSE;
+
+ va_start(ap, op);
+ switch( op ){
+ case SQLITE_CONFIG_SINGLETHREAD: {
+ /* Disable all mutexing */
+ sqlite3Config.bCoreMutex = 0;
+ sqlite3Config.bFullMutex = 0;
+ break;
+ }
+ case SQLITE_CONFIG_MULTITHREAD: {
+ /* Disable mutexing of database connections */
+ /* Enable mutexing of core data structures */
+ sqlite3Config.bCoreMutex = 1;
+ sqlite3Config.bFullMutex = 0;
+ break;
+ }
+ case SQLITE_CONFIG_SERIALIZED: {
+ /* Enable all mutexing */
+ sqlite3Config.bCoreMutex = 1;
+ sqlite3Config.bFullMutex = 1;
+ break;
+ }
+ case SQLITE_CONFIG_MALLOC: {
+ /* Specify an alternative malloc implementation */
+ sqlite3Config.m = *va_arg(ap, sqlite3_mem_methods*);
+ break;
+ }
+ case SQLITE_CONFIG_GETMALLOC: {
+ /* Retrieve the current malloc() implementation */
+ if( sqlite3Config.m.xMalloc==0 ) sqlite3MemSetDefault();
+ *va_arg(ap, sqlite3_mem_methods*) = sqlite3Config.m;
+ break;
+ }
+ case SQLITE_CONFIG_MUTEX: {
+ /* Specify an alternative mutex implementation */
+ sqlite3Config.mutex = *va_arg(ap, sqlite3_mutex_methods*);
+ break;
+ }
+ case SQLITE_CONFIG_GETMUTEX: {
+ /* Retrieve the current mutex implementation */
+ *va_arg(ap, sqlite3_mutex_methods*) = sqlite3Config.mutex;
+ break;
+ }
+ case SQLITE_CONFIG_MEMSTATUS: {
+ /* Enable or disable the malloc status collection */
+ sqlite3Config.bMemstat = va_arg(ap, int);
+ break;
+ }
+ case SQLITE_CONFIG_SCRATCH: {
+ /* Designate a buffer for scratch memory space */
+ sqlite3Config.pScratch = va_arg(ap, void*);
+ sqlite3Config.szScratch = va_arg(ap, int);
+ sqlite3Config.nScratch = va_arg(ap, int);
+ break;
+ }
+ case SQLITE_CONFIG_PAGECACHE: {
+ /* Designate a buffer for scratch memory space */
+ sqlite3Config.pPage = va_arg(ap, void*);
+ sqlite3Config.szPage = va_arg(ap, int);
+ sqlite3Config.nPage = va_arg(ap, int);
+ break;
+ }
+
+#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
+ case SQLITE_CONFIG_HEAP: {
+ /* Designate a buffer for heap memory space */
+ sqlite3Config.pHeap = va_arg(ap, void*);
+ sqlite3Config.nHeap = va_arg(ap, int);
+ sqlite3Config.mnReq = va_arg(ap, int);
+
+ if( sqlite3Config.pHeap==0 ){
+ /* If the heap pointer is NULL, then restore the malloc implementation
+ ** back to NULL pointers too. This will cause the malloc to go
+ ** back to its default implementation when sqlite3_initialize() is
+ ** run.
+ */
+ memset(&sqlite3Config.m, 0, sizeof(sqlite3Config.m));
+ }else{
+ /* The heap pointer is not NULL, then install one of the
+ ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor
+ ** ENABLE_MEMSYS5 is defined, return an error.
+ ** the default case and return an error.
+ */
+#ifdef SQLITE_ENABLE_MEMSYS3
+ sqlite3Config.m = *sqlite3MemGetMemsys3();
+#endif
+#ifdef SQLITE_ENABLE_MEMSYS5
+ sqlite3Config.m = *sqlite3MemGetMemsys5();
+#endif
+ }
+ break;
+ }
+#endif
+
+#if defined(SQLITE_ENABLE_MEMSYS6)
+ case SQLITE_CONFIG_CHUNKALLOC: {
+ sqlite3Config.nSmall = va_arg(ap, int);
+ sqlite3Config.m = *sqlite3MemGetMemsys6();
+ break;
+ }
+#endif
+
+ case SQLITE_CONFIG_LOOKASIDE: {
+ sqlite3Config.szLookaside = va_arg(ap, int);
+ sqlite3Config.nLookaside = va_arg(ap, int);
+ break;
+ }
+
+ default: {
+ rc = SQLITE_ERROR;
+ break;
+ }
+ }
+ va_end(ap);
+ return rc;
+}
+
+/*
+** Set up the lookaside buffers for a database connection.
+** Return SQLITE_OK on success.
+** If lookaside is already active, return SQLITE_BUSY.
+**
+** The sz parameter is the number of bytes in each lookaside slot.
+** The cnt parameter is the number of slots. If pStart is NULL the
+** space for the lookaside memory is obtained from sqlite3_malloc().
+** If pStart is not NULL then it is sz*cnt bytes of memory to use for
+** the lookaside memory.
+*/
+static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){
+ void *pStart;
+ if( db->lookaside.nOut ){
+ return SQLITE_BUSY;
+ }
+ if( sz<0 ) sz = 0;
+ if( cnt<0 ) cnt = 0;
+ sz = (sz+7)&~7;
+ if( pBuf==0 ){
+ sqlite3BeginBenignMalloc();
+ pStart = sqlite3Malloc( sz*cnt );
+ sqlite3EndBenignMalloc();
+ }else{
+ pStart = pBuf;
+ }
+ if( db->lookaside.bMalloced ){
+ sqlite3_free(db->lookaside.pStart);
+ }
+ db->lookaside.pStart = pStart;
+ db->lookaside.pFree = 0;
+ db->lookaside.sz = sz;
+ db->lookaside.bMalloced = pBuf==0;
+ if( pStart ){
+ int i;
+ LookasideSlot *p;
+ p = (LookasideSlot*)pStart;
+ for(i=cnt-1; i>=0; i--){
+ p->pNext = db->lookaside.pFree;
+ db->lookaside.pFree = p;
+ p = (LookasideSlot*)&((u8*)p)[sz];
+ }
+ db->lookaside.pEnd = p;
+ db->lookaside.bEnabled = 1;
+ }else{
+ db->lookaside.pEnd = 0;
+ db->lookaside.bEnabled = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Configuration settings for an individual database connection
+*/
+SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){
+ va_list ap;
+ int rc;
+ va_start(ap, op);
+ switch( op ){
+ case SQLITE_DBCONFIG_LOOKASIDE: {
+ void *pBuf = va_arg(ap, void*);
+ int sz = va_arg(ap, int);
+ int cnt = va_arg(ap, int);
+ rc = setupLookaside(db, pBuf, sz, cnt);
+ break;
+ }
+ default: {
+ rc = SQLITE_ERROR;
+ break;
+ }
+ }
+ va_end(ap);
+ return rc;
+}
+
+/*
** Routine needed to support the testcase() macro.
*/
#ifdef SQLITE_COVERAGE_TEST
FuncDef *pFunc, *pNext;
for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
pNext = pFunc->pNext;
- sqlite3_free(pFunc);
+ sqlite3DbFree(db, pFunc);
}
}
pColl[j].xDel(pColl[j].pUser);
}
}
- sqlite3_free(pColl);
+ sqlite3DbFree(db, pColl);
}
sqlite3HashClear(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( pMod->xDestroy ){
pMod->xDestroy(pMod->pAux);
}
- sqlite3_free(pMod);
+ sqlite3DbFree(db, pMod);
}
sqlite3HashClear(&db->aModule);
#endif
** the same sqliteMalloc() as the one that allocates the database
** structure?
*/
- sqlite3_free(db->aDb[1].pSchema);
+ sqlite3DbFree(db, db->aDb[1].pSchema);
sqlite3_mutex_leave(db->mutex);
db->magic = SQLITE_MAGIC_CLOSED;
sqlite3_mutex_free(db->mutex);
+ if( db->lookaside.bMalloced ){
+ sqlite3_free(db->lookaside.pStart);
+ }
sqlite3_free(db);
return SQLITE_OK;
}
int i;
int inTrans = 0;
assert( sqlite3_mutex_held(db->mutex) );
- sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ sqlite3BeginBenignMalloc();
for(i=0; i<db->nDb; i++){
if( db->aDb[i].pBt ){
if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){
}
}
sqlite3VtabRollback(db);
- sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ sqlite3EndBenignMalloc();
if( db->flags&SQLITE_InternChanges ){
sqlite3ExpirePreparedStatements(db);
void *ptr, /* Database connection */
int count /* Number of times table has been busy */
){
-#if OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
+#if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
static const u8 delays[] =
{ 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
static const u8 totals[] =
*/
SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){
int rc;
- if( p==0 || p->xFunc==0 || p->nBusy<0 ) return 0;
+ if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0;
rc = p->xFunc(p->pArg, p->nBusy);
if( rc==0 ){
p->nBusy = -1;
int (*xProgress)(void*),
void *pArg
){
- if( sqlite3SafetyCheckOk(db) ){
- sqlite3_mutex_enter(db->mutex);
- if( nOps>0 ){
- db->xProgress = xProgress;
- db->nProgressOps = nOps;
- db->pProgressArg = pArg;
- }else{
- db->xProgress = 0;
- db->nProgressOps = 0;
- db->pProgressArg = 0;
- }
- sqlite3_mutex_leave(db->mutex);
+ sqlite3_mutex_enter(db->mutex);
+ if( nOps>0 ){
+ db->xProgress = xProgress;
+ db->nProgressOps = nOps;
+ db->pProgressArg = pArg;
+ }else{
+ db->xProgress = 0;
+ db->nProgressOps = 0;
+ db->pProgressArg = 0;
}
+ sqlite3_mutex_leave(db->mutex);
}
#endif
** Cause any pending operation to stop at its earliest opportunity.
*/
SQLITE_API void sqlite3_interrupt(sqlite3 *db){
- if( sqlite3SafetyCheckOk(db) ){
- db->u1.isInterrupted = 1;
- }
+ db->u1.isInterrupted = 1;
}
(xFunc && (xFinal || xStep)) ||
(!xFunc && (xFinal && !xStep)) ||
(!xFunc && (!xFinal && xStep)) ||
- (nArg<-1 || nArg>127) ||
- (255<(nName = strlen(zFunctionName))) ){
+ (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) ||
+ (255<(nName = sqlite3Strlen(db, zFunctionName))) ){
sqlite3Error(db, SQLITE_ERROR, "bad parameters");
return SQLITE_ERROR;
}
assert( !db->mallocFailed );
zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1);
rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal);
- sqlite3_free(zFunc8);
+ sqlite3DbFree(db, zFunc8);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
const char *zName,
int nArg
){
- int nName = strlen(zName);
+ int nName = sqlite3Strlen(db, zName);
int rc;
sqlite3_mutex_enter(db->mutex);
if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
**
** A virtual database can be either a disk file (that is automatically
** deleted when the file is closed) or it an be held entirely in memory,
-** depending on the values of the TEMP_STORE compile-time macro and the
+** depending on the values of the SQLITE_TEMP_STORE compile-time macro and the
** db->temp_store variable, according to the following chart:
**
-** TEMP_STORE db->temp_store Location of temporary database
-** ---------- -------------- ------------------------------
-** 0 any file
-** 1 1 file
-** 1 2 memory
-** 1 0 file
-** 2 1 file
-** 2 2 memory
-** 2 0 memory
-** 3 any memory
+** SQLITE_TEMP_STORE db->temp_store Location of temporary database
+** ----------------- -------------- ------------------------------
+** 0 any file
+** 1 1 file
+** 1 2 memory
+** 1 0 file
+** 2 1 file
+** 2 2 memory
+** 2 0 memory
+** 3 any memory
*/
SQLITE_PRIVATE int sqlite3BtreeFactory(
const sqlite3 *db, /* Main database when opening aux otherwise 0 */
btFlags |= BTREE_NO_READLOCK;
}
if( zFilename==0 ){
-#if TEMP_STORE==0
+#if SQLITE_TEMP_STORE==0
/* Do nothing */
#endif
#ifndef SQLITE_OMIT_MEMORYDB
-#if TEMP_STORE==1
+#if SQLITE_TEMP_STORE==1
if( db->temp_store==2 ) zFilename = ":memory:";
#endif
-#if TEMP_STORE==2
+#if SQLITE_TEMP_STORE==2
if( db->temp_store!=1 ) zFilename = ":memory:";
#endif
-#if TEMP_STORE==3
+#if SQLITE_TEMP_STORE==3
zFilename = ":memory:";
#endif
#endif /* SQLITE_OMIT_MEMORYDB */
vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
}
rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags);
- if( rc==SQLITE_OK ){
+
+ /* If the B-Tree was successfully opened, set the pager-cache size to the
+ ** default value. Except, if the call to BtreeOpen() returned a handle
+ ** open on an existing shared pager-cache, do not change the pager-cache
+ ** size.
+ */
+ if( rc==SQLITE_OK && 0==sqlite3BtreeSchema(*ppBtree, 0, 0) ){
sqlite3BtreeSetCacheSize(*ppBtree, nCache);
}
return rc;
if( !db ){
return sqlite3ErrStr(SQLITE_NOMEM);
}
- if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
return sqlite3ErrStr(SQLITE_MISUSE);
}
sqlite3_mutex_enter(db->mutex);
assert( !db->mallocFailed );
z = (char*)sqlite3_value_text(db->pErr);
+ assert( !db->mallocFailed );
if( z==0 ){
z = sqlite3ErrStr(db->errCode);
}
if( !db ){
return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
}
- if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
}
sqlite3_mutex_enter(db->mutex);
SQLITE_UTF8, SQLITE_STATIC);
z = sqlite3_value_text16(db->pErr);
}
- sqlite3ApiExit(0, 0);
+ /* A malloc() may have failed within the call to sqlite3_value_text16()
+ ** above. If this is the case, then the db->mallocFailed flag needs to
+ ** be cleared before returning. Do this directly, instead of via
+ ** sqlite3ApiExit(), to avoid setting the database handle error message.
+ */
+ db->mallocFailed = 0;
sqlite3_mutex_leave(db->mutex);
return z;
}
){
CollSeq *pColl;
int enc2;
+ int nName;
assert( sqlite3_mutex_held(db->mutex) );
if( enc2==SQLITE_UTF16 ){
enc2 = SQLITE_UTF16NATIVE;
}
-
if( (enc2&~3)!=0 ){
- sqlite3Error(db, SQLITE_ERROR, "unknown encoding");
- return SQLITE_ERROR;
+ return SQLITE_MISUSE;
}
/* Check if this call is removing or replacing an existing collation
** sequence. If so, and there are active VMs, return busy. If there
** are no active VMs, invalidate any pre-compiled statements.
*/
- pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 0);
+ nName = sqlite3Strlen(db, zName);
+ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, nName, 0);
if( pColl && pColl->xCmp ){
if( db->activeVdbeCnt ){
sqlite3Error(db, SQLITE_BUSY,
** to be called.
*/
if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
- CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, strlen(zName));
+ CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
int j;
for(j=0; j<3; j++){
CollSeq *p = &aColl[j];
}
}
- pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 1);
+ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, nName, 1);
if( pColl ){
pColl->xCmp = xCompare;
pColl->pUser = pCtx;
#if SQLITE_MAX_VDBE_OP<40
# error SQLITE_MAX_VDBE_OP must be at least 40
#endif
-#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>255
-# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 255
+#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>127
+# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 127
#endif
#if SQLITE_MAX_ATTACH<0 || SQLITE_MAX_ATTACH>30
# error SQLITE_MAX_ATTACH must be between 0 and 30
sqlite3 *db;
int rc;
CollSeq *pColl;
+ int isThreadsafe = 1;
+
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+
+ if( flags&SQLITE_OPEN_NOMUTEX ){
+ isThreadsafe = 0;
+ }
/* Remove harmful bits from the flags parameter */
flags &= ~( SQLITE_OPEN_DELETEONCLOSE |
SQLITE_OPEN_MAIN_JOURNAL |
SQLITE_OPEN_TEMP_JOURNAL |
SQLITE_OPEN_SUBJOURNAL |
- SQLITE_OPEN_MASTER_JOURNAL
+ SQLITE_OPEN_MASTER_JOURNAL |
+ SQLITE_OPEN_NOMUTEX
);
/* Allocate the sqlite data structure */
db = sqlite3MallocZero( sizeof(sqlite3) );
if( db==0 ) goto opendb_out;
- db->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
- if( db->mutex==0 ){
- sqlite3_free(db);
- db = 0;
- goto opendb_out;
+ if( sqlite3Config.bFullMutex && isThreadsafe ){
+ db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
+ if( db->mutex==0 ){
+ sqlite3_free(db);
+ db = 0;
+ goto opendb_out;
+ }
}
sqlite3_mutex_enter(db->mutex);
db->errMask = 0xff;
db->nDb = 2;
db->magic = SQLITE_MAGIC_BUSY;
db->aDb = db->aDbStatic;
+
assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
db->autoCommit = 1;
rc = sqlite3IcuInit(db);
}
#endif
+
+#ifdef SQLITE_ENABLE_RTREE
+ if( !db->mallocFailed && rc==SQLITE_OK){
+ rc = sqlite3RtreeInit(db);
+ }
+#endif
+
sqlite3Error(db, rc, 0);
/* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
SQLITE_DEFAULT_LOCKING_MODE);
#endif
+ /* Enable the lookaside-malloc subsystem */
+ setupLookaside(db, 0, sqlite3Config.szLookaside, sqlite3Config.nLookaside);
+
opendb_out:
if( db ){
- assert( db->mutex!=0 );
+ assert( db->mutex!=0 || isThreadsafe==0 || sqlite3Config.bFullMutex==0 );
sqlite3_mutex_leave(db->mutex);
}
if( SQLITE_NOMEM==(rc = sqlite3_errcode(db)) ){
){
char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
sqlite3_value *pVal;
- int rc = SQLITE_NOMEM;
+ int rc;
assert( zFilename );
assert( ppDb );
*ppDb = 0;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
pVal = sqlite3ValueNew(0);
sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
ENC(*ppDb) = SQLITE_UTF16NATIVE;
}
+ }else{
+ rc = SQLITE_NOMEM;
}
sqlite3ValueFree(pVal);
*/
SQLITE_API int sqlite3_create_collation16(
sqlite3* db,
- const char *zName,
+ const void *zName,
int enc,
void* pCtx,
int(*xCompare)(void*,int,const void*,int,const void*)
zName8 = sqlite3Utf16to8(db, zName, -1);
if( zName8 ){
rc = createCollation(db, zName8, enc, pCtx, xCompare, 0);
- sqlite3_free(zName8);
+ sqlite3DbFree(db, zName8);
}
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
char const **pzCollSeq, /* OUTPUT: Collation sequence name */
int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
int *pPrimaryKey, /* OUTPUT: True if column part of PK */
- int *pAutoinc /* OUTPUT: True if colums is auto-increment */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
){
int rc;
char *zErrMsg = 0;
if( pCol ){
zDataType = pCol->zType;
zCollSeq = pCol->zColl;
- notnull = (pCol->notNull?1:0);
- primarykey = (pCol->isPrimKey?1:0);
- autoinc = ((pTab->iPKey==iCol && pTab->autoInc)?1:0);
+ notnull = pCol->notNull!=0;
+ primarykey = pCol->isPrimKey!=0;
+ autoinc = pTab->iPKey==iCol && pTab->autoInc;
}else{
zDataType = "INTEGER";
primarykey = 1;
if( pAutoinc ) *pAutoinc = autoinc;
if( SQLITE_OK==rc && !pTab ){
- sqlite3SetString(&zErrMsg, "no such table column: ", zTableName, ".",
- zColumnName, 0);
+ sqlite3DbFree(db, zErrMsg);
+ zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName,
+ zColumnName);
rc = SQLITE_ERROR;
}
sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
- sqlite3_free(zErrMsg);
+ sqlite3DbFree(db, zErrMsg);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
sqlite3_vfs *pVfs;
int rc;
pVfs = sqlite3_vfs_find(0);
+ if( pVfs==0 ) return 0;
/* This function works in milliseconds, but the underlying OsSleep()
** API uses microseconds. Hence the 1000's.
va_list ap;
va_start(ap, op);
switch( op ){
- /*
- ** sqlite3_test_control(FAULT_CONFIG, fault_id, nDelay, nRepeat)
- **
- ** Configure a fault injector. The specific fault injector is
- ** identified by the fault_id argument. (ex: SQLITE_FAULTINJECTOR_MALLOC)
- ** The fault will occur after a delay of nDelay calls. The fault
- ** will repeat nRepeat times.
- */
- case SQLITE_TESTCTRL_FAULT_CONFIG: {
- int id = va_arg(ap, int);
- int nDelay = va_arg(ap, int);
- int nRepeat = va_arg(ap, int);
- sqlite3FaultConfig(id, nDelay, nRepeat);
- break;
- }
-
- /*
- ** sqlite3_test_control(FAULT_FAILURES, fault_id)
- **
- ** Return the number of faults (both hard and benign faults) that have
- ** occurred since the injector identified by fault_id) was last configured.
- */
- case SQLITE_TESTCTRL_FAULT_FAILURES: {
- int id = va_arg(ap, int);
- rc = sqlite3FaultFailures(id);
- break;
- }
-
- /*
- ** sqlite3_test_control(FAULT_BENIGN_FAILURES, fault_id)
- **
- ** Return the number of benign faults that have occurred since the
- ** injector identified by fault_id was last configured.
- */
- case SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES: {
- int id = va_arg(ap, int);
- rc = sqlite3FaultBenignFailures(id);
- break;
- }
-
- /*
- ** sqlite3_test_control(FAULT_PENDING, fault_id)
- **
- ** Return the number of successes that will occur before the next
- ** scheduled failure on fault injector fault_id.
- ** If no failures are scheduled, return -1.
- */
- case SQLITE_TESTCTRL_FAULT_PENDING: {
- int id = va_arg(ap, int);
- rc = sqlite3FaultPending(id);
- break;
- }
/*
** Save the current state of the PRNG.
rc = sqlite3BitvecBuiltinTest(sz, aProg);
break;
}
+
+ /*
+ ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd)
+ **
+ ** Register hooks to call to indicate which malloc() failures
+ ** are benign.
+ */
+ case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: {
+ typedef void (*void_function)(void);
+ void_function xBenignBegin;
+ void_function xBenignEnd;
+ xBenignBegin = va_arg(ap, void_function);
+ xBenignEnd = va_arg(ap, void_function);
+ sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd);
+ break;
+ }
}
va_end(ap);
#endif /* SQLITE_OMIT_BUILTIN_TEST */
CONTENT_SELECT_STMT,
CONTENT_UPDATE_STMT,
CONTENT_DELETE_STMT,
+ CONTENT_EXISTS_STMT,
BLOCK_INSERT_STMT,
BLOCK_SELECT_STMT,
BLOCK_DELETE_STMT,
+ BLOCK_DELETE_ALL_STMT,
SEGDIR_MAX_INDEX_STMT,
SEGDIR_SET_STMT,
- SEGDIR_SELECT_STMT,
+ SEGDIR_SELECT_LEVEL_STMT,
SEGDIR_SPAN_STMT,
SEGDIR_DELETE_STMT,
+ SEGDIR_SELECT_SEGMENT_STMT,
SEGDIR_SELECT_ALL_STMT,
+ SEGDIR_DELETE_ALL_STMT,
+ SEGDIR_COUNT_STMT,
MAX_STMT /* Always at end! */
} fulltext_statement;
/* CONTENT_SELECT */ NULL, /* generated in contentSelectStatement() */
/* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */
/* CONTENT_DELETE */ "delete from %_content where docid = ?",
+ /* CONTENT_EXISTS */ "select docid from %_content limit 1",
/* BLOCK_INSERT */
"insert into %_segments (blockid, block) values (null, ?)",
/* BLOCK_SELECT */ "select block from %_segments where blockid = ?",
/* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?",
+ /* BLOCK_DELETE_ALL */ "delete from %_segments",
/* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
/* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
- /* SEGDIR_SELECT */
+ /* SEGDIR_SELECT_LEVEL */
"select start_block, leaves_end_block, root from %_segdir "
" where level = ? order by idx",
/* SEGDIR_SPAN */
"select min(start_block), max(end_block) from %_segdir "
" where level = ? and start_block <> 0",
/* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
+
+ /* NOTE(shess): The first three results of the following two
+ ** statements must match.
+ */
+ /* SEGDIR_SELECT_SEGMENT */
+ "select start_block, leaves_end_block, root from %_segdir "
+ " where level = ? and idx = ?",
/* SEGDIR_SELECT_ALL */
- "select root, leaves_end_block from %_segdir order by level desc, idx",
+ "select start_block, leaves_end_block, root from %_segdir "
+ " order by level desc, idx asc",
+ /* SEGDIR_DELETE_ALL */ "delete from %_segdir",
+ /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir",
};
/*
}
/* Like sql_get_statement(), but for special replicated LEAF_SELECT
-** statements.
+** statements. idx -1 is a special case for an uncached version of
+** the statement (used in the optimize implementation).
*/
/* TODO(shess) Write version for generic statements and then share
** that between the cached-statement functions.
*/
static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
sqlite3_stmt **ppStmt){
- assert( idx>=0 && idx<MERGE_COUNT );
- if( v->pLeafSelectStmts[idx]==NULL ){
+ assert( idx>=-1 && idx<MERGE_COUNT );
+ if( idx==-1 ){
+ return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT);
+ }else if( v->pLeafSelectStmts[idx]==NULL ){
int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
LEAF_SELECT);
if( rc!=SQLITE_OK ) return rc;
return sql_single_step(s);
}
+/* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if
+** no rows exist, and any error in case of failure.
+*/
+static int content_exists(fulltext_vtab *v){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc!=SQLITE_ROW ) return rc;
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ) return SQLITE_ROW;
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ return rc;
+}
+
/* insert into %_segments values ([pData])
** returns assigned blockid in *piBlockid
*/
return sql_single_step(s);
}
+/* Delete entire fts index, SQLITE_OK on success, relevant error on
+** failure.
+*/
+static int segdir_delete_all(fulltext_vtab *v){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sql_single_step(s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+/* Returns SQLITE_OK with *pnSegments set to the number of entries in
+** %_segdir and *piMaxLevel set to the highest level which has a
+** segment. Otherwise returns the SQLite error which caused failure.
+*/
+static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ /* TODO(shess): This case should not be possible? Should stronger
+ ** measures be taken if it happens?
+ */
+ if( rc==SQLITE_DONE ){
+ *pnSegments = 0;
+ *piMaxLevel = 0;
+ return SQLITE_OK;
+ }
+ if( rc!=SQLITE_ROW ) return rc;
+
+ *pnSegments = sqlite3_column_int(s, 0);
+ *piMaxLevel = sqlite3_column_int(s, 1);
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ) return SQLITE_OK;
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ return rc;
+}
+
/* TODO(shess) clearPendingTerms() is far down the file because
** writeZeroSegment() is far down the file because LeafWriter is far
** down the file. Consider refactoring the code to move the non-vtab
fulltext_cursor *c = (fulltext_cursor *) pCursor;
fulltext_vtab *v = cursor_vtab(c);
int rc;
- StringBuffer sb;
FTSTRACE(("FTS3 Filter %p\n",pCursor));
- initStringBuffer(&sb);
- append(&sb, "SELECT docid, ");
- appendList(&sb, v->nColumn, v->azContentColumn);
- append(&sb, " FROM %_content");
- if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?");
- sqlite3_finalize(c->pStmt);
- rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, stringBufferData(&sb));
- stringBufferDestroy(&sb);
- if( rc!=SQLITE_OK ) return rc;
+ /* If the cursor has a statement that was not prepared according to
+ ** idxNum, clear it. I believe all calls to fulltextFilter with a
+ ** given cursor will have the same idxNum , but in this case it's
+ ** easy to be safe.
+ */
+ if( c->pStmt && c->iCursorType!=idxNum ){
+ sqlite3_finalize(c->pStmt);
+ c->pStmt = NULL;
+ }
+
+ /* Get a fresh statement appropriate to idxNum. */
+ /* TODO(shess): Add a prepared-statement cache in the vt structure.
+ ** The cache must handle multiple open cursors. Easier to cache the
+ ** statement variants at the vt to reduce malloc/realloc/free here.
+ ** Or we could have a StringBuffer variant which allowed stack
+ ** construction for small values.
+ */
+ if( !c->pStmt ){
+ StringBuffer sb;
+ initStringBuffer(&sb);
+ append(&sb, "SELECT docid, ");
+ appendList(&sb, v->nColumn, v->azContentColumn);
+ append(&sb, " FROM %_content");
+ if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?");
+ rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt,
+ stringBufferData(&sb));
+ stringBufferDestroy(&sb);
+ if( rc!=SQLITE_OK ) return rc;
+ c->iCursorType = idxNum;
+ }else{
+ sqlite3_reset(c->pStmt);
+ assert( c->iCursorType==idxNum );
+ }
- c->iCursorType = idxNum;
switch( idxNum ){
case QUERY_GENERIC:
break;
}
static void leavesReaderDestroy(LeavesReader *pReader){
+ /* If idx is -1, that means we're using a non-cached statement
+ ** handle in the optimize() case, so we need to release it.
+ */
+ if( pReader->pStmt!=NULL && pReader->idx==-1 ){
+ sqlite3_finalize(pReader->pStmt);
+ }
leafReaderDestroy(&pReader->leafReader);
dataBufferDestroy(&pReader->rootData);
SCRAMBLE(pReader);
static int leavesReadersInit(fulltext_vtab *v, int iLevel,
LeavesReader *pReaders, int *piReaders){
sqlite3_stmt *s;
- int i, rc = sql_get_statement(v, SEGDIR_SELECT_STMT, &s);
+ int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s);
if( rc!=SQLITE_OK ) return rc;
rc = sqlite3_bind_int(s, 1, iLevel);
** elements for given docids overwrite older elements.
*/
while( (rc = sqlite3_step(s))==SQLITE_ROW ){
- const char *pData = sqlite3_column_blob(s, 0);
- const int nData = sqlite3_column_bytes(s, 0);
+ const char *pData = sqlite3_column_blob(s, 2);
+ const int nData = sqlite3_column_bytes(s, 2);
const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
&doclist);
if( nArg<2 ){
rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
+ if( rc==SQLITE_OK ){
+ /* If we just deleted the last row in the table, clear out the
+ ** index data.
+ */
+ rc = content_exists(v);
+ if( rc==SQLITE_ROW ){
+ rc = SQLITE_OK;
+ }else if( rc==SQLITE_DONE ){
+ /* Clear the pending terms so we don't flush a useless level-0
+ ** segment when the transaction closes.
+ */
+ rc = clearPendingTerms(v);
+ if( rc==SQLITE_OK ){
+ rc = segdir_delete_all(v);
+ }
+ }
+ }
} else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
/* An update:
* ppArg[0] = old rowid
}
}
+/* OptLeavesReader is nearly identical to LeavesReader, except that
+** where LeavesReader is geared towards the merging of complete
+** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader
+** is geared towards implementation of the optimize() function, and
+** can merge all segments simultaneously. This version may be
+** somewhat less efficient than LeavesReader because it merges into an
+** accumulator rather than doing an N-way merge, but since segment
+** size grows exponentially (so segment count logrithmically) this is
+** probably not an immediate problem.
+*/
+/* TODO(shess): Prove that assertion, or extend the merge code to
+** merge tree fashion (like the prefix-searching code does).
+*/
+/* TODO(shess): OptLeavesReader and LeavesReader could probably be
+** merged with little or no loss of performance for LeavesReader. The
+** merged code would need to handle >MERGE_COUNT segments, and would
+** also need to be able to optionally optimize away deletes.
+*/
+typedef struct OptLeavesReader {
+ /* Segment number, to order readers by age. */
+ int segment;
+ LeavesReader reader;
+} OptLeavesReader;
+
+static int optLeavesReaderAtEnd(OptLeavesReader *pReader){
+ return leavesReaderAtEnd(&pReader->reader);
+}
+static int optLeavesReaderTermBytes(OptLeavesReader *pReader){
+ return leavesReaderTermBytes(&pReader->reader);
+}
+static const char *optLeavesReaderData(OptLeavesReader *pReader){
+ return leavesReaderData(&pReader->reader);
+}
+static int optLeavesReaderDataBytes(OptLeavesReader *pReader){
+ return leavesReaderDataBytes(&pReader->reader);
+}
+static const char *optLeavesReaderTerm(OptLeavesReader *pReader){
+ return leavesReaderTerm(&pReader->reader);
+}
+static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){
+ return leavesReaderStep(v, &pReader->reader);
+}
+static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
+ return leavesReaderTermCmp(&lr1->reader, &lr2->reader);
+}
+/* Order by term ascending, segment ascending (oldest to newest), with
+** exhausted readers to the end.
+*/
+static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
+ int c = optLeavesReaderTermCmp(lr1, lr2);
+ if( c!=0 ) return c;
+ return lr1->segment-lr2->segment;
+}
+/* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that
+** pLr[1..nLr-1] is already sorted.
+*/
+static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){
+ while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){
+ OptLeavesReader tmp = pLr[0];
+ pLr[0] = pLr[1];
+ pLr[1] = tmp;
+ nLr--;
+ pLr++;
+ }
+}
+
+/* optimize() helper function. Put the readers in order and iterate
+** through them, merging doclists for matching terms into pWriter.
+** Returns SQLITE_OK on success, or the SQLite error code which
+** prevented success.
+*/
+static int optimizeInternal(fulltext_vtab *v,
+ OptLeavesReader *readers, int nReaders,
+ LeafWriter *pWriter){
+ int i, rc = SQLITE_OK;
+ DataBuffer doclist, merged, tmp;
+
+ /* Order the readers. */
+ i = nReaders;
+ while( i-- > 0 ){
+ optLeavesReaderReorder(&readers[i], nReaders-i);
+ }
+
+ dataBufferInit(&doclist, LEAF_MAX);
+ dataBufferInit(&merged, LEAF_MAX);
+
+ /* Exhausted readers bubble to the end, so when the first reader is
+ ** at eof, all are at eof.
+ */
+ while( !optLeavesReaderAtEnd(&readers[0]) ){
+
+ /* Figure out how many readers share the next term. */
+ for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){
+ if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break;
+ }
+
+ /* Special-case for no merge. */
+ if( i==1 ){
+ /* Trim deletions from the doclist. */
+ dataBufferReset(&merged);
+ docListTrim(DL_DEFAULT,
+ optLeavesReaderData(&readers[0]),
+ optLeavesReaderDataBytes(&readers[0]),
+ -1, DL_DEFAULT, &merged);
+ }else{
+ DLReader dlReaders[MERGE_COUNT];
+ int iReader, nReaders;
+
+ /* Prime the pipeline with the first reader's doclist. After
+ ** one pass index 0 will reference the accumulated doclist.
+ */
+ dlrInit(&dlReaders[0], DL_DEFAULT,
+ optLeavesReaderData(&readers[0]),
+ optLeavesReaderDataBytes(&readers[0]));
+ iReader = 1;
+
+ assert( iReader<i ); /* Must execute the loop at least once. */
+ while( iReader<i ){
+ /* Merge 16 inputs per pass. */
+ for( nReaders=1; iReader<i && nReaders<MERGE_COUNT;
+ iReader++, nReaders++ ){
+ dlrInit(&dlReaders[nReaders], DL_DEFAULT,
+ optLeavesReaderData(&readers[iReader]),
+ optLeavesReaderDataBytes(&readers[iReader]));
+ }
+
+ /* Merge doclists and swap result into accumulator. */
+ dataBufferReset(&merged);
+ docListMerge(&merged, dlReaders, nReaders);
+ tmp = merged;
+ merged = doclist;
+ doclist = tmp;
+
+ while( nReaders-- > 0 ){
+ dlrDestroy(&dlReaders[nReaders]);
+ }
+
+ /* Accumulated doclist to reader 0 for next pass. */
+ dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData);
+ }
+
+ /* Destroy reader that was left in the pipeline. */
+ dlrDestroy(&dlReaders[0]);
+
+ /* Trim deletions from the doclist. */
+ dataBufferReset(&merged);
+ docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
+ -1, DL_DEFAULT, &merged);
+ }
+
+ /* Only pass doclists with hits (skip if all hits deleted). */
+ if( merged.nData>0 ){
+ rc = leafWriterStep(v, pWriter,
+ optLeavesReaderTerm(&readers[0]),
+ optLeavesReaderTermBytes(&readers[0]),
+ merged.pData, merged.nData);
+ if( rc!=SQLITE_OK ) goto err;
+ }
+
+ /* Step merged readers to next term and reorder. */
+ while( i-- > 0 ){
+ rc = optLeavesReaderStep(v, &readers[i]);
+ if( rc!=SQLITE_OK ) goto err;
+
+ optLeavesReaderReorder(&readers[i], nReaders-i);
+ }
+ }
+
+ err:
+ dataBufferDestroy(&doclist);
+ dataBufferDestroy(&merged);
+ return rc;
+}
+
+/* Implement optimize() function for FTS3. optimize(t) merges all
+** segments in the fts index into a single segment. 't' is the magic
+** table-named column.
+*/
+static void optimizeFunc(sqlite3_context *pContext,
+ int argc, sqlite3_value **argv){
+ fulltext_cursor *pCursor;
+ if( argc>1 ){
+ sqlite3_result_error(pContext, "excess arguments to optimize()",-1);
+ }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
+ sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
+ sqlite3_result_error(pContext, "illegal first argument to optimize",-1);
+ }else{
+ fulltext_vtab *v;
+ int i, rc, iMaxLevel;
+ OptLeavesReader *readers;
+ int nReaders;
+ LeafWriter writer;
+ sqlite3_stmt *s;
+
+ memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
+ v = cursor_vtab(pCursor);
+
+ /* Flush any buffered updates before optimizing. */
+ rc = flushPendingTerms(v);
+ if( rc!=SQLITE_OK ) goto err;
+
+ rc = segdir_count(v, &nReaders, &iMaxLevel);
+ if( rc!=SQLITE_OK ) goto err;
+ if( nReaders==0 || nReaders==1 ){
+ sqlite3_result_text(pContext, "Index already optimal", -1,
+ SQLITE_STATIC);
+ return;
+ }
+
+ rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
+ if( rc!=SQLITE_OK ) goto err;
+
+ readers = sqlite3_malloc(nReaders*sizeof(readers[0]));
+ if( readers==NULL ) goto err;
+
+ /* Note that there will already be a segment at this position
+ ** until we call segdir_delete() on iMaxLevel.
+ */
+ leafWriterInit(iMaxLevel, 0, &writer);
+
+ i = 0;
+ while( (rc = sqlite3_step(s))==SQLITE_ROW ){
+ sqlite_int64 iStart = sqlite3_column_int64(s, 0);
+ sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
+ const char *pRootData = sqlite3_column_blob(s, 2);
+ int nRootData = sqlite3_column_bytes(s, 2);
+
+ assert( i<nReaders );
+ rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData,
+ &readers[i].reader);
+ if( rc!=SQLITE_OK ) break;
+
+ readers[i].segment = i;
+ i++;
+ }
+
+ /* If we managed to succesfully read them all, optimize them. */
+ if( rc==SQLITE_DONE ){
+ assert( i==nReaders );
+ rc = optimizeInternal(v, readers, nReaders, &writer);
+ }
+
+ while( i-- > 0 ){
+ leavesReaderDestroy(&readers[i].reader);
+ }
+ sqlite3_free(readers);
+
+ /* If we've successfully gotten to here, delete the old segments
+ ** and flush the interior structure of the new segment.
+ */
+ if( rc==SQLITE_OK ){
+ for( i=0; i<=iMaxLevel; i++ ){
+ rc = segdir_delete(v, i);
+ if( rc!=SQLITE_OK ) break;
+ }
+
+ if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer);
+ }
+
+ leafWriterDestroy(&writer);
+
+ if( rc!=SQLITE_OK ) goto err;
+
+ sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
+ return;
+
+ /* TODO(shess): Error-handling needs to be improved along the
+ ** lines of the dump_ functions.
+ */
+ err:
+ {
+ char buf[512];
+ sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s",
+ sqlite3_errmsg(sqlite3_context_db_handle(pContext)));
+ sqlite3_result_error(pContext, buf, -1);
+ }
+ }
+}
+
+#ifdef SQLITE_TEST
+/* Generate an error of the form "<prefix>: <msg>". If msg is NULL,
+** pull the error from the context's db handle.
+*/
+static void generateError(sqlite3_context *pContext,
+ const char *prefix, const char *msg){
+ char buf[512];
+ if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext));
+ sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg);
+ sqlite3_result_error(pContext, buf, -1);
+}
+
+/* Helper function to collect the set of terms in the segment into
+** pTerms. The segment is defined by the leaf nodes between
+** iStartBlockid and iEndBlockid, inclusive, or by the contents of
+** pRootData if iStartBlockid is 0 (in which case the entire segment
+** fit in a leaf).
+*/
+static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s,
+ fts3Hash *pTerms){
+ const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0);
+ const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1);
+ const char *pRootData = sqlite3_column_blob(s, 2);
+ const int nRootData = sqlite3_column_bytes(s, 2);
+ LeavesReader reader;
+ int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid,
+ pRootData, nRootData, &reader);
+ if( rc!=SQLITE_OK ) return rc;
+
+ while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){
+ const char *pTerm = leavesReaderTerm(&reader);
+ const int nTerm = leavesReaderTermBytes(&reader);
+ void *oldValue = sqlite3Fts3HashFind(pTerms, pTerm, nTerm);
+ void *newValue = (void *)((char *)oldValue+1);
+
+ /* From the comment before sqlite3Fts3HashInsert in fts3_hash.c,
+ ** the data value passed is returned in case of malloc failure.
+ */
+ if( newValue==sqlite3Fts3HashInsert(pTerms, pTerm, nTerm, newValue) ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = leavesReaderStep(v, &reader);
+ }
+ }
+
+ leavesReaderDestroy(&reader);
+ return rc;
+}
+
+/* Helper function to build the result string for dump_terms(). */
+static int generateTermsResult(sqlite3_context *pContext, fts3Hash *pTerms){
+ int iTerm, nTerms, nResultBytes, iByte;
+ char *result;
+ TermData *pData;
+ fts3HashElem *e;
+
+ /* Iterate pTerms to generate an array of terms in pData for
+ ** sorting.
+ */
+ nTerms = fts3HashCount(pTerms);
+ assert( nTerms>0 );
+ pData = sqlite3_malloc(nTerms*sizeof(TermData));
+ if( pData==NULL ) return SQLITE_NOMEM;
+
+ nResultBytes = 0;
+ for(iTerm = 0, e = fts3HashFirst(pTerms); e; iTerm++, e = fts3HashNext(e)){
+ nResultBytes += fts3HashKeysize(e)+1; /* Term plus trailing space */
+ assert( iTerm<nTerms );
+ pData[iTerm].pTerm = fts3HashKey(e);
+ pData[iTerm].nTerm = fts3HashKeysize(e);
+ pData[iTerm].pCollector = fts3HashData(e); /* unused */
+ }
+ assert( iTerm==nTerms );
+
+ assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */
+ result = sqlite3_malloc(nResultBytes);
+ if( result==NULL ){
+ sqlite3_free(pData);
+ return SQLITE_NOMEM;
+ }
+
+ if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp);
+
+ /* Read the terms in order to build the result. */
+ iByte = 0;
+ for(iTerm=0; iTerm<nTerms; ++iTerm){
+ memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm);
+ iByte += pData[iTerm].nTerm;
+ result[iByte++] = ' ';
+ }
+ assert( iByte==nResultBytes );
+ assert( result[nResultBytes-1]==' ' );
+ result[nResultBytes-1] = '\0';
+
+ /* Passes away ownership of result. */
+ sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free);
+ sqlite3_free(pData);
+ return SQLITE_OK;
+}
+
+/* Implements dump_terms() for use in inspecting the fts3 index from
+** tests. TEXT result containing the ordered list of terms joined by
+** spaces. dump_terms(t, level, idx) dumps the terms for the segment
+** specified by level, idx (in %_segdir), while dump_terms(t) dumps
+** all terms in the index. In both cases t is the fts table's magic
+** table-named column.
+*/
+static void dumpTermsFunc(
+ sqlite3_context *pContext,
+ int argc, sqlite3_value **argv
+){
+ fulltext_cursor *pCursor;
+ if( argc!=3 && argc!=1 ){
+ generateError(pContext, "dump_terms", "incorrect arguments");
+ }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
+ sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
+ generateError(pContext, "dump_terms", "illegal first argument");
+ }else{
+ fulltext_vtab *v;
+ fts3Hash terms;
+ sqlite3_stmt *s = NULL;
+ int rc;
+
+ memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
+ v = cursor_vtab(pCursor);
+
+ /* If passed only the cursor column, get all segments. Otherwise
+ ** get the segment described by the following two arguments.
+ */
+ if( argc==1 ){
+ rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
+ }else{
+ rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1]));
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2]));
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ generateError(pContext, "dump_terms", NULL);
+ return;
+ }
+
+ /* Collect the terms for each segment. */
+ sqlite3Fts3HashInit(&terms, FTS3_HASH_STRING, 1);
+ while( (rc = sqlite3_step(s))==SQLITE_ROW ){
+ rc = collectSegmentTerms(v, s, &terms);
+ if( rc!=SQLITE_OK ) break;
+ }
+
+ if( rc!=SQLITE_DONE ){
+ sqlite3_reset(s);
+ generateError(pContext, "dump_terms", NULL);
+ }else{
+ const int nTerms = fts3HashCount(&terms);
+ if( nTerms>0 ){
+ rc = generateTermsResult(pContext, &terms);
+ if( rc==SQLITE_NOMEM ){
+ generateError(pContext, "dump_terms", "out of memory");
+ }else{
+ assert( rc==SQLITE_OK );
+ }
+ }else if( argc==3 ){
+ /* The specific segment asked for could not be found. */
+ generateError(pContext, "dump_terms", "segment not found");
+ }else{
+ /* No segments found. */
+ /* TODO(shess): It should be impossible to reach this. This
+ ** case can only happen for an empty table, in which case
+ ** SQLite has no rows to call this function on.
+ */
+ sqlite3_result_null(pContext);
+ }
+ }
+ sqlite3Fts3HashClear(&terms);
+ }
+}
+
+/* Expand the DL_DEFAULT doclist in pData into a text result in
+** pContext.
+*/
+static void createDoclistResult(sqlite3_context *pContext,
+ const char *pData, int nData){
+ DataBuffer dump;
+ DLReader dlReader;
+
+ assert( pData!=NULL && nData>0 );
+
+ dataBufferInit(&dump, 0);
+ dlrInit(&dlReader, DL_DEFAULT, pData, nData);
+ for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){
+ char buf[256];
+ PLReader plReader;
+
+ plrInit(&plReader, &dlReader);
+ if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){
+ sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader));
+ dataBufferAppend(&dump, buf, strlen(buf));
+ }else{
+ int iColumn = plrColumn(&plReader);
+
+ sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[",
+ dlrDocid(&dlReader), iColumn);
+ dataBufferAppend(&dump, buf, strlen(buf));
+
+ for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){
+ if( plrColumn(&plReader)!=iColumn ){
+ iColumn = plrColumn(&plReader);
+ sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn);
+ assert( dump.nData>0 );
+ dump.nData--; /* Overwrite trailing space. */
+ assert( dump.pData[dump.nData]==' ');
+ dataBufferAppend(&dump, buf, strlen(buf));
+ }
+ if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){
+ sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ",
+ plrPosition(&plReader),
+ plrStartOffset(&plReader), plrEndOffset(&plReader));
+ }else if( DL_DEFAULT==DL_POSITIONS ){
+ sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader));
+ }else{
+ assert( NULL=="Unhandled DL_DEFAULT value");
+ }
+ dataBufferAppend(&dump, buf, strlen(buf));
+ }
+ plrDestroy(&plReader);
+
+ assert( dump.nData>0 );
+ dump.nData--; /* Overwrite trailing space. */
+ assert( dump.pData[dump.nData]==' ');
+ dataBufferAppend(&dump, "]] ", 3);
+ }
+ }
+ dlrDestroy(&dlReader);
+
+ assert( dump.nData>0 );
+ dump.nData--; /* Overwrite trailing space. */
+ assert( dump.pData[dump.nData]==' ');
+ dump.pData[dump.nData] = '\0';
+ assert( dump.nData>0 );
+
+ /* Passes ownership of dump's buffer to pContext. */
+ sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free);
+ dump.pData = NULL;
+ dump.nData = dump.nCapacity = 0;
+}
+
+/* Implements dump_doclist() for use in inspecting the fts3 index from
+** tests. TEXT result containing a string representation of the
+** doclist for the indicated term. dump_doclist(t, term, level, idx)
+** dumps the doclist for term from the segment specified by level, idx
+** (in %_segdir), while dump_doclist(t, term) dumps the logical
+** doclist for the term across all segments. The per-segment doclist
+** can contain deletions, while the full-index doclist will not
+** (deletions are omitted).
+**
+** Result formats differ with the setting of DL_DEFAULTS. Examples:
+**
+** DL_DOCIDS: [1] [3] [7]
+** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]]
+** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]]
+**
+** In each case the number after the outer '[' is the docid. In the
+** latter two cases, the number before the inner '[' is the column
+** associated with the values within. For DL_POSITIONS the numbers
+** within are the positions, for DL_POSITIONS_OFFSETS they are the
+** position, the start offset, and the end offset.
+*/
+static void dumpDoclistFunc(
+ sqlite3_context *pContext,
+ int argc, sqlite3_value **argv
+){
+ fulltext_cursor *pCursor;
+ if( argc!=2 && argc!=4 ){
+ generateError(pContext, "dump_doclist", "incorrect arguments");
+ }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
+ sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
+ generateError(pContext, "dump_doclist", "illegal first argument");
+ }else if( sqlite3_value_text(argv[1])==NULL ||
+ sqlite3_value_text(argv[1])[0]=='\0' ){
+ generateError(pContext, "dump_doclist", "empty second argument");
+ }else{
+ const char *pTerm = (const char *)sqlite3_value_text(argv[1]);
+ const int nTerm = strlen(pTerm);
+ fulltext_vtab *v;
+ int rc;
+ DataBuffer doclist;
+
+ memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
+ v = cursor_vtab(pCursor);
+
+ dataBufferInit(&doclist, 0);
+
+ /* termSelect() yields the same logical doclist that queries are
+ ** run against.
+ */
+ if( argc==2 ){
+ rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist);
+ }else{
+ sqlite3_stmt *s = NULL;
+
+ /* Get our specific segment's information. */
+ rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2]));
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3]));
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_step(s);
+
+ if( rc==SQLITE_DONE ){
+ dataBufferDestroy(&doclist);
+ generateError(pContext, "dump_doclist", "segment not found");
+ return;
+ }
+
+ /* Found a segment, load it into doclist. */
+ if( rc==SQLITE_ROW ){
+ const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
+ const char *pData = sqlite3_column_blob(s, 2);
+ const int nData = sqlite3_column_bytes(s, 2);
+
+ /* loadSegment() is used by termSelect() to load each
+ ** segment's data.
+ */
+ rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0,
+ &doclist);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_step(s);
+
+ /* Should not have more than one matching segment. */
+ if( rc!=SQLITE_DONE ){
+ sqlite3_reset(s);
+ dataBufferDestroy(&doclist);
+ generateError(pContext, "dump_doclist", "invalid segdir");
+ return;
+ }
+ rc = SQLITE_OK;
+ }
+ }
+ }
+
+ sqlite3_reset(s);
+ }
+
+ if( rc==SQLITE_OK ){
+ if( doclist.nData>0 ){
+ createDoclistResult(pContext, doclist.pData, doclist.nData);
+ }else{
+ /* TODO(shess): This can happen if the term is not present, or
+ ** if all instances of the term have been deleted and this is
+ ** an all-index dump. It may be interesting to distinguish
+ ** these cases.
+ */
+ sqlite3_result_text(pContext, "", 0, SQLITE_STATIC);
+ }
+ }else if( rc==SQLITE_NOMEM ){
+ /* Handle out-of-memory cases specially because if they are
+ ** generated in fts3 code they may not be reflected in the db
+ ** handle.
+ */
+ /* TODO(shess): Handle this more comprehensively.
+ ** sqlite3ErrStr() has what I need, but is internal.
+ */
+ generateError(pContext, "dump_doclist", "out of memory");
+ }else{
+ generateError(pContext, "dump_doclist", NULL);
+ }
+
+ dataBufferDestroy(&doclist);
+ }
+}
+#endif
+
/*
** This routine implements the xFindFunction method for the FTS3
** virtual table.
}else if( strcmp(zName,"offsets")==0 ){
*pxFunc = snippetOffsetsFunc;
return 1;
+ }else if( strcmp(zName,"optimize")==0 ){
+ *pxFunc = optimizeFunc;
+ return 1;
+#ifdef SQLITE_TEST
+ /* NOTE(shess): These functions are present only for testing
+ ** purposes. No particular effort is made to optimize their
+ ** execution or how they build their results.
+ */
+ }else if( strcmp(zName,"dump_terms")==0 ){
+ /* fprintf(stderr, "Found dump_terms\n"); */
+ *pxFunc = dumpTermsFunc;
+ return 1;
+ }else if( strcmp(zName,"dump_doclist")==0 ){
+ /* fprintf(stderr, "Found dump_doclist\n"); */
+ *pxFunc = dumpDoclistFunc;
+ return 1;
+#endif
}
return 0;
}
&& SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
&& SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
&& SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1))
+#ifdef SQLITE_TEST
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1))
+#endif
){
return sqlite3_create_module_v2(
db, "fts3", &fts3Module, (void *)pHash, hashDestroy
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
/************** End of fts3_tokenizer1.c *************************************/
+/************** Begin file rtree.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code for implementations of the r-tree and r*-tree
+** algorithms packaged as an SQLite virtual table module.
+**
+** $Id: rtree.c,v 1.7 2008/07/16 14:43:35 drh Exp $
+*/
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
+
+/*
+** This file contains an implementation of a couple of different variants
+** of the r-tree algorithm. See the README file for further details. The
+** same data-structure is used for all, but the algorithms for insert and
+** delete operations vary. The variants used are selected at compile time
+** by defining the following symbols:
+*/
+
+/* Either, both or none of the following may be set to activate
+** r*tree variant algorithms.
+*/
+#define VARIANT_RSTARTREE_CHOOSESUBTREE 0
+#define VARIANT_RSTARTREE_REINSERT 1
+
+/*
+** Exactly one of the following must be set to 1.
+*/
+#define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0
+#define VARIANT_GUTTMAN_LINEAR_SPLIT 0
+#define VARIANT_RSTARTREE_SPLIT 1
+
+#define VARIANT_GUTTMAN_SPLIT \
+ (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT)
+
+#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
+ #define PickNext QuadraticPickNext
+ #define PickSeeds QuadraticPickSeeds
+ #define AssignCells splitNodeGuttman
+#endif
+#if VARIANT_GUTTMAN_LINEAR_SPLIT
+ #define PickNext LinearPickNext
+ #define PickSeeds LinearPickSeeds
+ #define AssignCells splitNodeGuttman
+#endif
+#if VARIANT_RSTARTREE_SPLIT
+ #define AssignCells splitNodeStartree
+#endif
+
+
+#ifndef SQLITE_CORE
+ #include "sqlite3ext.h"
+ SQLITE_EXTENSION_INIT1
+#else
+ #include "sqlite3.h"
+#endif
+
+
+#ifndef SQLITE_AMALGAMATION
+typedef sqlite3_int64 i64;
+typedef unsigned char u8;
+typedef unsigned int u32;
+#endif
+
+typedef struct Rtree Rtree;
+typedef struct RtreeCursor RtreeCursor;
+typedef struct RtreeNode RtreeNode;
+typedef struct RtreeCell RtreeCell;
+typedef struct RtreeConstraint RtreeConstraint;
+typedef union RtreeCoord RtreeCoord;
+
+/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
+#define RTREE_MAX_DIMENSIONS 5
+
+/* Size of hash table Rtree.aHash. This hash table is not expected to
+** ever contain very many entries, so a fixed number of buckets is
+** used.
+*/
+#define HASHSIZE 128
+
+/*
+** An rtree virtual-table object.
+*/
+struct Rtree {
+ sqlite3_vtab base;
+ sqlite3 *db; /* Host database connection */
+ int iNodeSize; /* Size in bytes of each node in the node table */
+ int nDim; /* Number of dimensions */
+ int nBytesPerCell; /* Bytes consumed per cell */
+ int iDepth; /* Current depth of the r-tree structure */
+ char *zDb; /* Name of database containing r-tree table */
+ char *zName; /* Name of r-tree table */
+ RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
+ int nBusy; /* Current number of users of this structure */
+
+ /* List of nodes removed during a CondenseTree operation. List is
+ ** linked together via the pointer normally used for hash chains -
+ ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
+ ** headed by the node (leaf nodes have RtreeNode.iNode==0).
+ */
+ RtreeNode *pDeleted;
+ int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */
+
+ /* Statements to read/write/delete a record from xxx_node */
+ sqlite3_stmt *pReadNode;
+ sqlite3_stmt *pWriteNode;
+ sqlite3_stmt *pDeleteNode;
+
+ /* Statements to read/write/delete a record from xxx_rowid */
+ sqlite3_stmt *pReadRowid;
+ sqlite3_stmt *pWriteRowid;
+ sqlite3_stmt *pDeleteRowid;
+
+ /* Statements to read/write/delete a record from xxx_parent */
+ sqlite3_stmt *pReadParent;
+ sqlite3_stmt *pWriteParent;
+ sqlite3_stmt *pDeleteParent;
+
+ int eCoordType;
+};
+
+/* Possible values for eCoordType: */
+#define RTREE_COORD_REAL32 0
+#define RTREE_COORD_INT32 1
+
+/*
+** The minimum number of cells allowed for a node is a third of the
+** maximum. In Gutman's notation:
+**
+** m = M/3
+**
+** If an R*-tree "Reinsert" operation is required, the same number of
+** cells are removed from the overfull node and reinserted into the tree.
+*/
+#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
+#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
+#define RTREE_MAXCELLS 51
+
+/*
+** An rtree cursor object.
+*/
+struct RtreeCursor {
+ sqlite3_vtab_cursor base;
+ RtreeNode *pNode; /* Node cursor is currently pointing at */
+ int iCell; /* Index of current cell in pNode */
+ int iStrategy; /* Copy of idxNum search parameter */
+ int nConstraint; /* Number of entries in aConstraint */
+ RtreeConstraint *aConstraint; /* Search constraints. */
+};
+
+union RtreeCoord {
+ float f;
+ int i;
+};
+
+/*
+** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
+** formatted as a double. This macro assumes that local variable pRtree points
+** to the Rtree structure associated with the RtreeCoord.
+*/
+#define DCOORD(coord) ( \
+ (pRtree->eCoordType==RTREE_COORD_REAL32) ? \
+ ((double)coord.f) : \
+ ((double)coord.i) \
+)
+
+/*
+** A search constraint.
+*/
+struct RtreeConstraint {
+ int iCoord; /* Index of constrained coordinate */
+ int op; /* Constraining operation */
+ double rValue; /* Constraint value. */
+};
+
+/* Possible values for RtreeConstraint.op */
+#define RTREE_EQ 0x41
+#define RTREE_LE 0x42
+#define RTREE_LT 0x43
+#define RTREE_GE 0x44
+#define RTREE_GT 0x45
+
+/*
+** An rtree structure node.
+**
+** Data format (RtreeNode.zData):
+**
+** 1. If the node is the root node (node 1), then the first 2 bytes
+** of the node contain the tree depth as a big-endian integer.
+** For non-root nodes, the first 2 bytes are left unused.
+**
+** 2. The next 2 bytes contain the number of entries currently
+** stored in the node.
+**
+** 3. The remainder of the node contains the node entries. Each entry
+** consists of a single 8-byte integer followed by an even number
+** of 4-byte coordinates. For leaf nodes the integer is the rowid
+** of a record. For internal nodes it is the node number of a
+** child page.
+*/
+struct RtreeNode {
+ RtreeNode *pParent; /* Parent node */
+ i64 iNode;
+ int nRef;
+ int isDirty;
+ u8 *zData;
+ RtreeNode *pNext; /* Next node in this hash chain */
+};
+#define NCELL(pNode) readInt16(&(pNode)->zData[2])
+
+/*
+** Structure to store a deserialized rtree record.
+*/
+struct RtreeCell {
+ i64 iRowid;
+ RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];
+};
+
+#define MAX(x,y) ((x) < (y) ? (y) : (x))
+#define MIN(x,y) ((x) > (y) ? (y) : (x))
+
+/*
+** Functions to deserialize a 16 bit integer, 32 bit real number and
+** 64 bit integer. The deserialized value is returned.
+*/
+static int readInt16(u8 *p){
+ return (p[0]<<8) + p[1];
+}
+static void readCoord(u8 *p, RtreeCoord *pCoord){
+ u32 i = (
+ (((u32)p[0]) << 24) +
+ (((u32)p[1]) << 16) +
+ (((u32)p[2]) << 8) +
+ (((u32)p[3]) << 0)
+ );
+ *(u32 *)pCoord = i;
+}
+static i64 readInt64(u8 *p){
+ return (
+ (((i64)p[0]) << 56) +
+ (((i64)p[1]) << 48) +
+ (((i64)p[2]) << 40) +
+ (((i64)p[3]) << 32) +
+ (((i64)p[4]) << 24) +
+ (((i64)p[5]) << 16) +
+ (((i64)p[6]) << 8) +
+ (((i64)p[7]) << 0)
+ );
+}
+
+/*
+** Functions to serialize a 16 bit integer, 32 bit real number and
+** 64 bit integer. The value returned is the number of bytes written
+** to the argument buffer (always 2, 4 and 8 respectively).
+*/
+static int writeInt16(u8 *p, int i){
+ p[0] = (i>> 8)&0xFF;
+ p[1] = (i>> 0)&0xFF;
+ return 2;
+}
+static int writeCoord(u8 *p, RtreeCoord *pCoord){
+ u32 i;
+ assert( sizeof(RtreeCoord)==4 );
+ assert( sizeof(u32)==4 );
+ i = *(u32 *)pCoord;
+ p[0] = (i>>24)&0xFF;
+ p[1] = (i>>16)&0xFF;
+ p[2] = (i>> 8)&0xFF;
+ p[3] = (i>> 0)&0xFF;
+ return 4;
+}
+static int writeInt64(u8 *p, i64 i){
+ p[0] = (i>>56)&0xFF;
+ p[1] = (i>>48)&0xFF;
+ p[2] = (i>>40)&0xFF;
+ p[3] = (i>>32)&0xFF;
+ p[4] = (i>>24)&0xFF;
+ p[5] = (i>>16)&0xFF;
+ p[6] = (i>> 8)&0xFF;
+ p[7] = (i>> 0)&0xFF;
+ return 8;
+}
+
+/*
+** Increment the reference count of node p.
+*/
+static void nodeReference(RtreeNode *p){
+ if( p ){
+ p->nRef++;
+ }
+}
+
+/*
+** Clear the content of node p (set all bytes to 0x00).
+*/
+static void nodeZero(Rtree *pRtree, RtreeNode *p){
+ if( p ){
+ memset(&p->zData[2], 0, pRtree->iNodeSize-2);
+ p->isDirty = 1;
+ }
+}
+
+/*
+** Given a node number iNode, return the corresponding key to use
+** in the Rtree.aHash table.
+*/
+static int nodeHash(i64 iNode){
+ return (
+ (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^
+ (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0)
+ ) % HASHSIZE;
+}
+
+/*
+** Search the node hash table for node iNode. If found, return a pointer
+** to it. Otherwise, return 0.
+*/
+static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
+ RtreeNode *p;
+ assert( iNode!=0 );
+ for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
+ return p;
+}
+
+/*
+** Add node pNode to the node hash table.
+*/
+static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
+ if( pNode ){
+ int iHash;
+ assert( pNode->pNext==0 );
+ iHash = nodeHash(pNode->iNode);
+ pNode->pNext = pRtree->aHash[iHash];
+ pRtree->aHash[iHash] = pNode;
+ }
+}
+
+/*
+** Remove node pNode from the node hash table.
+*/
+static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode **pp;
+ if( pNode->iNode!=0 ){
+ pp = &pRtree->aHash[nodeHash(pNode->iNode)];
+ for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
+ *pp = pNode->pNext;
+ pNode->pNext = 0;
+ }
+}
+
+/*
+** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
+** indicating that node has not yet been assigned a node number. It is
+** assigned a node number when nodeWrite() is called to write the
+** node contents out to the database.
+*/
+static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent, int zero){
+ RtreeNode *pNode;
+ pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
+ if( pNode ){
+ memset(pNode, 0, sizeof(RtreeNode) + (zero?pRtree->iNodeSize:0));
+ pNode->zData = (u8 *)&pNode[1];
+ pNode->nRef = 1;
+ pNode->pParent = pParent;
+ pNode->isDirty = 1;
+ nodeReference(pParent);
+ }
+ return pNode;
+}
+
+/*
+** Obtain a reference to an r-tree node.
+*/
+static int
+nodeAcquire(
+ Rtree *pRtree, /* R-tree structure */
+ i64 iNode, /* Node number to load */
+ RtreeNode *pParent, /* Either the parent node or NULL */
+ RtreeNode **ppNode /* OUT: Acquired node */
+){
+ int rc;
+ RtreeNode *pNode;
+
+ /* Check if the requested node is already in the hash table. If so,
+ ** increase its reference count and return it.
+ */
+ if( (pNode = nodeHashLookup(pRtree, iNode)) ){
+ assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
+ if( pParent ){
+ pNode->pParent = pParent;
+ }
+ pNode->nRef++;
+ *ppNode = pNode;
+ return SQLITE_OK;
+ }
+
+ pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
+ if( !pNode ){
+ *ppNode = 0;
+ return SQLITE_NOMEM;
+ }
+ pNode->pParent = pParent;
+ pNode->zData = (u8 *)&pNode[1];
+ pNode->nRef = 1;
+ pNode->iNode = iNode;
+ pNode->isDirty = 0;
+ pNode->pNext = 0;
+
+ sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
+ rc = sqlite3_step(pRtree->pReadNode);
+ if( rc==SQLITE_ROW ){
+ const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
+ memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
+ nodeReference(pParent);
+ }else{
+ sqlite3_free(pNode);
+ pNode = 0;
+ }
+
+ *ppNode = pNode;
+ rc = sqlite3_reset(pRtree->pReadNode);
+
+ if( rc==SQLITE_OK && iNode==1 ){
+ pRtree->iDepth = readInt16(pNode->zData);
+ }
+
+ assert( (rc==SQLITE_OK && pNode) || (pNode==0 && rc!=SQLITE_OK) );
+ nodeHashInsert(pRtree, pNode);
+
+ return rc;
+}
+
+/*
+** Overwrite cell iCell of node pNode with the contents of pCell.
+*/
+static void nodeOverwriteCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iCell
+){
+ int ii;
+ u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
+ p += writeInt64(p, pCell->iRowid);
+ for(ii=0; ii<(pRtree->nDim*2); ii++){
+ p += writeCoord(p, &pCell->aCoord[ii]);
+ }
+ pNode->isDirty = 1;
+}
+
+/*
+** Remove cell the cell with index iCell from node pNode.
+*/
+static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
+ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
+ u8 *pSrc = &pDst[pRtree->nBytesPerCell];
+ int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
+ memmove(pDst, pSrc, nByte);
+ writeInt16(&pNode->zData[2], NCELL(pNode)-1);
+ pNode->isDirty = 1;
+}
+
+/*
+** Insert the contents of cell pCell into node pNode. If the insert
+** is successful, return SQLITE_OK.
+**
+** If there is not enough free space in pNode, return SQLITE_FULL.
+*/
+static int
+nodeInsertCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell
+){
+ int nCell; /* Current number of cells in pNode */
+ int nMaxCell; /* Maximum number of cells for pNode */
+
+ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
+ nCell = NCELL(pNode);
+
+ assert(nCell<=nMaxCell);
+
+ if( nCell<nMaxCell ){
+ nodeOverwriteCell(pRtree, pNode, pCell, nCell);
+ writeInt16(&pNode->zData[2], nCell+1);
+ pNode->isDirty = 1;
+ }
+
+ return (nCell==nMaxCell);
+}
+
+/*
+** If the node is dirty, write it out to the database.
+*/
+static int
+nodeWrite(Rtree *pRtree, RtreeNode *pNode){
+ int rc = SQLITE_OK;
+ if( pNode->isDirty ){
+ sqlite3_stmt *p = pRtree->pWriteNode;
+ if( pNode->iNode ){
+ sqlite3_bind_int64(p, 1, pNode->iNode);
+ }else{
+ sqlite3_bind_null(p, 1);
+ }
+ sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
+ sqlite3_step(p);
+ pNode->isDirty = 0;
+ rc = sqlite3_reset(p);
+ if( pNode->iNode==0 && rc==SQLITE_OK ){
+ pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
+ nodeHashInsert(pRtree, pNode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Release a reference to a node. If the node is dirty and the reference
+** count drops to zero, the node data is written to the database.
+*/
+static int
+nodeRelease(Rtree *pRtree, RtreeNode *pNode){
+ int rc = SQLITE_OK;
+ if( pNode ){
+ assert( pNode->nRef>0 );
+ pNode->nRef--;
+ if( pNode->nRef==0 ){
+ if( pNode->iNode==1 ){
+ pRtree->iDepth = -1;
+ }
+ if( pNode->pParent ){
+ rc = nodeRelease(pRtree, pNode->pParent);
+ }
+ if( rc==SQLITE_OK ){
+ rc = nodeWrite(pRtree, pNode);
+ }
+ nodeHashDelete(pRtree, pNode);
+ sqlite3_free(pNode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Return the 64-bit integer value associated with cell iCell of
+** node pNode. If pNode is a leaf node, this is a rowid. If it is
+** an internal node, then the 64-bit integer is a child page number.
+*/
+static i64 nodeGetRowid(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ int iCell
+){
+ assert( iCell<NCELL(pNode) );
+ return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
+}
+
+/*
+** Return coordinate iCoord from cell iCell in node pNode.
+*/
+static void nodeGetCoord(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ int iCell,
+ int iCoord,
+ RtreeCoord *pCoord /* Space to write result to */
+){
+ readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
+}
+
+/*
+** Deserialize cell iCell of node pNode. Populate the structure pointed
+** to by pCell with the results.
+*/
+static void nodeGetCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ int iCell,
+ RtreeCell *pCell
+){
+ int ii;
+ pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
+ for(ii=0; ii<pRtree->nDim*2; ii++){
+ nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]);
+ }
+}
+
+
+/* Forward declaration for the function that does the work of
+** the virtual table module xCreate() and xConnect() methods.
+*/
+static int rtreeInit(
+ sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int, int
+);
+
+/*
+** Rtree virtual table module xCreate method.
+*/
+static int rtreeCreate(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1, (int)pAux);
+}
+
+/*
+** Rtree virtual table module xConnect method.
+*/
+static int rtreeConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0, (int)pAux);
+}
+
+/*
+** Increment the r-tree reference count.
+*/
+static void rtreeReference(Rtree *pRtree){
+ pRtree->nBusy++;
+}
+
+/*
+** Decrement the r-tree reference count. When the reference count reaches
+** zero the structure is deleted.
+*/
+static void rtreeRelease(Rtree *pRtree){
+ pRtree->nBusy--;
+ if( pRtree->nBusy==0 ){
+ sqlite3_finalize(pRtree->pReadNode);
+ sqlite3_finalize(pRtree->pWriteNode);
+ sqlite3_finalize(pRtree->pDeleteNode);
+ sqlite3_finalize(pRtree->pReadRowid);
+ sqlite3_finalize(pRtree->pWriteRowid);
+ sqlite3_finalize(pRtree->pDeleteRowid);
+ sqlite3_finalize(pRtree->pReadParent);
+ sqlite3_finalize(pRtree->pWriteParent);
+ sqlite3_finalize(pRtree->pDeleteParent);
+ sqlite3_free(pRtree);
+ }
+}
+
+/*
+** Rtree virtual table module xDisconnect method.
+*/
+static int rtreeDisconnect(sqlite3_vtab *pVtab){
+ rtreeRelease((Rtree *)pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xDestroy method.
+*/
+static int rtreeDestroy(sqlite3_vtab *pVtab){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc;
+ char *zCreate = sqlite3_mprintf(
+ "DROP TABLE '%q'.'%q_node';"
+ "DROP TABLE '%q'.'%q_rowid';"
+ "DROP TABLE '%q'.'%q_parent';",
+ pRtree->zDb, pRtree->zName,
+ pRtree->zDb, pRtree->zName,
+ pRtree->zDb, pRtree->zName
+ );
+ if( !zCreate ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
+ sqlite3_free(zCreate);
+ }
+ if( rc==SQLITE_OK ){
+ rtreeRelease(pRtree);
+ }
+
+ return rc;
+}
+
+/*
+** Rtree virtual table module xOpen method.
+*/
+static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ int rc = SQLITE_NOMEM;
+ RtreeCursor *pCsr;
+
+ pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
+ if( pCsr ){
+ memset(pCsr, 0, sizeof(RtreeCursor));
+ pCsr->base.pVtab = pVTab;
+ rc = SQLITE_OK;
+ }
+ *ppCursor = (sqlite3_vtab_cursor *)pCsr;
+
+ return rc;
+}
+
+/*
+** Rtree virtual table module xClose method.
+*/
+static int rtreeClose(sqlite3_vtab_cursor *cur){
+ Rtree *pRtree = (Rtree *)(cur->pVtab);
+ int rc;
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ sqlite3_free(pCsr->aConstraint);
+ rc = nodeRelease(pRtree, pCsr->pNode);
+ sqlite3_free(pCsr);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xEof method.
+**
+** Return non-zero if the cursor does not currently point to a valid
+** record (i.e if the scan has finished), or zero otherwise.
+*/
+static int rtreeEof(sqlite3_vtab_cursor *cur){
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ return (pCsr->pNode==0);
+}
+
+/*
+** Cursor pCursor currently points to a cell in a non-leaf page.
+** Return true if the sub-tree headed by the cell is filtered
+** (excluded) by the constraints in the pCursor->aConstraint[]
+** array, or false otherwise.
+*/
+static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){
+ RtreeCell cell;
+ int ii;
+ int bRes = 0;
+
+ nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
+ for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
+ RtreeConstraint *p = &pCursor->aConstraint[ii];
+ double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
+ double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);
+
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
+ || p->op==RTREE_GT || p->op==RTREE_EQ
+ );
+
+ switch( p->op ){
+ case RTREE_LE: case RTREE_LT: bRes = p->rValue<cell_min; break;
+ case RTREE_GE: case RTREE_GT: bRes = p->rValue>cell_max; break;
+ case RTREE_EQ:
+ bRes = (p->rValue>cell_max || p->rValue<cell_min);
+ break;
+ }
+ }
+
+ return bRes;
+}
+
+/*
+** Return true if the cell that cursor pCursor currently points to
+** would be filtered (excluded) by the constraints in the
+** pCursor->aConstraint[] array, or false otherwise.
+**
+** This function assumes that the cell is part of a leaf node.
+*/
+static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){
+ RtreeCell cell;
+ int ii;
+
+ nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
+ for(ii=0; ii<pCursor->nConstraint; ii++){
+ RtreeConstraint *p = &pCursor->aConstraint[ii];
+ double coord = DCOORD(cell.aCoord[p->iCoord]);
+ int res;
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
+ || p->op==RTREE_GT || p->op==RTREE_EQ
+ );
+ switch( p->op ){
+ case RTREE_LE: res = (coord<=p->rValue); break;
+ case RTREE_LT: res = (coord<p->rValue); break;
+ case RTREE_GE: res = (coord>=p->rValue); break;
+ case RTREE_GT: res = (coord>p->rValue); break;
+ case RTREE_EQ: res = (coord==p->rValue); break;
+ }
+
+ if( !res ) return 1;
+ }
+
+ return 0;
+}
+
+/*
+** Cursor pCursor currently points at a node that heads a sub-tree of
+** height iHeight (if iHeight==0, then the node is a leaf). Descend
+** to point to the left-most cell of the sub-tree that matches the
+** configured constraints.
+*/
+static int descendToCell(
+ Rtree *pRtree,
+ RtreeCursor *pCursor,
+ int iHeight,
+ int *pEof /* OUT: Set to true if cannot descend */
+){
+ int isEof;
+ int rc;
+ int ii;
+ RtreeNode *pChild;
+ sqlite3_int64 iRowid;
+
+ RtreeNode *pSavedNode = pCursor->pNode;
+ int iSavedCell = pCursor->iCell;
+
+ assert( iHeight>=0 );
+
+ if( iHeight==0 ){
+ isEof = testRtreeEntry(pRtree, pCursor);
+ }else{
+ isEof = testRtreeCell(pRtree, pCursor);
+ }
+ if( isEof || iHeight==0 ){
+ *pEof = isEof;
+ return SQLITE_OK;
+ }
+
+ iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell);
+ rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ nodeRelease(pRtree, pCursor->pNode);
+ pCursor->pNode = pChild;
+ isEof = 1;
+ for(ii=0; isEof && ii<NCELL(pChild); ii++){
+ pCursor->iCell = ii;
+ rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+
+ if( isEof ){
+ assert( pCursor->pNode==pChild );
+ nodeReference(pSavedNode);
+ nodeRelease(pRtree, pChild);
+ pCursor->pNode = pSavedNode;
+ pCursor->iCell = iSavedCell;
+ }
+
+ *pEof = isEof;
+ return SQLITE_OK;
+}
+
+/*
+** One of the cells in node pNode is guaranteed to have a 64-bit
+** integer value equal to iRowid. Return the index of this cell.
+*/
+static int nodeRowidIndex(Rtree *pRtree, RtreeNode *pNode, i64 iRowid){
+ int ii;
+ for(ii=0; nodeGetRowid(pRtree, pNode, ii)!=iRowid; ii++){
+ assert( ii<(NCELL(pNode)-1) );
+ }
+ return ii;
+}
+
+/*
+** Return the index of the cell containing a pointer to node pNode
+** in its parent. If pNode is the root node, return -1.
+*/
+static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode *pParent = pNode->pParent;
+ if( pParent ){
+ return nodeRowidIndex(pRtree, pParent, pNode->iNode);
+ }
+ return -1;
+}
+
+/*
+** Rtree virtual table module xNext method.
+*/
+static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
+ Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab);
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+ int rc = SQLITE_OK;
+
+ if( pCsr->iStrategy==1 ){
+ /* This "scan" is a direct lookup by rowid. There is no next entry. */
+ nodeRelease(pRtree, pCsr->pNode);
+ pCsr->pNode = 0;
+ }
+
+ else if( pCsr->pNode ){
+ /* Move to the next entry that matches the configured constraints. */
+ int iHeight = 0;
+ while( pCsr->pNode ){
+ RtreeNode *pNode = pCsr->pNode;
+ int nCell = NCELL(pNode);
+ for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){
+ int isEof;
+ rc = descendToCell(pRtree, pCsr, iHeight, &isEof);
+ if( rc!=SQLITE_OK || !isEof ){
+ return rc;
+ }
+ }
+ pCsr->pNode = pNode->pParent;
+ pCsr->iCell = nodeParentIndex(pRtree, pNode);
+ nodeReference(pCsr->pNode);
+ nodeRelease(pRtree, pNode);
+ iHeight++;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Rtree virtual table module xRowid method.
+*/
+static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
+ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+
+ assert(pCsr->pNode);
+ *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
+
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xColumn method.
+*/
+static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
+ Rtree *pRtree = (Rtree *)cur->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+
+ if( i==0 ){
+ i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
+ sqlite3_result_int64(ctx, iRowid);
+ }else{
+ RtreeCoord c;
+ nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ sqlite3_result_double(ctx, c.f);
+ }else{
+ assert( pRtree->eCoordType==RTREE_COORD_INT32 );
+ sqlite3_result_int(ctx, c.i);
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Use nodeAcquire() to obtain the leaf node containing the record with
+** rowid iRowid. If successful, set *ppLeaf to point to the node and
+** return SQLITE_OK. If there is no such record in the table, set
+** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
+** to zero and return an SQLite error code.
+*/
+static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){
+ int rc;
+ *ppLeaf = 0;
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
+ if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
+ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
+ rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
+ sqlite3_reset(pRtree->pReadRowid);
+ }else{
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ }
+ return rc;
+}
+
+
+/*
+** Rtree virtual table module xFilter method.
+*/
+static int rtreeFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+
+ RtreeNode *pRoot = 0;
+ int ii;
+ int rc = SQLITE_OK;
+
+ rtreeReference(pRtree);
+
+ sqlite3_free(pCsr->aConstraint);
+ pCsr->aConstraint = 0;
+ pCsr->iStrategy = idxNum;
+
+ if( idxNum==1 ){
+ /* Special case - lookup by rowid. */
+ RtreeNode *pLeaf; /* Leaf on which the required cell resides */
+ i64 iRowid = sqlite3_value_int64(argv[0]);
+ rc = findLeafNode(pRtree, iRowid, &pLeaf);
+ pCsr->pNode = pLeaf;
+ if( pLeaf && rc==SQLITE_OK ){
+ pCsr->iCell = nodeRowidIndex(pRtree, pLeaf, iRowid);
+ }
+ }else{
+ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
+ ** with the configured constraints.
+ */
+ if( argc>0 ){
+ pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
+ pCsr->nConstraint = argc;
+ if( !pCsr->aConstraint ){
+ rc = SQLITE_NOMEM;
+ }else{
+ assert( (idxStr==0 && argc==0) || strlen(idxStr)==argc*2 );
+ for(ii=0; ii<argc; ii++){
+ RtreeConstraint *p = &pCsr->aConstraint[ii];
+ p->op = idxStr[ii*2];
+ p->iCoord = idxStr[ii*2+1]-'a';
+ p->rValue = sqlite3_value_double(argv[ii]);
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pCsr->pNode = 0;
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+ }
+ if( rc==SQLITE_OK ){
+ int isEof = 1;
+ int nCell = NCELL(pRoot);
+ pCsr->pNode = pRoot;
+ for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){
+ assert( pCsr->pNode==pRoot );
+ rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof);
+ if( !isEof ){
+ break;
+ }
+ }
+ if( rc==SQLITE_OK && isEof ){
+ assert( pCsr->pNode==pRoot );
+ nodeRelease(pRtree, pRoot);
+ pCsr->pNode = 0;
+ }
+ assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) );
+ }
+ }
+
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xBestIndex method. There are three
+** table scan strategies to choose from (in order from most to
+** least desirable):
+**
+** idxNum idxStr Strategy
+** ------------------------------------------------
+** 1 Unused Direct lookup by rowid.
+** 2 See below R-tree query.
+** 3 Unused Full table scan.
+** ------------------------------------------------
+**
+** If strategy 1 or 3 is used, then idxStr is not meaningful. If strategy
+** 2 is used, idxStr is formatted to contain 2 bytes for each
+** constraint used. The first two bytes of idxStr correspond to
+** the constraint in sqlite3_index_info.aConstraintUsage[] with
+** (argvIndex==1) etc.
+**
+** The first of each pair of bytes in idxStr identifies the constraint
+** operator as follows:
+**
+** Operator Byte Value
+** ----------------------
+** = 0x41 ('A')
+** <= 0x42 ('B')
+** < 0x43 ('C')
+** >= 0x44 ('D')
+** > 0x45 ('E')
+** ----------------------
+**
+** The second of each pair of bytes identifies the coordinate column
+** to which the constraint applies. The leftmost coordinate column
+** is 'a', the second from the left 'b' etc.
+*/
+static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ int rc = SQLITE_OK;
+ int ii, cCol;
+
+ int iIdx = 0;
+ char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
+ memset(zIdxStr, 0, sizeof(zIdxStr));
+
+ assert( pIdxInfo->idxStr==0 );
+ for(ii=0; ii<pIdxInfo->nConstraint; ii++){
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
+
+ if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
+ /* We have an equality constraint on the rowid. Use strategy 1. */
+ int jj;
+ for(jj=0; jj<ii; jj++){
+ pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
+ pIdxInfo->aConstraintUsage[jj].omit = 0;
+ }
+ pIdxInfo->idxNum = 1;
+ pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[jj].omit = 1;
+ return SQLITE_OK;
+ }
+
+ if( p->usable && p->iColumn>0 ){
+ u8 op = 0;
+ switch( p->op ){
+ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
+ case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
+ case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
+ case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
+ case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
+ }
+ if( op ){
+ /* Make sure this particular constraint has not been used before.
+ ** If it has been used before, ignore it.
+ **
+ ** A <= or < can be used if there is a prior >= or >.
+ ** A >= or > can be used if there is a prior < or <=.
+ ** A <= or < is disqualified if there is a prior <=, <, or ==.
+ ** A >= or > is disqualified if there is a prior >=, >, or ==.
+ ** A == is disqualifed if there is any prior constraint.
+ */
+ int j, opmsk;
+ static const unsigned char compatible[] = { 0, 0, 1, 1, 2, 2 };
+ assert( compatible[RTREE_EQ & 7]==0 );
+ assert( compatible[RTREE_LT & 7]==1 );
+ assert( compatible[RTREE_LE & 7]==1 );
+ assert( compatible[RTREE_GT & 7]==2 );
+ assert( compatible[RTREE_GE & 7]==2 );
+ cCol = p->iColumn - 1 + 'a';
+ opmsk = compatible[op & 7];
+ for(j=0; j<iIdx; j+=2){
+ if( zIdxStr[j+1]==cCol && (compatible[zIdxStr[j] & 7] & opmsk)!=0 ){
+ op = 0;
+ break;
+ }
+ }
+ }
+ if( op ){
+ assert( iIdx<sizeof(zIdxStr)-1 );
+ zIdxStr[iIdx++] = op;
+ zIdxStr[iIdx++] = cCol;
+ pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
+ pIdxInfo->aConstraintUsage[ii].omit = 1;
+ }
+ }
+ }
+
+ pIdxInfo->idxNum = 2;
+ pIdxInfo->needToFreeIdxStr = 1;
+ if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
+ return SQLITE_NOMEM;
+ }
+ return rc;
+}
+
+/*
+** Return the N-dimensional volumn of the cell stored in *p.
+*/
+static float cellArea(Rtree *pRtree, RtreeCell *p){
+ float area = 1.0;
+ int ii;
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ area = area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
+ }
+ return area;
+}
+
+/*
+** Return the margin length of cell p. The margin length is the sum
+** of the objects size in each dimension.
+*/
+static float cellMargin(Rtree *pRtree, RtreeCell *p){
+ float margin = 0.0;
+ int ii;
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
+ }
+ return margin;
+}
+
+/*
+** Store the union of cells p1 and p2 in p1.
+*/
+static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
+ int ii;
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
+ p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
+ }
+ }else{
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
+ p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
+ }
+ }
+}
+
+/*
+** Return the amount cell p would grow by if it were unioned with pCell.
+*/
+static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
+ float area;
+ RtreeCell cell;
+ memcpy(&cell, p, sizeof(RtreeCell));
+ area = cellArea(pRtree, &cell);
+ cellUnion(pRtree, &cell, pCell);
+ return (cellArea(pRtree, &cell)-area);
+}
+
+#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT
+static float cellOverlap(
+ Rtree *pRtree,
+ RtreeCell *p,
+ RtreeCell *aCell,
+ int nCell,
+ int iExclude
+){
+ int ii;
+ float overlap = 0.0;
+ for(ii=0; ii<nCell; ii++){
+ if( ii!=iExclude ){
+ int jj;
+ float o = 1.0;
+ for(jj=0; jj<(pRtree->nDim*2); jj+=2){
+ double x1;
+ double x2;
+
+ x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
+ x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
+
+ if( x2<x1 ){
+ o = 0.0;
+ break;
+ }else{
+ o = o * (x2-x1);
+ }
+ }
+ overlap += o;
+ }
+ }
+ return overlap;
+}
+#endif
+
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+static float cellOverlapEnlargement(
+ Rtree *pRtree,
+ RtreeCell *p,
+ RtreeCell *pInsert,
+ RtreeCell *aCell,
+ int nCell,
+ int iExclude
+){
+ float before;
+ float after;
+ before = cellOverlap(pRtree, p, aCell, nCell, iExclude);
+ cellUnion(pRtree, p, pInsert);
+ after = cellOverlap(pRtree, p, aCell, nCell, iExclude);
+ return after-before;
+}
+#endif
+
+
+/*
+** This function implements the ChooseLeaf algorithm from Gutman[84].
+** ChooseSubTree in r*tree terminology.
+*/
+static int ChooseLeaf(
+ Rtree *pRtree, /* Rtree table */
+ RtreeCell *pCell, /* Cell to insert into rtree */
+ int iHeight, /* Height of sub-tree rooted at pCell */
+ RtreeNode **ppLeaf /* OUT: Selected leaf page */
+){
+ int rc;
+ int ii;
+ RtreeNode *pNode;
+ rc = nodeAcquire(pRtree, 1, 0, &pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
+ int iCell;
+ sqlite3_int64 iBest;
+
+ float fMinGrowth;
+ float fMinArea;
+ float fMinOverlap;
+
+ int nCell = NCELL(pNode);
+ RtreeCell cell;
+ RtreeNode *pChild;
+
+ RtreeCell *aCell = 0;
+
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+ if( ii==(pRtree->iDepth-1) ){
+ int jj;
+ aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell);
+ if( !aCell ){
+ rc = SQLITE_NOMEM;
+ nodeRelease(pRtree, pNode);
+ pNode = 0;
+ continue;
+ }
+ for(jj=0; jj<nCell; jj++){
+ nodeGetCell(pRtree, pNode, jj, &aCell[jj]);
+ }
+ }
+#endif
+
+ /* Select the child node which will be enlarged the least if pCell
+ ** is inserted into it. Resolve ties by choosing the entry with
+ ** the smallest area.
+ */
+ for(iCell=0; iCell<nCell; iCell++){
+ float growth;
+ float area;
+ float overlap = 0.0;
+ nodeGetCell(pRtree, pNode, iCell, &cell);
+ growth = cellGrowth(pRtree, &cell, pCell);
+ area = cellArea(pRtree, &cell);
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+ if( ii==(pRtree->iDepth-1) ){
+ overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);
+ }
+#endif
+ if( (iCell==0)
+ || (overlap<fMinOverlap)
+ || (overlap==fMinOverlap && growth<fMinGrowth)
+ || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea)
+ ){
+ fMinOverlap = overlap;
+ fMinGrowth = growth;
+ fMinArea = area;
+ iBest = cell.iRowid;
+ }
+ }
+
+ sqlite3_free(aCell);
+ rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
+ nodeRelease(pRtree, pNode);
+ pNode = pChild;
+ }
+
+ *ppLeaf = pNode;
+ return rc;
+}
+
+/*
+** A cell with the same content as pCell has just been inserted into
+** the node pNode. This function updates the bounding box cells in
+** all ancestor elements.
+*/
+static void AdjustTree(
+ Rtree *pRtree, /* Rtree table */
+ RtreeNode *pNode, /* Adjust ancestry of this node. */
+ RtreeCell *pCell /* This cell was just inserted */
+){
+ RtreeNode *p = pNode;
+ while( p->pParent ){
+ RtreeCell cell;
+ RtreeNode *pParent = p->pParent;
+ int iCell = nodeParentIndex(pRtree, p);
+
+ nodeGetCell(pRtree, pParent, iCell, &cell);
+ if( cellGrowth(pRtree, &cell, pCell)>0.0 ){
+ cellUnion(pRtree, &cell, pCell);
+ nodeOverwriteCell(pRtree, pParent, &cell, iCell);
+ }
+
+ p = pParent;
+ }
+}
+
+/*
+** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
+*/
+static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
+ sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
+ sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
+ sqlite3_step(pRtree->pWriteRowid);
+ return sqlite3_reset(pRtree->pWriteRowid);
+}
+
+/*
+** Write mapping (iNode->iPar) to the <rtree>_parent table.
+*/
+static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
+ sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
+ sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
+ sqlite3_step(pRtree->pWriteParent);
+ return sqlite3_reset(pRtree->pWriteParent);
+}
+
+static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
+
+#if VARIANT_GUTTMAN_LINEAR_SPLIT
+/*
+** Implementation of the linear variant of the PickNext() function from
+** Guttman[84].
+*/
+static RtreeCell *LinearPickNext(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeCell *pLeftBox,
+ RtreeCell *pRightBox,
+ int *aiUsed
+){
+ int ii;
+ for(ii=0; aiUsed[ii]; ii++);
+ aiUsed[ii] = 1;
+ return &aCell[ii];
+}
+
+/*
+** Implementation of the linear variant of the PickSeeds() function from
+** Guttman[84].
+*/
+static void LinearPickSeeds(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ int *piLeftSeed,
+ int *piRightSeed
+){
+ int i;
+ int iLeftSeed = 0;
+ int iRightSeed = 1;
+ float maxNormalInnerWidth = 0.0;
+
+ /* Pick two "seed" cells from the array of cells. The algorithm used
+ ** here is the LinearPickSeeds algorithm from Gutman[1984]. The
+ ** indices of the two seed cells in the array are stored in local
+ ** variables iLeftSeek and iRightSeed.
+ */
+ for(i=0; i<pRtree->nDim; i++){
+ float x1 = aCell[0].aCoord[i*2];
+ float x2 = aCell[0].aCoord[i*2+1];
+ float x3 = x1;
+ float x4 = x2;
+ int jj;
+
+ int iCellLeft = 0;
+ int iCellRight = 0;
+
+ for(jj=1; jj<nCell; jj++){
+ float left = aCell[jj].aCoord[i*2];
+ float right = aCell[jj].aCoord[i*2+1];
+
+ if( left<x1 ) x1 = left;
+ if( right>x4 ) x4 = right;
+ if( left>x3 ){
+ x3 = left;
+ iCellRight = jj;
+ }
+ if( right<x2 ){
+ x2 = right;
+ iCellLeft = jj;
+ }
+ }
+
+ if( x4!=x1 ){
+ float normalwidth = (x3 - x2) / (x4 - x1);
+ if( normalwidth>maxNormalInnerWidth ){
+ iLeftSeed = iCellLeft;
+ iRightSeed = iCellRight;
+ }
+ }
+ }
+
+ *piLeftSeed = iLeftSeed;
+ *piRightSeed = iRightSeed;
+}
+#endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */
+
+#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
+/*
+** Implementation of the quadratic variant of the PickNext() function from
+** Guttman[84].
+*/
+static RtreeCell *QuadraticPickNext(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeCell *pLeftBox,
+ RtreeCell *pRightBox,
+ int *aiUsed
+){
+ #define FABS(a) ((a)<0.0?-1.0*(a):(a))
+
+ int iSelect = -1;
+ float fDiff;
+ int ii;
+ for(ii=0; ii<nCell; ii++){
+ if( aiUsed[ii]==0 ){
+ float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
+ float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
+ float diff = FABS(right-left);
+ if( iSelect<0 || diff>fDiff ){
+ fDiff = diff;
+ iSelect = ii;
+ }
+ }
+ }
+ aiUsed[iSelect] = 1;
+ return &aCell[iSelect];
+}
+
+/*
+** Implementation of the quadratic variant of the PickSeeds() function from
+** Guttman[84].
+*/
+static void QuadraticPickSeeds(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ int *piLeftSeed,
+ int *piRightSeed
+){
+ int ii;
+ int jj;
+
+ int iLeftSeed = 0;
+ int iRightSeed = 1;
+ float fWaste = 0.0;
+
+ for(ii=0; ii<nCell; ii++){
+ for(jj=ii+1; jj<nCell; jj++){
+ float right = cellArea(pRtree, &aCell[jj]);
+ float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]);
+ float waste = growth - right;
+
+ if( waste>fWaste ){
+ iLeftSeed = ii;
+ iRightSeed = jj;
+ fWaste = waste;
+ }
+ }
+ }
+
+ *piLeftSeed = iLeftSeed;
+ *piRightSeed = iRightSeed;
+}
+#endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */
+
+/*
+** Arguments aIdx, aDistance and aSpare all point to arrays of size
+** nIdx. The aIdx array contains the set of integers from 0 to
+** (nIdx-1) in no particular order. This function sorts the values
+** in aIdx according to the indexed values in aDistance. For
+** example, assuming the inputs:
+**
+** aIdx = { 0, 1, 2, 3 }
+** aDistance = { 5.0, 2.0, 7.0, 6.0 }
+**
+** this function sets the aIdx array to contain:
+**
+** aIdx = { 0, 1, 2, 3 }
+**
+** The aSpare array is used as temporary working space by the
+** sorting algorithm.
+*/
+static void SortByDistance(
+ int *aIdx,
+ int nIdx,
+ float *aDistance,
+ int *aSpare
+){
+ if( nIdx>1 ){
+ int iLeft = 0;
+ int iRight = 0;
+
+ int nLeft = nIdx/2;
+ int nRight = nIdx-nLeft;
+ int *aLeft = aIdx;
+ int *aRight = &aIdx[nLeft];
+
+ SortByDistance(aLeft, nLeft, aDistance, aSpare);
+ SortByDistance(aRight, nRight, aDistance, aSpare);
+
+ memcpy(aSpare, aLeft, sizeof(int)*nLeft);
+ aLeft = aSpare;
+
+ while( iLeft<nLeft || iRight<nRight ){
+ if( iLeft==nLeft ){
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }else if( iRight==nRight ){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ float fLeft = aDistance[aLeft[iLeft]];
+ float fRight = aDistance[aRight[iRight]];
+ if( fLeft<fRight ){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }
+ }
+ }
+
+#if 0
+ /* Check that the sort worked */
+ {
+ int jj;
+ for(jj=1; jj<nIdx; jj++){
+ float left = aDistance[aIdx[jj-1]];
+ float right = aDistance[aIdx[jj]];
+ assert( left<=right );
+ }
+ }
+#endif
+ }
+}
+
+/*
+** Arguments aIdx, aCell and aSpare all point to arrays of size
+** nIdx. The aIdx array contains the set of integers from 0 to
+** (nIdx-1) in no particular order. This function sorts the values
+** in aIdx according to dimension iDim of the cells in aCell. The
+** minimum value of dimension iDim is considered first, the
+** maximum used to break ties.
+**
+** The aSpare array is used as temporary working space by the
+** sorting algorithm.
+*/
+static void SortByDimension(
+ Rtree *pRtree,
+ int *aIdx,
+ int nIdx,
+ int iDim,
+ RtreeCell *aCell,
+ int *aSpare
+){
+ if( nIdx>1 ){
+
+ int iLeft = 0;
+ int iRight = 0;
+
+ int nLeft = nIdx/2;
+ int nRight = nIdx-nLeft;
+ int *aLeft = aIdx;
+ int *aRight = &aIdx[nLeft];
+
+ SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
+ SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
+
+ memcpy(aSpare, aLeft, sizeof(int)*nLeft);
+ aLeft = aSpare;
+ while( iLeft<nLeft || iRight<nRight ){
+ double xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
+ double xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
+ double xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
+ double xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
+ if( (iLeft!=nLeft) && ((iRight==nRight)
+ || (xleft1<xright1)
+ || (xleft1==xright1 && xleft2<xright2)
+ )){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }
+ }
+
+#if 0
+ /* Check that the sort worked */
+ {
+ int jj;
+ for(jj=1; jj<nIdx; jj++){
+ float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
+ float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
+ float xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
+ float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
+ assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
+ }
+ }
+#endif
+ }
+}
+
+#if VARIANT_RSTARTREE_SPLIT
+/*
+** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
+*/
+static int splitNodeStartree(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeNode *pLeft,
+ RtreeNode *pRight,
+ RtreeCell *pBboxLeft,
+ RtreeCell *pBboxRight
+){
+ int **aaSorted;
+ int *aSpare;
+ int ii;
+
+ int iBestDim;
+ int iBestSplit;
+ float fBestMargin;
+
+ int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
+
+ aaSorted = (int **)sqlite3_malloc(nByte);
+ if( !aaSorted ){
+ return SQLITE_NOMEM;
+ }
+
+ aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
+ memset(aaSorted, 0, nByte);
+ for(ii=0; ii<pRtree->nDim; ii++){
+ int jj;
+ aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
+ for(jj=0; jj<nCell; jj++){
+ aaSorted[ii][jj] = jj;
+ }
+ SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
+ }
+
+ for(ii=0; ii<pRtree->nDim; ii++){
+ float margin = 0.0;
+ float fBestOverlap;
+ float fBestArea;
+ int iBestLeft;
+ int nLeft;
+
+ for(
+ nLeft=RTREE_MINCELLS(pRtree);
+ nLeft<=(nCell-RTREE_MINCELLS(pRtree));
+ nLeft++
+ ){
+ RtreeCell left;
+ RtreeCell right;
+ int kk;
+ float overlap;
+ float area;
+
+ memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
+ memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
+ for(kk=1; kk<(nCell-1); kk++){
+ if( kk<nLeft ){
+ cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
+ }else{
+ cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
+ }
+ }
+ margin += cellMargin(pRtree, &left);
+ margin += cellMargin(pRtree, &right);
+ overlap = cellOverlap(pRtree, &left, &right, 1, -1);
+ area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
+ if( (nLeft==RTREE_MINCELLS(pRtree))
+ || (overlap<fBestOverlap)
+ || (overlap==fBestOverlap && area<fBestArea)
+ ){
+ iBestLeft = nLeft;
+ fBestOverlap = overlap;
+ fBestArea = area;
+ }
+ }
+
+ if( ii==0 || margin<fBestMargin ){
+ iBestDim = ii;
+ fBestMargin = margin;
+ iBestSplit = iBestLeft;
+ }
+ }
+
+ memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
+ memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
+ for(ii=0; ii<nCell; ii++){
+ RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
+ RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
+ RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
+ nodeInsertCell(pRtree, pTarget, pCell);
+ cellUnion(pRtree, pBbox, pCell);
+ }
+
+ sqlite3_free(aaSorted);
+ return SQLITE_OK;
+}
+#endif
+
+#if VARIANT_GUTTMAN_SPLIT
+/*
+** Implementation of the regular R-tree SplitNode from Guttman[1984].
+*/
+static int splitNodeGuttman(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeNode *pLeft,
+ RtreeNode *pRight,
+ RtreeCell *pBboxLeft,
+ RtreeCell *pBboxRight
+){
+ int iLeftSeed = 0;
+ int iRightSeed = 1;
+ int *aiUsed;
+ int i;
+
+ aiUsed = sqlite3_malloc(sizeof(int)*nCell);
+ memset(aiUsed, 0, sizeof(int)*nCell);
+
+ PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed);
+
+ memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell));
+ memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell));
+ nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]);
+ nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]);
+ aiUsed[iLeftSeed] = 1;
+ aiUsed[iRightSeed] = 1;
+
+ for(i=nCell-2; i>0; i--){
+ RtreeCell *pNext;
+ pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed);
+ float diff =
+ cellGrowth(pRtree, pBboxLeft, pNext) -
+ cellGrowth(pRtree, pBboxRight, pNext)
+ ;
+ if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i)
+ || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i))
+ ){
+ nodeInsertCell(pRtree, pRight, pNext);
+ cellUnion(pRtree, pBboxRight, pNext);
+ }else{
+ nodeInsertCell(pRtree, pLeft, pNext);
+ cellUnion(pRtree, pBboxLeft, pNext);
+ }
+ }
+
+ sqlite3_free(aiUsed);
+ return SQLITE_OK;
+}
+#endif
+
+static int updateMapping(
+ Rtree *pRtree,
+ i64 iRowid,
+ RtreeNode *pNode,
+ int iHeight
+){
+ int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
+ xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
+ if( iHeight>0 ){
+ RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
+ if( pChild ){
+ nodeRelease(pRtree, pChild->pParent);
+ nodeReference(pNode);
+ pChild->pParent = pNode;
+ }
+ }
+ return xSetMapping(pRtree, iRowid, pNode->iNode);
+}
+
+static int SplitNode(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int i;
+ int newCellIsRight = 0;
+
+ int rc = SQLITE_OK;
+ int nCell = NCELL(pNode);
+ RtreeCell *aCell;
+ int *aiUsed;
+
+ RtreeNode *pLeft = 0;
+ RtreeNode *pRight = 0;
+
+ RtreeCell leftbbox;
+ RtreeCell rightbbox;
+
+ /* Allocate an array and populate it with a copy of pCell and
+ ** all cells from node pLeft. Then zero the original node.
+ */
+ aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
+ if( !aCell ){
+ rc = SQLITE_NOMEM;
+ goto splitnode_out;
+ }
+ aiUsed = (int *)&aCell[nCell+1];
+ memset(aiUsed, 0, sizeof(int)*(nCell+1));
+ for(i=0; i<nCell; i++){
+ nodeGetCell(pRtree, pNode, i, &aCell[i]);
+ }
+ nodeZero(pRtree, pNode);
+ memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
+ nCell++;
+
+ if( pNode->iNode==1 ){
+ pRight = nodeNew(pRtree, pNode, 1);
+ pLeft = nodeNew(pRtree, pNode, 1);
+ pRtree->iDepth++;
+ pNode->isDirty = 1;
+ writeInt16(pNode->zData, pRtree->iDepth);
+ }else{
+ pLeft = pNode;
+ pRight = nodeNew(pRtree, pLeft->pParent, 1);
+ nodeReference(pLeft);
+ }
+
+ if( !pLeft || !pRight ){
+ rc = SQLITE_NOMEM;
+ goto splitnode_out;
+ }
+
+ memset(pLeft->zData, 0, pRtree->iNodeSize);
+ memset(pRight->zData, 0, pRtree->iNodeSize);
+
+ rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+
+ /* Ensure both child nodes have node numbers assigned to them. */
+ if( (0==pRight->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)))
+ || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
+ ){
+ goto splitnode_out;
+ }
+
+ rightbbox.iRowid = pRight->iNode;
+ leftbbox.iRowid = pLeft->iNode;
+
+ if( pNode->iNode==1 ){
+ rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }else{
+ RtreeNode *pParent = pLeft->pParent;
+ int iCell = nodeParentIndex(pRtree, pLeft);
+ nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
+ AdjustTree(pRtree, pParent, &leftbbox);
+ }
+ if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
+ goto splitnode_out;
+ }
+
+ for(i=0; i<NCELL(pRight); i++){
+ i64 iRowid = nodeGetRowid(pRtree, pRight, i);
+ rc = updateMapping(pRtree, iRowid, pRight, iHeight);
+ if( iRowid==pCell->iRowid ){
+ newCellIsRight = 1;
+ }
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }
+ if( pNode->iNode==1 ){
+ for(i=0; i<NCELL(pLeft); i++){
+ i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
+ rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }
+ }else if( newCellIsRight==0 ){
+ rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pRight);
+ pRight = 0;
+ }
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pLeft);
+ pLeft = 0;
+ }
+
+splitnode_out:
+ nodeRelease(pRtree, pRight);
+ nodeRelease(pRtree, pLeft);
+ sqlite3_free(aCell);
+ return rc;
+}
+
+static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
+ int rc = SQLITE_OK;
+ if( pLeaf->iNode!=1 && pLeaf->pParent==0 ){
+ sqlite3_bind_int64(pRtree->pReadParent, 1, pLeaf->iNode);
+ if( sqlite3_step(pRtree->pReadParent)==SQLITE_ROW ){
+ i64 iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
+ rc = nodeAcquire(pRtree, iNode, 0, &pLeaf->pParent);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ sqlite3_reset(pRtree->pReadParent);
+ if( rc==SQLITE_OK ){
+ rc = fixLeafParent(pRtree, pLeaf->pParent);
+ }
+ }
+ return rc;
+}
+
+static int deleteCell(Rtree *, RtreeNode *, int, int);
+
+static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
+ int rc;
+ RtreeNode *pParent;
+ int iCell;
+
+ assert( pNode->nRef==1 );
+
+ /* Remove the entry in the parent cell. */
+ iCell = nodeParentIndex(pRtree, pNode);
+ pParent = pNode->pParent;
+ pNode->pParent = 0;
+ if( SQLITE_OK!=(rc = deleteCell(pRtree, pParent, iCell, iHeight+1))
+ || SQLITE_OK!=(rc = nodeRelease(pRtree, pParent))
+ ){
+ return rc;
+ }
+
+ /* Remove the xxx_node entry. */
+ sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
+ sqlite3_step(pRtree->pDeleteNode);
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
+ return rc;
+ }
+
+ /* Remove the xxx_parent entry. */
+ sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
+ sqlite3_step(pRtree->pDeleteParent);
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
+ return rc;
+ }
+
+ /* Remove the node from the in-memory hash table and link it into
+ ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
+ */
+ nodeHashDelete(pRtree, pNode);
+ pNode->iNode = iHeight;
+ pNode->pNext = pRtree->pDeleted;
+ pNode->nRef++;
+ pRtree->pDeleted = pNode;
+
+ return SQLITE_OK;
+}
+
+static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode *pParent = pNode->pParent;
+ if( pParent ){
+ int ii;
+ int nCell = NCELL(pNode);
+ RtreeCell box; /* Bounding box for pNode */
+ nodeGetCell(pRtree, pNode, 0, &box);
+ for(ii=1; ii<nCell; ii++){
+ RtreeCell cell;
+ nodeGetCell(pRtree, pNode, ii, &cell);
+ cellUnion(pRtree, &box, &cell);
+ }
+ box.iRowid = pNode->iNode;
+ ii = nodeParentIndex(pRtree, pNode);
+ nodeOverwriteCell(pRtree, pParent, &box, ii);
+ fixBoundingBox(pRtree, pParent);
+ }
+}
+
+/*
+** Delete the cell at index iCell of node pNode. After removing the
+** cell, adjust the r-tree data structure if required.
+*/
+static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
+ int rc;
+
+ if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
+ return rc;
+ }
+
+ /* Remove the cell from the node. This call just moves bytes around
+ ** the in-memory node image, so it cannot fail.
+ */
+ nodeDeleteCell(pRtree, pNode, iCell);
+
+ /* If the node is not the tree root and now has less than the minimum
+ ** number of cells, remove it from the tree. Otherwise, update the
+ ** cell in the parent node so that it tightly contains the updated
+ ** node.
+ */
+ if( pNode->iNode!=1 ){
+ RtreeNode *pParent = pNode->pParent;
+ if( (pParent->iNode!=1 || NCELL(pParent)!=1)
+ && (NCELL(pNode)<RTREE_MINCELLS(pRtree))
+ ){
+ rc = removeNode(pRtree, pNode, iHeight);
+ }else{
+ fixBoundingBox(pRtree, pNode);
+ }
+ }
+
+ return rc;
+}
+
+static int Reinsert(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int *aOrder;
+ int *aSpare;
+ RtreeCell *aCell;
+ float *aDistance;
+ int nCell;
+ float aCenterCoord[RTREE_MAX_DIMENSIONS];
+ int iDim;
+ int ii;
+ int rc = SQLITE_OK;
+
+ memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS);
+
+ nCell = NCELL(pNode)+1;
+
+ /* Allocate the buffers used by this operation. The allocation is
+ ** relinquished before this function returns.
+ */
+ aCell = (RtreeCell *)sqlite3_malloc(nCell * (
+ sizeof(RtreeCell) + /* aCell array */
+ sizeof(int) + /* aOrder array */
+ sizeof(int) + /* aSpare array */
+ sizeof(float) /* aDistance array */
+ ));
+ if( !aCell ){
+ return SQLITE_NOMEM;
+ }
+ aOrder = (int *)&aCell[nCell];
+ aSpare = (int *)&aOrder[nCell];
+ aDistance = (float *)&aSpare[nCell];
+
+ for(ii=0; ii<nCell; ii++){
+ if( ii==(nCell-1) ){
+ memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
+ }else{
+ nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
+ }
+ aOrder[ii] = ii;
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
+ aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
+ }
+ }
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0);
+ }
+
+ for(ii=0; ii<nCell; ii++){
+ aDistance[ii] = 0.0;
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ float coord = DCOORD(aCell[ii].aCoord[iDim*2+1]) -
+ DCOORD(aCell[ii].aCoord[iDim*2]);
+ aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
+ }
+ }
+
+ SortByDistance(aOrder, nCell, aDistance, aSpare);
+ nodeZero(pRtree, pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
+ RtreeCell *p = &aCell[aOrder[ii]];
+ nodeInsertCell(pRtree, pNode, p);
+ if( p->iRowid==pCell->iRowid ){
+ if( iHeight==0 ){
+ rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
+ }else{
+ rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ fixBoundingBox(pRtree, pNode);
+ }
+ for(; rc==SQLITE_OK && ii<nCell; ii++){
+ /* Find a node to store this cell in. pNode->iNode currently contains
+ ** the height of the sub-tree headed by the cell.
+ */
+ RtreeNode *pInsert;
+ RtreeCell *p = &aCell[aOrder[ii]];
+ rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
+ rc2 = nodeRelease(pRtree, pInsert);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+ sqlite3_free(aCell);
+ return rc;
+}
+
+/*
+** Insert cell pCell into node pNode. Node pNode is the head of a
+** subtree iHeight high (leaf nodes have iHeight==0).
+*/
+static int rtreeInsertCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int rc = SQLITE_OK;
+ if( iHeight>0 ){
+ RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
+ if( pChild ){
+ nodeRelease(pRtree, pChild->pParent);
+ nodeReference(pNode);
+ pChild->pParent = pNode;
+ }
+ }
+ if( nodeInsertCell(pRtree, pNode, pCell) ){
+#if VARIANT_RSTARTREE_REINSERT
+ if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
+ rc = SplitNode(pRtree, pNode, pCell, iHeight);
+ }else{
+ pRtree->iReinsertHeight = iHeight;
+ rc = Reinsert(pRtree, pNode, pCell, iHeight);
+ }
+#else
+ rc = SplitNode(pRtree, pNode, pCell, iHeight);
+#endif
+ }else{
+ AdjustTree(pRtree, pNode, pCell);
+ if( iHeight==0 ){
+ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }else{
+ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }
+ }
+ return rc;
+}
+
+static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
+ int ii;
+ int rc = SQLITE_OK;
+ int nCell = NCELL(pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
+ RtreeNode *pInsert;
+ RtreeCell cell;
+ nodeGetCell(pRtree, pNode, ii, &cell);
+
+ /* Find a node to store this cell in. pNode->iNode currently contains
+ ** the height of the sub-tree headed by the cell.
+ */
+ rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = rtreeInsertCell(pRtree, pInsert, &cell, pNode->iNode);
+ rc2 = nodeRelease(pRtree, pInsert);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Select a currently unused rowid for a new r-tree record.
+*/
+static int newRowid(Rtree *pRtree, i64 *piRowid){
+ int rc;
+ sqlite3_bind_null(pRtree->pWriteRowid, 1);
+ sqlite3_bind_null(pRtree->pWriteRowid, 2);
+ sqlite3_step(pRtree->pWriteRowid);
+ rc = sqlite3_reset(pRtree->pWriteRowid);
+ *piRowid = sqlite3_last_insert_rowid(pRtree->db);
+ return rc;
+}
+
+#ifndef NDEBUG
+static int hashIsEmpty(Rtree *pRtree){
+ int ii;
+ for(ii=0; ii<HASHSIZE; ii++){
+ assert( !pRtree->aHash[ii] );
+ }
+ return 1;
+}
+#endif
+
+/*
+** The xUpdate method for rtree module virtual tables.
+*/
+int rtreeUpdate(
+ sqlite3_vtab *pVtab,
+ int nData,
+ sqlite3_value **azData,
+ sqlite_int64 *pRowid
+){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_OK;
+
+ rtreeReference(pRtree);
+
+ assert(nData>=1);
+ assert(hashIsEmpty(pRtree));
+
+ /* If azData[0] is not an SQL NULL value, it is the rowid of a
+ ** record to delete from the r-tree table. The following block does
+ ** just that.
+ */
+ if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
+ i64 iDelete; /* The rowid to delete */
+ RtreeNode *pLeaf; /* Leaf node containing record iDelete */
+ int iCell; /* Index of iDelete cell in pLeaf */
+ RtreeNode *pRoot;
+
+ /* Obtain a reference to the root node to initialise Rtree.iDepth */
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+
+ /* Obtain a reference to the leaf node that contains the entry
+ ** about to be deleted.
+ */
+ if( rc==SQLITE_OK ){
+ iDelete = sqlite3_value_int64(azData[0]);
+ rc = findLeafNode(pRtree, iDelete, &pLeaf);
+ }
+
+ /* Delete the cell in question from the leaf node. */
+ if( rc==SQLITE_OK ){
+ int rc2;
+ iCell = nodeRowidIndex(pRtree, pLeaf, iDelete);
+ rc = deleteCell(pRtree, pLeaf, iCell, 0);
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+
+ /* Delete the corresponding entry in the <rtree>_rowid table. */
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
+ sqlite3_step(pRtree->pDeleteRowid);
+ rc = sqlite3_reset(pRtree->pDeleteRowid);
+ }
+
+ /* Check if the root node now has exactly one child. If so, remove
+ ** it, schedule the contents of the child for reinsertion and
+ ** reduce the tree height by one.
+ **
+ ** This is equivalent to copying the contents of the child into
+ ** the root node (the operation that Gutman's paper says to perform
+ ** in this scenario).
+ */
+ if( rc==SQLITE_OK && pRtree->iDepth>0 ){
+ if( rc==SQLITE_OK && NCELL(pRoot)==1 ){
+ RtreeNode *pChild;
+ i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
+ rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
+ if( rc==SQLITE_OK ){
+ rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
+ }
+ if( rc==SQLITE_OK ){
+ pRtree->iDepth--;
+ writeInt16(pRoot->zData, pRtree->iDepth);
+ pRoot->isDirty = 1;
+ }
+ }
+ }
+
+ /* Re-insert the contents of any underfull nodes removed from the tree. */
+ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
+ if( rc==SQLITE_OK ){
+ rc = reinsertNodeContent(pRtree, pLeaf);
+ }
+ pRtree->pDeleted = pLeaf->pNext;
+ sqlite3_free(pLeaf);
+ }
+
+ /* Release the reference to the root node. */
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pRoot);
+ }else{
+ nodeRelease(pRtree, pRoot);
+ }
+ }
+
+ /* If the azData[] array contains more than one element, elements
+ ** (azData[2]..azData[argc-1]) contain a new record to insert into
+ ** the r-tree structure.
+ */
+ if( rc==SQLITE_OK && nData>1 ){
+ /* Insert a new record into the r-tree */
+ RtreeCell cell;
+ int ii;
+ RtreeNode *pLeaf;
+
+ /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
+ assert( nData==(pRtree->nDim*2 + 3) );
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]);
+ cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]);
+ if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
+ rc = SQLITE_CONSTRAINT;
+ goto constraint;
+ }
+ }
+ }else{
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
+ cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
+ if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
+ rc = SQLITE_CONSTRAINT;
+ goto constraint;
+ }
+ }
+ }
+
+ /* Figure out the rowid of the new row. */
+ if( sqlite3_value_type(azData[2])==SQLITE_NULL ){
+ rc = newRowid(pRtree, &cell.iRowid);
+ }else{
+ cell.iRowid = sqlite3_value_int64(azData[2]);
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
+ if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){
+ sqlite3_reset(pRtree->pReadRowid);
+ rc = SQLITE_CONSTRAINT;
+ goto constraint;
+ }
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
+ }
+ if( rc==SQLITE_OK ){
+ int rc2;
+ pRtree->iReinsertHeight = -1;
+ rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+constraint:
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** The xRename method for rtree module virtual tables.
+*/
+static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_NOMEM;
+ char *zSql = sqlite3_mprintf(
+ "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
+ "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
+ "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
+ , pRtree->zDb, pRtree->zName, zNewName
+ , pRtree->zDb, pRtree->zName, zNewName
+ , pRtree->zDb, pRtree->zName, zNewName
+ );
+ if( zSql ){
+ rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
+ sqlite3_free(zSql);
+ }
+ return rc;
+}
+
+static sqlite3_module rtreeModule = {
+ 0, /* iVersion */
+ rtreeCreate, /* xCreate - create a table */
+ rtreeConnect, /* xConnect - connect to an existing table */
+ rtreeBestIndex, /* xBestIndex - Determine search strategy */
+ rtreeDisconnect, /* xDisconnect - Disconnect from a table */
+ rtreeDestroy, /* xDestroy - Drop a table */
+ rtreeOpen, /* xOpen - open a cursor */
+ rtreeClose, /* xClose - close a cursor */
+ rtreeFilter, /* xFilter - configure scan constraints */
+ rtreeNext, /* xNext - advance a cursor */
+ rtreeEof, /* xEof */
+ rtreeColumn, /* xColumn - read data */
+ rtreeRowid, /* xRowid - read data */
+ rtreeUpdate, /* xUpdate - write data */
+ 0, /* xBegin - begin transaction */
+ 0, /* xSync - sync transaction */
+ 0, /* xCommit - commit transaction */
+ 0, /* xRollback - rollback transaction */
+ 0, /* xFindFunction - function overloading */
+ rtreeRename /* xRename - rename the table */
+};
+
+static int rtreeSqlInit(
+ Rtree *pRtree,
+ sqlite3 *db,
+ const char *zDb,
+ const char *zPrefix,
+ int isCreate
+){
+ int rc = SQLITE_OK;
+
+ #define N_STATEMENT 9
+ static const char *azSql[N_STATEMENT] = {
+ /* Read and write the xxx_node table */
+ "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1",
+ "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
+ "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",
+
+ /* Read and write the xxx_rowid table */
+ "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
+ "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
+ "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
+
+ /* Read and write the xxx_parent table */
+ "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
+ "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
+ "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
+ };
+ sqlite3_stmt **appStmt[N_STATEMENT];
+ int i;
+
+ pRtree->db = db;
+
+ if( isCreate ){
+ char *zCreate = sqlite3_mprintf(
+"CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"
+"CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"
+"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);"
+"INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
+ zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
+ );
+ if( !zCreate ){
+ return SQLITE_NOMEM;
+ }
+ rc = sqlite3_exec(db, zCreate, 0, 0, 0);
+ sqlite3_free(zCreate);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+
+ appStmt[0] = &pRtree->pReadNode;
+ appStmt[1] = &pRtree->pWriteNode;
+ appStmt[2] = &pRtree->pDeleteNode;
+ appStmt[3] = &pRtree->pReadRowid;
+ appStmt[4] = &pRtree->pWriteRowid;
+ appStmt[5] = &pRtree->pDeleteRowid;
+ appStmt[6] = &pRtree->pReadParent;
+ appStmt[7] = &pRtree->pWriteParent;
+ appStmt[8] = &pRtree->pDeleteParent;
+
+ for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
+ char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
+ if( zSql ){
+ rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ sqlite3_free(zSql);
+ }
+
+ return rc;
+}
+
+/*
+** This routine queries database handle db for the page-size used by
+** database zDb. If successful, the page-size in bytes is written to
+** *piPageSize and SQLITE_OK returned. Otherwise, and an SQLite error
+** code is returned.
+*/
+static int getPageSize(sqlite3 *db, const char *zDb, int *piPageSize){
+ int rc = SQLITE_NOMEM;
+ char *zSql;
+ sqlite3_stmt *pStmt = 0;
+
+ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", zDb);
+ if( !zSql ){
+ return SQLITE_NOMEM;
+ }
+
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ sqlite3_free(zSql);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ *piPageSize = sqlite3_column_int(pStmt, 0);
+ }
+ return sqlite3_finalize(pStmt);
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the r-tree virtual table.
+**
+** argv[0] -> module name
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> column names...
+*/
+static int rtreeInit(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to head of rtree list */
+ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
+ sqlite3_vtab **ppVtab, /* OUT: New virtual table */
+ char **pzErr, /* OUT: Error message, if any */
+ int isCreate, /* True for xCreate, false for xConnect */
+ int eCoordType /* One of the RTREE_COORD_* constants */
+){
+ int rc = SQLITE_OK;
+ int iPageSize = 0;
+ Rtree *pRtree;
+ int nDb; /* Length of string argv[1] */
+ int nName; /* Length of string argv[2] */
+
+ const char *aErrMsg[] = {
+ 0, /* 0 */
+ "Wrong number of columns for an rtree table", /* 1 */
+ "Too few columns for an rtree table", /* 2 */
+ "Too many columns for an rtree table" /* 3 */
+ };
+
+ int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
+ if( aErrMsg[iErr] ){
+ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
+ return SQLITE_ERROR;
+ }
+
+ rc = getPageSize(db, argv[1], &iPageSize);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Allocate the sqlite3_vtab structure */
+ nDb = strlen(argv[1]);
+ nName = strlen(argv[2]);
+ pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
+ if( !pRtree ){
+ return SQLITE_NOMEM;
+ }
+ memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
+ pRtree->nBusy = 1;
+ pRtree->base.pModule = &rtreeModule;
+ pRtree->zDb = (char *)&pRtree[1];
+ pRtree->zName = &pRtree->zDb[nDb+1];
+ pRtree->nDim = (argc-4)/2;
+ pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
+ pRtree->eCoordType = eCoordType;
+ memcpy(pRtree->zDb, argv[1], nDb);
+ memcpy(pRtree->zName, argv[2], nName);
+
+ /* Figure out the node size to use. By default, use 64 bytes less than
+ ** the database page-size. This ensures that each node is stored on
+ ** a single database page.
+ **
+ ** If the databasd page-size is so large that more than RTREE_MAXCELLS
+ ** entries would fit in a single node, use a smaller node-size.
+ */
+ pRtree->iNodeSize = iPageSize-64;
+ if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
+ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
+ }
+
+ /* Create/Connect to the underlying relational database schema. If
+ ** that is successful, call sqlite3_declare_vtab() to configure
+ ** the r-tree table schema.
+ */
+ if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }else{
+ char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
+ char *zTmp;
+ int ii;
+ for(ii=4; zSql && ii<argc; ii++){
+ zTmp = zSql;
+ zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
+ sqlite3_free(zTmp);
+ }
+ if( zSql ){
+ zTmp = zSql;
+ zSql = sqlite3_mprintf("%s);", zTmp);
+ sqlite3_free(zTmp);
+ }
+ if( !zSql || sqlite3_declare_vtab(db, zSql) ){
+ rc = SQLITE_NOMEM;
+ }
+ sqlite3_free(zSql);
+ }
+
+ if( rc==SQLITE_OK ){
+ *ppVtab = (sqlite3_vtab *)pRtree;
+ }else{
+ rtreeRelease(pRtree);
+ }
+ return rc;
+}
+
+
+/*
+** Implementation of a scalar function that decodes r-tree nodes to
+** human readable strings. This can be used for debugging and analysis.
+**
+** The scalar function takes two arguments, a blob of data containing
+** an r-tree node, and the number of dimensions the r-tree indexes.
+** For a two-dimensional r-tree structure called "rt", to deserialize
+** all nodes, a statement like:
+**
+** SELECT rtreenode(2, data) FROM rt_node;
+**
+** The human readable string takes the form of a Tcl list with one
+** entry for each cell in the r-tree node. Each entry is itself a
+** list, containing the 8-byte rowid/pageno followed by the
+** <num-dimension>*2 coordinates.
+*/
+static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
+ char *zText = 0;
+ RtreeNode node;
+ Rtree tree;
+ int ii;
+
+ memset(&node, 0, sizeof(RtreeNode));
+ memset(&tree, 0, sizeof(Rtree));
+ tree.nDim = sqlite3_value_int(apArg[0]);
+ tree.nBytesPerCell = 8 + 8 * tree.nDim;
+ node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
+
+ for(ii=0; ii<NCELL(&node); ii++){
+ char zCell[512];
+ int nCell = 0;
+ RtreeCell cell;
+ int jj;
+
+ nodeGetCell(&tree, &node, ii, &cell);
+ sqlite3_snprintf(512-nCell,&zCell[nCell],"%d", cell.iRowid);
+ nCell = strlen(zCell);
+ for(jj=0; jj<tree.nDim*2; jj++){
+ sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f);
+ nCell = strlen(zCell);
+ }
+
+ if( zText ){
+ char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
+ sqlite3_free(zText);
+ zText = zTextNew;
+ }else{
+ zText = sqlite3_mprintf("{%s}", zCell);
+ }
+ }
+
+ sqlite3_result_text(ctx, zText, -1, sqlite3_free);
+}
+
+static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
+ if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
+ || sqlite3_value_bytes(apArg[0])<2
+ ){
+ sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
+ }else{
+ u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
+ sqlite3_result_int(ctx, readInt16(zBlob));
+ }
+}
+
+/*
+** Register the r-tree module with database handle db. This creates the
+** virtual table module "rtree" and the debugging/analysis scalar
+** function "rtreenode".
+*/
+SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db){
+ int rc = SQLITE_OK;
+
+ if( rc==SQLITE_OK ){
+ int utf8 = SQLITE_UTF8;
+ rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ int utf8 = SQLITE_UTF8;
+ rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ void *c = (void *)RTREE_COORD_REAL32;
+ rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
+ }
+ if( rc==SQLITE_OK ){
+ void *c = (void *)RTREE_COORD_INT32;
+ rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
+ }
+
+ return rc;
+}
+
+#if !SQLITE_CORE
+SQLITE_API int sqlite3_extension_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3RtreeInit(db);
+}
+#endif
+
+#endif
+
+/************** End of rtree.c ***********************************************/
+/************** Begin file icu.c *********************************************/
+/*
+** 2007 May 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $
+**
+** This file implements an integration between the ICU library
+** ("International Components for Unicode", an open-source library
+** for handling unicode data) and SQLite. The integration uses
+** ICU to provide the following to SQLite:
+**
+** * An implementation of the SQL regexp() function (and hence REGEXP
+** operator) using the ICU uregex_XX() APIs.
+**
+** * Implementations of the SQL scalar upper() and lower() functions
+** for case mapping.
+**
+** * Integration of ICU and SQLite collation seqences.
+**
+** * An implementation of the LIKE operator that uses ICU to
+** provide case-independent matching.
+*/
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU)
+
+/* Include ICU headers */
+#include <unicode/utypes.h>
+#include <unicode/uregex.h>
+#include <unicode/ustring.h>
+#include <unicode/ucol.h>
+
+
+#ifndef SQLITE_CORE
+ #include "sqlite3ext.h"
+ SQLITE_EXTENSION_INIT1
+#else
+ #include "sqlite3.h"
+#endif
+
+/*
+** Maximum length (in bytes) of the pattern in a LIKE or GLOB
+** operator.
+*/
+#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
+# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
+#endif
+
+/*
+** Version of sqlite3_free() that is always a function, never a macro.
+*/
+static void xFree(void *p){
+ sqlite3_free(p);
+}
+
+/*
+** Compare two UTF-8 strings for equality where the first string is
+** a "LIKE" expression. Return true (1) if they are the same and
+** false (0) if they are different.
+*/
+static int icuLikeCompare(
+ const uint8_t *zPattern, /* LIKE pattern */
+ const uint8_t *zString, /* The UTF-8 string to compare against */
+ const UChar32 uEsc /* The escape character */
+){
+ static const int MATCH_ONE = (UChar32)'_';
+ static const int MATCH_ALL = (UChar32)'%';
+
+ int iPattern = 0; /* Current byte index in zPattern */
+ int iString = 0; /* Current byte index in zString */
+
+ int prevEscape = 0; /* True if the previous character was uEsc */
+
+ while( zPattern[iPattern]!=0 ){
+
+ /* Read (and consume) the next character from the input pattern. */
+ UChar32 uPattern;
+ U8_NEXT_UNSAFE(zPattern, iPattern, uPattern);
+ assert(uPattern!=0);
+
+ /* There are now 4 possibilities:
+ **
+ ** 1. uPattern is an unescaped match-all character "%",
+ ** 2. uPattern is an unescaped match-one character "_",
+ ** 3. uPattern is an unescaped escape character, or
+ ** 4. uPattern is to be handled as an ordinary character
+ */
+ if( !prevEscape && uPattern==MATCH_ALL ){
+ /* Case 1. */
+ uint8_t c;
+
+ /* Skip any MATCH_ALL or MATCH_ONE characters that follow a
+ ** MATCH_ALL. For each MATCH_ONE, skip one character in the
+ ** test string.
+ */
+ while( (c=zPattern[iPattern]) == MATCH_ALL || c == MATCH_ONE ){
+ if( c==MATCH_ONE ){
+ if( zString[iString]==0 ) return 0;
+ U8_FWD_1_UNSAFE(zString, iString);
+ }
+ iPattern++;
+ }
+
+ if( zPattern[iPattern]==0 ) return 1;
+
+ while( zString[iString] ){
+ if( icuLikeCompare(&zPattern[iPattern], &zString[iString], uEsc) ){
+ return 1;
+ }
+ U8_FWD_1_UNSAFE(zString, iString);
+ }
+ return 0;
+
+ }else if( !prevEscape && uPattern==MATCH_ONE ){
+ /* Case 2. */
+ if( zString[iString]==0 ) return 0;
+ U8_FWD_1_UNSAFE(zString, iString);
+
+ }else if( !prevEscape && uPattern==uEsc){
+ /* Case 3. */
+ prevEscape = 1;
+
+ }else{
+ /* Case 4. */
+ UChar32 uString;
+ U8_NEXT_UNSAFE(zString, iString, uString);
+ uString = u_foldCase(uString, U_FOLD_CASE_DEFAULT);
+ uPattern = u_foldCase(uPattern, U_FOLD_CASE_DEFAULT);
+ if( uString!=uPattern ){
+ return 0;
+ }
+ prevEscape = 0;
+ }
+ }
+
+ return zString[iString]==0;
+}
+
+/*
+** Implementation of the like() SQL function. This function implements
+** the build-in LIKE operator. The first argument to the function is the
+** pattern and the second argument is the string. So, the SQL statements:
+**
+** A LIKE B
+**
+** is implemented as like(B, A). If there is an escape character E,
+**
+** A LIKE B ESCAPE E
+**
+** is mapped to like(B, A, E).
+*/
+static void icuLikeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zA = sqlite3_value_text(argv[0]);
+ const unsigned char *zB = sqlite3_value_text(argv[1]);
+ UChar32 uEsc = 0;
+
+ /* Limit the length of the LIKE or GLOB pattern to avoid problems
+ ** of deep recursion and N*N behavior in patternCompare().
+ */
+ if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
+ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
+ return;
+ }
+
+
+ if( argc==3 ){
+ /* The escape character string must consist of a single UTF-8 character.
+ ** Otherwise, return an error.
+ */
+ int nE= sqlite3_value_bytes(argv[2]);
+ const unsigned char *zE = sqlite3_value_text(argv[2]);
+ int i = 0;
+ if( zE==0 ) return;
+ U8_NEXT(zE, i, nE, uEsc);
+ if( i!=nE){
+ sqlite3_result_error(context,
+ "ESCAPE expression must be a single character", -1);
+ return;
+ }
+ }
+
+ if( zA && zB ){
+ sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc));
+ }
+}
+
+/*
+** This function is called when an ICU function called from within
+** the implementation of an SQL scalar function returns an error.
+**
+** The scalar function context passed as the first argument is
+** loaded with an error message based on the following two args.
+*/
+static void icuFunctionError(
+ sqlite3_context *pCtx, /* SQLite scalar function context */
+ const char *zName, /* Name of ICU function that failed */
+ UErrorCode e /* Error code returned by ICU function */
+){
+ char zBuf[128];
+ sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e));
+ zBuf[127] = '\0';
+ sqlite3_result_error(pCtx, zBuf, -1);
+}
+
+/*
+** Function to delete compiled regexp objects. Registered as
+** a destructor function with sqlite3_set_auxdata().
+*/
+static void icuRegexpDelete(void *p){
+ URegularExpression *pExpr = (URegularExpression *)p;
+ uregex_close(pExpr);
+}
+
+/*
+** Implementation of SQLite REGEXP operator. This scalar function takes
+** two arguments. The first is a regular expression pattern to compile
+** the second is a string to match against that pattern. If either
+** argument is an SQL NULL, then NULL Is returned. Otherwise, the result
+** is 1 if the string matches the pattern, or 0 otherwise.
+**
+** SQLite maps the regexp() function to the regexp() operator such
+** that the following two are equivalent:
+**
+** zString REGEXP zPattern
+** regexp(zPattern, zString)
+**
+** Uses the following ICU regexp APIs:
+**
+** uregex_open()
+** uregex_matches()
+** uregex_close()
+*/
+static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){
+ UErrorCode status = U_ZERO_ERROR;
+ URegularExpression *pExpr;
+ UBool res;
+ const UChar *zString = sqlite3_value_text16(apArg[1]);
+
+ /* If the left hand side of the regexp operator is NULL,
+ ** then the result is also NULL.
+ */
+ if( !zString ){
+ return;
+ }
+
+ pExpr = sqlite3_get_auxdata(p, 0);
+ if( !pExpr ){
+ const UChar *zPattern = sqlite3_value_text16(apArg[0]);
+ if( !zPattern ){
+ return;
+ }
+ pExpr = uregex_open(zPattern, -1, 0, 0, &status);
+
+ if( U_SUCCESS(status) ){
+ sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete);
+ }else{
+ assert(!pExpr);
+ icuFunctionError(p, "uregex_open", status);
+ return;
+ }
+ }
+
+ /* Configure the text that the regular expression operates on. */
+ uregex_setText(pExpr, zString, -1, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "uregex_setText", status);
+ return;
+ }
+
+ /* Attempt the match */
+ res = uregex_matches(pExpr, 0, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "uregex_matches", status);
+ return;
+ }
+
+ /* Set the text that the regular expression operates on to a NULL
+ ** pointer. This is not really necessary, but it is tidier than
+ ** leaving the regular expression object configured with an invalid
+ ** pointer after this function returns.
+ */
+ uregex_setText(pExpr, 0, 0, &status);
+
+ /* Return 1 or 0. */
+ sqlite3_result_int(p, res ? 1 : 0);
+}
+
+/*
+** Implementations of scalar functions for case mapping - upper() and
+** lower(). Function upper() converts its input to upper-case (ABC).
+** Function lower() converts to lower-case (abc).
+**
+** ICU provides two types of case mapping, "general" case mapping and
+** "language specific". Refer to ICU documentation for the differences
+** between the two.
+**
+** To utilise "general" case mapping, the upper() or lower() scalar
+** functions are invoked with one argument:
+**
+** upper('ABC') -> 'abc'
+** lower('abc') -> 'ABC'
+**
+** To access ICU "language specific" case mapping, upper() or lower()
+** should be invoked with two arguments. The second argument is the name
+** of the locale to use. Passing an empty string ("") or SQL NULL value
+** as the second argument is the same as invoking the 1 argument version
+** of upper() or lower().
+**
+** lower('I', 'en_us') -> 'i'
+** lower('I', 'tr_tr') -> 'ı' (small dotless i)
+**
+** http://www.icu-project.org/userguide/posix.html#case_mappings
+*/
+static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){
+ const UChar *zInput;
+ UChar *zOutput;
+ int nInput;
+ int nOutput;
+
+ UErrorCode status = U_ZERO_ERROR;
+ const char *zLocale = 0;
+
+ assert(nArg==1 || nArg==2);
+ if( nArg==2 ){
+ zLocale = (const char *)sqlite3_value_text(apArg[1]);
+ }
+
+ zInput = sqlite3_value_text16(apArg[0]);
+ if( !zInput ){
+ return;
+ }
+ nInput = sqlite3_value_bytes16(apArg[0]);
+
+ nOutput = nInput * 2 + 2;
+ zOutput = sqlite3_malloc(nOutput);
+ if( !zOutput ){
+ return;
+ }
+
+ if( sqlite3_user_data(p) ){
+ u_strToUpper(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status);
+ }else{
+ u_strToLower(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status);
+ }
+
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "u_strToLower()/u_strToUpper", status);
+ return;
+ }
+
+ sqlite3_result_text16(p, zOutput, -1, xFree);
+}
+
+/*
+** Collation sequence destructor function. The pCtx argument points to
+** a UCollator structure previously allocated using ucol_open().
+*/
+static void icuCollationDel(void *pCtx){
+ UCollator *p = (UCollator *)pCtx;
+ ucol_close(p);
+}
+
+/*
+** Collation sequence comparison function. The pCtx argument points to
+** a UCollator structure previously allocated using ucol_open().
+*/
+static int icuCollationColl(
+ void *pCtx,
+ int nLeft,
+ const void *zLeft,
+ int nRight,
+ const void *zRight
+){
+ UCollationResult res;
+ UCollator *p = (UCollator *)pCtx;
+ res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2);
+ switch( res ){
+ case UCOL_LESS: return -1;
+ case UCOL_GREATER: return +1;
+ case UCOL_EQUAL: return 0;
+ }
+ assert(!"Unexpected return value from ucol_strcoll()");
+ return 0;
+}
+
+/*
+** Implementation of the scalar function icu_load_collation().
+**
+** This scalar function is used to add ICU collation based collation
+** types to an SQLite database connection. It is intended to be called
+** as follows:
+**
+** SELECT icu_load_collation(<locale>, <collation-name>);
+**
+** Where <locale> is a string containing an ICU locale identifier (i.e.
+** "en_AU", "tr_TR" etc.) and <collation-name> is the name of the
+** collation sequence to create.
+*/
+static void icuLoadCollation(
+ sqlite3_context *p,
+ int nArg,
+ sqlite3_value **apArg
+){
+ sqlite3 *db = (sqlite3 *)sqlite3_user_data(p);
+ UErrorCode status = U_ZERO_ERROR;
+ const char *zLocale; /* Locale identifier - (eg. "jp_JP") */
+ const char *zName; /* SQL Collation sequence name (eg. "japanese") */
+ UCollator *pUCollator; /* ICU library collation object */
+ int rc; /* Return code from sqlite3_create_collation_x() */
+
+ assert(nArg==2);
+ zLocale = (const char *)sqlite3_value_text(apArg[0]);
+ zName = (const char *)sqlite3_value_text(apArg[1]);
+
+ if( !zLocale || !zName ){
+ return;
+ }
+
+ pUCollator = ucol_open(zLocale, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "ucol_open", status);
+ return;
+ }
+ assert(p);
+
+ rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator,
+ icuCollationColl, icuCollationDel
+ );
+ if( rc!=SQLITE_OK ){
+ ucol_close(pUCollator);
+ sqlite3_result_error(p, "Error registering collation function", -1);
+ }
+}
+
+/*
+** Register the ICU extension functions with database db.
+*/
+SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db){
+ struct IcuScalar {
+ const char *zName; /* Function name */
+ int nArg; /* Number of arguments */
+ int enc; /* Optimal text encoding */
+ void *pContext; /* sqlite3_user_data() context */
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
+ } scalars[] = {
+ {"regexp",-1, SQLITE_ANY, 0, icuRegexpFunc},
+
+ {"lower", 1, SQLITE_UTF16, 0, icuCaseFunc16},
+ {"lower", 2, SQLITE_UTF16, 0, icuCaseFunc16},
+ {"upper", 1, SQLITE_UTF16, (void*)1, icuCaseFunc16},
+ {"upper", 2, SQLITE_UTF16, (void*)1, icuCaseFunc16},
+
+ {"lower", 1, SQLITE_UTF8, 0, icuCaseFunc16},
+ {"lower", 2, SQLITE_UTF8, 0, icuCaseFunc16},
+ {"upper", 1, SQLITE_UTF8, (void*)1, icuCaseFunc16},
+ {"upper", 2, SQLITE_UTF8, (void*)1, icuCaseFunc16},
+
+ {"like", 2, SQLITE_UTF8, 0, icuLikeFunc},
+ {"like", 3, SQLITE_UTF8, 0, icuLikeFunc},
+
+ {"icu_load_collation", 2, SQLITE_UTF8, (void*)db, icuLoadCollation},
+ };
+
+ int rc = SQLITE_OK;
+ int i;
+
+ for(i=0; rc==SQLITE_OK && i<(sizeof(scalars)/sizeof(struct IcuScalar)); i++){
+ struct IcuScalar *p = &scalars[i];
+ rc = sqlite3_create_function(
+ db, p->zName, p->nArg, p->enc, p->pContext, p->xFunc, 0, 0
+ );
+ }
+
+ return rc;
+}
+
+#if !SQLITE_CORE
+SQLITE_API int sqlite3_extension_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3IcuInit(db);
+}
+#endif
+
+#endif
+
+/************** End of icu.c *************************************************/
**
** Some of the definitions that are in this file are marked as
** "experimental". Experimental interfaces are normally new
-** features recently added to SQLite. We do not anticipate changes
+** features recently added to SQLite. We do not anticipate changes
** to experimental interfaces but reserve to make minor changes if
** experience from use "in the wild" suggest such changes are prudent.
**
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.
**
-** @(#) $Id: sqlite.h.in,v 1.312 2008/05/12 12:39:56 drh Exp $
+** @(#) $Id: sqlite.h.in,v 1.387 2008/08/05 17:53:23 drh Exp $
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
#endif
/*
-** Make sure these symbols where not defined by some previous header
-** file.
+** Ensure these symbols were not defined by some previous header file.
*/
#ifdef SQLITE_VERSION
# undef SQLITE_VERSION
#endif
/*
-** CAPI3REF: Compile-Time Library Version Numbers {F10010}
+** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100>
**
** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
** the sqlite3.h file specify the version of SQLite with which
** The "version" of SQLite is a string of the form "X.Y.Z".
** The phrase "alpha" or "beta" might be appended after the Z.
** The X value is major version number always 3 in SQLite3.
-** The X value only changes when backwards compatibility is
-** broken and we intend to never break
-** backwards compatibility. The Y value is the minor version
-** number and only changes when
+** The X value only changes when backwards compatibility is
+** broken and we intend to never break backwards compatibility.
+** The Y value is the minor version number and only changes when
** there are major feature enhancements that are forwards compatible
-** but not backwards compatible. The Z value is release number
-** and is incremented with
-** each release but resets back to 0 when Y is incremented.
+** but not backwards compatible.
+** The Z value is the release number and is incremented with
+** each release but resets back to 0 whenever Y is incremented.
**
** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
**
** INVARIANTS:
**
-** {F10011} The SQLITE_VERSION #define in the sqlite3.h header file
-** evaluates to a string literal that is the SQLite version
+** {H10011} The SQLITE_VERSION #define in the sqlite3.h header file shall
+** evaluate to a string literal that is the SQLite version
** with which the header file is associated.
**
-** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer
-** with the value (X*1000000 + Y*1000 + Z) where X, Y, and
-** Z are the major version, minor version, and release number.
+** {H10014} The SQLITE_VERSION_NUMBER #define shall resolve to an integer
+** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z
+** are the major version, minor version, and release number.
*/
-#define SQLITE_VERSION "3.5.9"
-#define SQLITE_VERSION_NUMBER 3005009
+#define SQLITE_VERSION "3.6.1"
+#define SQLITE_VERSION_NUMBER 3006001
/*
-** CAPI3REF: Run-Time Library Version Numbers {F10020}
+** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100>
** KEYWORDS: sqlite3_version
**
** These features provide the same information as the [SQLITE_VERSION]
** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
** with the library instead of the header file. Cautious programmers might
-** include a check in their application to verify that
-** sqlite3_libversion_number() always returns the value
+** include a check in their application to verify that
+** sqlite3_libversion_number() always returns the value
** [SQLITE_VERSION_NUMBER].
**
** The sqlite3_libversion() function returns the same information as is
**
** INVARIANTS:
**
-** {F10021} The [sqlite3_libversion_number()] interface returns an integer
-** equal to [SQLITE_VERSION_NUMBER].
+** {H10021} The [sqlite3_libversion_number()] interface shall return
+** an integer equal to [SQLITE_VERSION_NUMBER].
**
-** {F10022} The [sqlite3_version] string constant contains the text of the
-** [SQLITE_VERSION] string.
+** {H10022} The [sqlite3_version] string constant shall contain
+** the text of the [SQLITE_VERSION] string.
**
-** {F10023} The [sqlite3_libversion()] function returns
+** {H10023} The [sqlite3_libversion()] function shall return
** a pointer to the [sqlite3_version] string constant.
*/
SQLITE_EXTERN const char sqlite3_version[];
int sqlite3_libversion_number(void);
/*
-** CAPI3REF: Test To See If The Library Is Threadsafe {F10100}
+** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} <S60100>
**
** SQLite can be compiled with or without mutexes. When
-** the SQLITE_THREADSAFE C preprocessor macro is true, mutexes
+** the [SQLITE_THREADSAFE] C preprocessor macro is true, mutexes
** are enabled and SQLite is threadsafe. When that macro is false,
** the mutexes are omitted. Without the mutexes, it is not safe
-** to use SQLite from more than one thread.
+** to use SQLite concurrently from more than one thread.
**
-** There is a measurable performance penalty for enabling mutexes.
+** Enabling mutexes incurs a measurable performance penalty.
** So if speed is of utmost importance, it makes sense to disable
** the mutexes. But for maximum safety, mutexes should be enabled.
** The default behavior is for mutexes to be enabled.
**
** This interface can be used by a program to make sure that the
** version of SQLite that it is linking against was compiled with
-** the desired setting of the SQLITE_THREADSAFE macro.
+** the desired setting of the [SQLITE_THREADSAFE] macro.
+**
+** This interface only reports on the compile-time mutex setting
+** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
+** SQLITE_THREADSAFE=1 then mutexes are enabled by default but
+** can be fully or partially disabled using a call to [sqlite3_config()]
+** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
+** or [SQLITE_CONFIG_MUTEX]. The return value of this function shows
+** only the default compile-time setting, not any run-time changes
+** to that setting.
**
** INVARIANTS:
**
-** {F10101} The [sqlite3_threadsafe()] function returns nonzero if
-** SQLite was compiled with its mutexes enabled or zero
-** if SQLite was compiled with mutexes disabled.
+** {H10101} The [sqlite3_threadsafe()] function shall return nonzero if
+** SQLite was compiled with the its mutexes enabled by default
+** or zero if SQLite was compiled such that mutexes are
+** permanently disabled.
+**
+** {H10102} The value returned by the [sqlite3_threadsafe()] function
+** shall not change when mutex setting are modified at
+** runtime using the [sqlite3_config()] interface and
+** especially the [SQLITE_CONFIG_SINGLETHREAD],
+** [SQLITE_CONFIG_MULTITHREAD], [SQLITE_CONFIG_SERIALIZED],
+** and [SQLITE_CONFIG_MUTEX] verbs.
*/
int sqlite3_threadsafe(void);
/*
-** CAPI3REF: Database Connection Handle {F12000}
+** CAPI3REF: Database Connection Handle {H12000} <S40200>
** KEYWORDS: {database connection} {database connections}
**
-** Each open SQLite database is represented by pointer to an instance of the
-** opaque structure named "sqlite3". It is useful to think of an sqlite3
+** Each open SQLite database is represented by a pointer to an instance of
+** the opaque structure named "sqlite3". It is useful to think of an sqlite3
** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
-** [sqlite3_open_v2()] interfaces are its constructors
-** and [sqlite3_close()] is its destructor. There are many other interfaces
-** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and
-** [sqlite3_busy_timeout()] to name but three) that are methods on this
-** object.
+** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
+** is its destructor. There are many other interfaces (such as
+** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
+** [sqlite3_busy_timeout()] to name but three) that are methods on an
+** sqlite3 object.
*/
typedef struct sqlite3 sqlite3;
-
/*
-** CAPI3REF: 64-Bit Integer Types {F10200}
+** CAPI3REF: 64-Bit Integer Types {H10200} <S10110>
** KEYWORDS: sqlite_int64 sqlite_uint64
**
** Because there is no cross-platform way to specify 64-bit integer types
** SQLite includes typedefs for 64-bit signed and unsigned integers.
**
-** The sqlite3_int64 and sqlite3_uint64 are the preferred type
-** definitions. The sqlite_int64 and sqlite_uint64 types are
-** supported for backwards compatibility only.
+** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
+** The sqlite_int64 and sqlite_uint64 types are supported for backwards
+** compatibility only.
**
** INVARIANTS:
**
-** {F10201} The [sqlite_int64] and [sqlite3_int64] types specify a
-** 64-bit signed integer.
+** {H10201} The [sqlite_int64] and [sqlite3_int64] type shall specify
+** a 64-bit signed integer.
**
-** {F10202} The [sqlite_uint64] and [sqlite3_uint64] types specify
+** {H10202} The [sqlite_uint64] and [sqlite3_uint64] type shall specify
** a 64-bit unsigned integer.
*/
#ifdef SQLITE_INT64_TYPE
/*
** If compiling for a processor that lacks floating point support,
-** substitute integer for floating-point
+** substitute integer for floating-point.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite3_int64
#endif
/*
-** CAPI3REF: Closing A Database Connection {F12010}
+** CAPI3REF: Closing A Database Connection {H12010} <S30100><S40200>
**
-** This routine is the destructor for the [sqlite3] object.
+** This routine is the destructor for the [sqlite3] object.
**
-** Applications should [sqlite3_finalize | finalize] all
-** [prepared statements] and
-** [sqlite3_blob_close | close] all [sqlite3_blob | BLOBs]
-** associated with the [sqlite3] object prior
-** to attempting to close the [sqlite3] object.
+** Applications should [sqlite3_finalize | finalize] all [prepared statements]
+** and [sqlite3_blob_close | close] all [BLOB handles] associated with
+** the [sqlite3] object prior to attempting to close the object.
+** The [sqlite3_next_stmt()] interface can be used to locate all
+** [prepared statements] associated with a [database connection] if desired.
+** Typical code might look like this:
+**
+** <blockquote><pre>
+** sqlite3_stmt *pStmt;
+** while( (pStmt = sqlite3_next_stmt(db, 0))!=0 ){
+** sqlite3_finalize(pStmt);
+** }
+** </pre></blockquote>
**
-** <todo>What happens to pending transactions? Are they
-** rolled back, or abandoned?</todo>
+** If [sqlite3_close()] is invoked while a transaction is open,
+** the transaction is automatically rolled back.
**
** INVARIANTS:
**
-** {F12011} The [sqlite3_close()] interface destroys an [sqlite3] object
-** allocated by a prior call to [sqlite3_open()],
-** [sqlite3_open16()], or [sqlite3_open_v2()].
+** {H12011} A successful call to [sqlite3_close(C)] shall destroy the
+** [database connection] object C.
+**
+** {H12012} A successful call to [sqlite3_close(C)] shall return SQLITE_OK.
**
-** {F12012} The [sqlite3_close()] function releases all memory used by the
-** connection and closes all open files.
+** {H12013} A successful call to [sqlite3_close(C)] shall release all
+** memory and system resources associated with [database connection]
+** C.
**
-** {F12013} If the database connection contains
-** [prepared statements] that have not been
-** finalized by [sqlite3_finalize()], then [sqlite3_close()]
-** returns [SQLITE_BUSY] and leaves the connection open.
+** {H12014} A call to [sqlite3_close(C)] on a [database connection] C that
+** has one or more open [prepared statements] shall fail with
+** an [SQLITE_BUSY] error code.
**
-** {F12014} Giving sqlite3_close() a NULL pointer is a harmless no-op.
+** {H12015} A call to [sqlite3_close(C)] where C is a NULL pointer shall
+** return SQLITE_OK.
**
-** LIMITATIONS:
+** {H12019} When [sqlite3_close(C)] is invoked on a [database connection] C
+** that has a pending transaction, the transaction shall be
+** rolled back.
**
-** {U12015} The parameter to [sqlite3_close()] must be an [sqlite3] object
-** pointer previously obtained from [sqlite3_open()] or the
-** equivalent, or NULL.
+** ASSUMPTIONS:
**
-** {U12016} The parameter to [sqlite3_close()] must not have been previously
-** closed.
+** {A12016} The C parameter to [sqlite3_close(C)] must be either a NULL
+** pointer or an [sqlite3] object pointer obtained
+** from [sqlite3_open()], [sqlite3_open16()], or
+** [sqlite3_open_v2()], and not previously closed.
*/
int sqlite3_close(sqlite3 *);
typedef int (*sqlite3_callback)(void*,int,char**, char**);
/*
-** CAPI3REF: One-Step Query Execution Interface {F12100}
-**
-** The sqlite3_exec() interface is a convenient way of running
-** one or more SQL statements without a lot of C code. The
-** SQL statements are passed in as the second parameter to
-** sqlite3_exec(). The statements are evaluated one by one
-** until either an error or an interrupt is encountered or
-** until they are all done. The 3rd parameter is an optional
-** callback that is invoked once for each row of any query results
-** produced by the SQL statements. The 5th parameter tells where
+** CAPI3REF: One-Step Query Execution Interface {H12100} <S10000>
+**
+** The sqlite3_exec() interface is a convenient way of running one or more
+** SQL statements without having to write a lot of C code. The UTF-8 encoded
+** SQL statements are passed in as the second parameter to sqlite3_exec().
+** The statements are evaluated one by one until either an error or
+** an interrupt is encountered, or until they are all done. The 3rd parameter
+** is an optional callback that is invoked once for each row of any query
+** results produced by the SQL statements. The 5th parameter tells where
** to write any error messages.
**
+** The error message passed back through the 5th parameter is held
+** in memory obtained from [sqlite3_malloc()]. To avoid a memory leak,
+** the calling application should call [sqlite3_free()] on any error
+** message returned through the 5th parameter when it has finished using
+** the error message.
+**
+** If the SQL statement in the 2nd parameter is NULL or an empty string
+** or a string containing only whitespace and comments, then no SQL
+** statements are evaluated and the database is not changed.
+**
** The sqlite3_exec() interface is implemented in terms of
** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
-** The sqlite3_exec() routine does nothing that cannot be done
+** The sqlite3_exec() routine does nothing to the database that cannot be done
** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
-** The sqlite3_exec() is just a convenient wrapper.
**
** INVARIANTS:
-**
-** {F12101} The [sqlite3_exec()] interface evaluates zero or more UTF-8
-** encoded, semicolon-separated, SQL statements in the
-** zero-terminated string of its 2nd parameter within the
-** context of the [sqlite3] object given in the 1st parameter.
**
-** {F12104} The return value of [sqlite3_exec()] is SQLITE_OK if all
-** SQL statements run successfully.
+** {H12101} A successful invocation of [sqlite3_exec(D,S,C,A,E)]
+** shall sequentially evaluate all of the UTF-8 encoded,
+** semicolon-separated SQL statements in the zero-terminated
+** string S within the context of the [database connection] D.
+**
+** {H12102} If the S parameter to [sqlite3_exec(D,S,C,A,E)] is NULL then
+** the actions of the interface shall be the same as if the
+** S parameter were an empty string.
+**
+** {H12104} The return value of [sqlite3_exec()] shall be [SQLITE_OK] if all
+** SQL statements run successfully and to completion.
**
-** {F12105} The return value of [sqlite3_exec()] is an appropriate
-** non-zero error code if any SQL statement fails.
+** {H12105} The return value of [sqlite3_exec()] shall be an appropriate
+** non-zero [error code] if any SQL statement fails.
**
-** {F12107} If one or more of the SQL statements handed to [sqlite3_exec()]
+** {H12107} If one or more of the SQL statements handed to [sqlite3_exec()]
** return results and the 3rd parameter is not NULL, then
-** the callback function specified by the 3rd parameter is
+** the callback function specified by the 3rd parameter shall be
** invoked once for each row of result.
**
-** {F12110} If the callback returns a non-zero value then [sqlite3_exec()]
-** will aborted the SQL statement it is currently evaluating,
+** {H12110} If the callback returns a non-zero value then [sqlite3_exec()]
+** shall abort the SQL statement it is currently evaluating,
** skip all subsequent SQL statements, and return [SQLITE_ABORT].
-** <todo>What happens to *errmsg here? Does the result code for
-** sqlite3_errcode() get set?</todo>
**
-** {F12113} The [sqlite3_exec()] routine will pass its 4th parameter through
+** {H12113} The [sqlite3_exec()] routine shall pass its 4th parameter through
** as the 1st parameter of the callback.
**
-** {F12116} The [sqlite3_exec()] routine sets the 2nd parameter of its
+** {H12116} The [sqlite3_exec()] routine shall set the 2nd parameter of its
** callback to be the number of columns in the current row of
** result.
**
-** {F12119} The [sqlite3_exec()] routine sets the 3rd parameter of its
+** {H12119} The [sqlite3_exec()] routine shall set the 3rd parameter of its
** callback to be an array of pointers to strings holding the
** values for each column in the current result set row as
** obtained from [sqlite3_column_text()].
**
-** {F12122} The [sqlite3_exec()] routine sets the 4th parameter of its
+** {H12122} The [sqlite3_exec()] routine shall set the 4th parameter of its
** callback to be an array of pointers to strings holding the
** names of result columns as obtained from [sqlite3_column_name()].
**
-** {F12125} If the 3rd parameter to [sqlite3_exec()] is NULL then
-** [sqlite3_exec()] never invokes a callback. All query
-** results are silently discarded.
+** {H12125} If the 3rd parameter to [sqlite3_exec()] is NULL then
+** [sqlite3_exec()] shall silently discard query results.
**
-** {F12128} If an error occurs while parsing or evaluating any of the SQL
-** statements handed to [sqlite3_exec()] then [sqlite3_exec()] will
-** return an [error code] other than [SQLITE_OK].
+** {H12131} If an error occurs while parsing or evaluating any of the SQL
+** statements in the S parameter of [sqlite3_exec(D,S,C,A,E)] and if
+** the E parameter is not NULL, then [sqlite3_exec()] shall store
+** in *E an appropriate error message written into memory obtained
+** from [sqlite3_malloc()].
**
-** {F12131} If an error occurs while parsing or evaluating any of the SQL
-** handed to [sqlite3_exec()] and if the 5th parameter (errmsg)
-** to [sqlite3_exec()] is not NULL, then an error message is
-** allocated using the equivalent of [sqlite3_mprintf()] and
-** *errmsg is made to point to that message.
+** {H12134} The [sqlite3_exec(D,S,C,A,E)] routine shall set the value of
+** *E to NULL if E is not NULL and there are no errors.
**
-** {F12134} The [sqlite3_exec()] routine does not change the value of
-** *errmsg if errmsg is NULL or if there are no errors.
+** {H12137} The [sqlite3_exec(D,S,C,A,E)] function shall set the [error code]
+** and message accessible via [sqlite3_errcode()],
+** [sqlite3_errmsg()], and [sqlite3_errmsg16()].
**
-** {F12137} The [sqlite3_exec()] function sets the error code and message
-** accessible via [sqlite3_errcode()], [sqlite3_errmsg()], and
-** [sqlite3_errmsg16()].
+** {H12138} If the S parameter to [sqlite3_exec(D,S,C,A,E)] is NULL or an
+** empty string or contains nothing other than whitespace, comments,
+** and/or semicolons, then results of [sqlite3_errcode()],
+** [sqlite3_errmsg()], and [sqlite3_errmsg16()]
+** shall reset to indicate no errors.
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U12141} The first parameter to [sqlite3_exec()] must be an valid and open
+** {A12141} The first parameter to [sqlite3_exec()] must be an valid and open
** [database connection].
**
-** {U12142} The database connection must not be closed while
+** {A12142} The database connection must not be closed while
** [sqlite3_exec()] is running.
-**
-** {U12143} The calling function is should use [sqlite3_free()] to free
+**
+** {A12143} The calling function should use [sqlite3_free()] to free
** the memory that *errmsg is left pointing at once the error
** message is no longer needed.
**
-** {U12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()]
+** {A12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()]
** must remain unchanged while [sqlite3_exec()] is running.
*/
int sqlite3_exec(
sqlite3*, /* An open database */
- const char *sql, /* SQL to be evaluted */
+ const char *sql, /* SQL to be evaluated */
int (*callback)(void*,int,char**,char**), /* Callback function */
void *, /* 1st argument to callback */
char **errmsg /* Error msg written here */
);
/*
-** CAPI3REF: Result Codes {F10210}
+** CAPI3REF: Result Codes {H10210} <S10700>
** KEYWORDS: SQLITE_OK {error code} {error codes}
+** KEYWORDS: {result code} {result codes}
**
** Many SQLite functions return an integer result code from the set shown
** here in order to indicates success or failure.
**
+** New error codes may be added in future versions of SQLite.
+**
** See also: [SQLITE_IOERR_READ | extended result codes]
*/
#define SQLITE_OK 0 /* Successful result */
/* end-of-error-codes */
/*
-** CAPI3REF: Extended Result Codes {F10220}
+** CAPI3REF: Extended Result Codes {H10220} <S10700>
** KEYWORDS: {extended error code} {extended error codes}
-** KEYWORDS: {extended result codes}
+** KEYWORDS: {extended result code} {extended result codes}
**
** In its default configuration, SQLite API routines return one of 26 integer
-** [SQLITE_OK | result codes]. However, experience has shown that
-** many of these result codes are too course-grained. They do not provide as
+** [SQLITE_OK | result codes]. However, experience has shown that many of
+** these result codes are too coarse-grained. They do not provide as
** much information about problems as programmers might like. In an effort to
** address this, newer versions of SQLite (version 3.3.8 and later) include
** support for additional result codes that provide more detailed information
** about errors. The extended result codes are enabled or disabled
-** for each database connection using the [sqlite3_extended_result_codes()]
-** API.
-**
+** on a per database connection basis using the
+** [sqlite3_extended_result_codes()] API.
+**
** Some of the available extended result codes are listed here.
** One may expect the number of extended result codes will be expand
** over time. Software that uses extended result codes should expect
**
** The SQLITE_OK result code will never be extended. It will always
** be exactly zero.
-**
+**
** INVARIANTS:
**
-** {F10223} The symbolic name for an extended result code always contains
+** {H10223} The symbolic name for an extended result code shall contains
** a related primary result code as a prefix.
**
-** {F10224} Primary result code names contain a single "_" character.
+** {H10224} Primary result code names shall contain a single "_" character.
**
-** {F10225} Extended result code names contain two or more "_" characters.
+** {H10225} Extended result code names shall contain two or more "_" characters.
**
-** {F10226} The numeric value of an extended result code contains the
+** {H10226} The numeric value of an extended result code shall contain the
** numeric value of its corresponding primary result code in
** its least significant 8 bits.
*/
-#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
-#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
-#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
-#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
-#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
-#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
-#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
-#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
-#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
-#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
-#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
-#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
+#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
+#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
+#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
+#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
+#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
+#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
+#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
+#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
+#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
+#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8))
+#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
/*
-** CAPI3REF: Flags For File Open Operations {F10230}
+** CAPI3REF: Flags For File Open Operations {H10230} <H11120> <H12700>
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000
#define SQLITE_OPEN_SUBJOURNAL 0x00002000
#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000
+#define SQLITE_OPEN_NOMUTEX 0x00008000
/*
-** CAPI3REF: Device Characteristics {F10240}
+** CAPI3REF: Device Characteristics {H10240} <H11120>
**
** The xDeviceCapabilities method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
/*
-** CAPI3REF: File Locking Levels {F10250}
+** CAPI3REF: File Locking Levels {H10250} <H11120> <H11310>
**
** SQLite uses one of these integer values as the second
** argument to calls it makes to the xLock() and xUnlock() methods
#define SQLITE_LOCK_EXCLUSIVE 4
/*
-** CAPI3REF: Synchronization Type Flags {F10260}
+** CAPI3REF: Synchronization Type Flags {H10260} <H11120>
**
** When SQLite invokes the xSync() method of an
** [sqlite3_io_methods] object it uses a combination of
**
** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
** sync operation only needs to flush data to mass storage. Inode
-** information need not be flushed. The SQLITE_SYNC_NORMAL flag means
-** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means
+** information need not be flushed. The SQLITE_SYNC_NORMAL flag means
+** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means
** to use Mac OS-X style fullsync instead of fsync().
*/
#define SQLITE_SYNC_NORMAL 0x00002
#define SQLITE_SYNC_FULL 0x00003
#define SQLITE_SYNC_DATAONLY 0x00010
-
/*
-** CAPI3REF: OS Interface Open File Handle {F11110}
+** CAPI3REF: OS Interface Open File Handle {H11110} <S20110>
**
** An [sqlite3_file] object represents an open file in the OS
** interface layer. Individual OS interface implementations will
};
/*
-** CAPI3REF: OS Interface File Virtual Methods Object {F11120}
+** CAPI3REF: OS Interface File Virtual Methods Object {H11120} <S20110>
**
-** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to
-** an instance of this object. This object defines the
-** methods used to perform various operations against the open file.
+** Every file opened by the [sqlite3_vfs] xOpen method populates an
+** [sqlite3_file] object (or, more commonly, a subclass of the
+** [sqlite3_file] object) with a pointer to an instance of this object.
+** This object defines the methods used to perform various operations
+** against the open file represented by the [sqlite3_file] object.
**
** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
-* The second choice is an
-** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to
-** indicate that only the data of the file and not its inode needs to be
-** synced.
-**
+** The second choice is a Mac OS-X style fullsync. The [SQLITE_SYNC_DATAONLY]
+** flag may be ORed in to indicate that only the data of the file
+** and not its inode needs to be synced.
+**
** The integer values to xLock() and xUnlock() are one of
** <ul>
** <li> [SQLITE_LOCK_NONE],
** <li> [SQLITE_LOCK_PENDING], or
** <li> [SQLITE_LOCK_EXCLUSIVE].
** </ul>
-** xLock() increases the lock. xUnlock() decreases the lock.
-** The xCheckReservedLock() method looks
-** to see if any database connection, either in this
-** process or in some other process, is holding an RESERVED,
+** xLock() increases the lock. xUnlock() decreases the lock.
+** The xCheckReservedLock() method checks whether any database connection,
+** either in this process or in some other process, is holding a RESERVED,
** PENDING, or EXCLUSIVE lock on the file. It returns true
-** if such a lock exists and false if not.
-**
+** if such a lock exists and false otherwise.
+**
** The xFileControl() method is a generic interface that allows custom
** VFS implementations to directly control an open file using the
-** [sqlite3_file_control()] interface. The second "op" argument
-** is an integer opcode. The third
-** argument is a generic pointer which is intended to be a pointer
-** to a structure that may contain arguments or space in which to
+** [sqlite3_file_control()] interface. The second "op" argument is an
+** integer opcode. The third argument is a generic pointer intended to
+** point to a structure that may contain arguments or space in which to
** write return values. Potential uses for xFileControl() might be
** functions to enable blocking locks with timeouts, to change the
** locking strategy (for example to use dot-file locks), to inquire
** about the status of a lock, or to break stale locks. The SQLite
-** core reserves opcodes less than 100 for its own use.
+** core reserves all opcodes less than 100 for its own use.
** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
-** Applications that define a custom xFileControl method should use opcodes
+** Applications that define a custom xFileControl method should use opcodes
** greater than 100 to avoid conflicts.
**
** The xSectorSize() method returns the sector size of the
int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
int (*xLock)(sqlite3_file*, int);
int (*xUnlock)(sqlite3_file*, int);
- int (*xCheckReservedLock)(sqlite3_file*);
+ int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
int (*xFileControl)(sqlite3_file*, int op, void *pArg);
int (*xSectorSize)(sqlite3_file*);
int (*xDeviceCharacteristics)(sqlite3_file*);
};
/*
-** CAPI3REF: Standard File Control Opcodes {F11310}
+** CAPI3REF: Standard File Control Opcodes {H11310} <S30800>
**
** These integer constants are opcodes for the xFileControl method
-** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()]
+** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
** interface.
**
** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
#define SQLITE_FCNTL_LOCKSTATE 1
/*
-** CAPI3REF: Mutex Handle {F17110}
+** CAPI3REF: Mutex Handle {H17110} <S20130>
**
** The mutex module within SQLite defines [sqlite3_mutex] to be an
** abstract type for a mutex object. The SQLite core never looks
typedef struct sqlite3_mutex sqlite3_mutex;
/*
-** CAPI3REF: OS Interface Object {F11140}
+** CAPI3REF: OS Interface Object {H11140} <S20100>
**
-** An instance of this object defines the interface between the
-** SQLite core and the underlying operating system. The "vfs"
+** An instance of the sqlite3_vfs object defines the interface between
+** the SQLite core and the underlying operating system. The "vfs"
** in the name of the object stands for "virtual file system".
**
-** The iVersion field is initially 1 but may be larger for future
-** versions of SQLite. Additional fields may be appended to this
-** object when the iVersion value is increased.
+** The value of the iVersion field is initially 1 but may be larger in
+** future versions of SQLite. Additional fields may be appended to this
+** object when the iVersion value is increased. Note that the structure
+** of the sqlite3_vfs object changes in the transaction between
+** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not
+** modified.
**
** The szOsFile field is the size of the subclassed [sqlite3_file]
** structure used by this VFS. mxPathname is the maximum length of
** the pNext pointer. The [sqlite3_vfs_register()]
** and [sqlite3_vfs_unregister()] interfaces manage this list
** in a thread-safe way. The [sqlite3_vfs_find()] interface
-** searches the list.
+** searches the list. Neither the application code nor the VFS
+** implementation should use the pNext pointer.
**
-** The pNext field is the only field in the sqlite3_vfs
+** The pNext field is the only field in the sqlite3_vfs
** structure that SQLite will ever modify. SQLite will only access
** or modify this field while holding a particular static mutex.
** The application should never modify anything within the sqlite3_vfs
** The zName field holds the name of the VFS module. The name must
** be unique across all VFS modules.
**
-** {F11141} SQLite will guarantee that the zFilename string passed to
-** xOpen() is a full pathname as generated by xFullPathname() and
-** that the string will be valid and unchanged until xClose() is
-** called. {END} So the [sqlite3_file] can store a pointer to the
+** {H11141} SQLite will guarantee that the zFilename parameter to xOpen
+** is either a NULL pointer or string obtained
+** from xFullPathname(). SQLite further guarantees that
+** the string will be valid and unchanged until xClose() is
+** called. {END} Because of the previous sentense,
+** the [sqlite3_file] can safely store a pointer to the
** filename if it needs to remember the filename for some reason.
+** If the zFilename parameter is xOpen is a NULL pointer then xOpen
+** must invite its own temporary name for the file. Whenever the
+** xFilename parameter is NULL it will also be the case that the
+** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
**
-** {F11142} The flags argument to xOpen() includes all bits set in
+** {H11142} The flags argument to xOpen() includes all bits set in
** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
** or [sqlite3_open16()] is used, then flags includes at least
** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END}
** If xOpen() opens a file read-only then it sets *pOutFlags to
-** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be
-** set.
-**
-** {F11143} SQLite will also add one of the following flags to the xOpen()
+** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
+**
+** {H11143} SQLite will also add one of the following flags to the xOpen()
** call, depending on the object being opened:
-**
+**
** <ul>
** <li> [SQLITE_OPEN_MAIN_DB]
** <li> [SQLITE_OPEN_MAIN_JOURNAL]
** </ul> {END}
**
** The file I/O implementation can use the object type flags to
-** changes the way it deals with files. For example, an application
+** change the way it deals with files. For example, an application
** that does not care about crash recovery or rollback might make
** the open of a journal file a no-op. Writes to this journal would
-** also be no-ops, and any attempt to read the journal would return
-** SQLITE_IOERR. Or the implementation might recognize that a database
-** file will be doing page-aligned sector reads and writes in a random
+** also be no-ops, and any attempt to read the journal would return
+** SQLITE_IOERR. Or the implementation might recognize that a database
+** file will be doing page-aligned sector reads and writes in a random
** order and set up its I/O subsystem accordingly.
-**
-** SQLite might also add one of the following flags to the xOpen
-** method:
-**
+**
+** SQLite might also add one of the following flags to the xOpen method:
+**
** <ul>
** <li> [SQLITE_OPEN_DELETEONCLOSE]
** <li> [SQLITE_OPEN_EXCLUSIVE]
** </ul>
-**
-** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
-** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE]
-** will be set for TEMP databases, journals and for subjournals.
-** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
+**
+** {H11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
+** deleted when it is closed. {H11146} The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases, journals and for subjournals.
+**
+** {H11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
** for exclusive access. This flag is set for all files except
-** for the main database file. {END}
-**
-** {F11148} At least szOsFile bytes of memory are allocated by SQLite
-** to hold the [sqlite3_file] structure passed as the third
-** argument to xOpen. {END} The xOpen method does not have to
+** for the main database file.
+**
+** {H11148} At least szOsFile bytes of memory are allocated by SQLite
+** to hold the [sqlite3_file] structure passed as the third
+** argument to xOpen. {END} The xOpen method does not have to
** allocate the structure; it should just fill it in.
-**
-** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
-** to test for the existance of a file,
-** or [SQLITE_ACCESS_READWRITE] to test to see
-** if a file is readable and writable, or [SQLITE_ACCESS_READ]
-** to test to see if a file is at least readable. {END} The file can be a
+**
+** {H11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
+** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
+** to test whether a file is at least readable. {END} The file can be a
** directory.
-**
-** {F11150} SQLite will always allocate at least mxPathname+1 bytes for
-** the output buffers for xGetTempname and xFullPathname. {F11151} The exact
-** size of the output buffer is also passed as a parameter to both
-** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN
-** should be returned. As this is handled as a fatal error by SQLite,
-** vfs implementations should endeavor to prevent this by setting
-** mxPathname to a sufficiently large value.
-**
+**
+** {H11150} SQLite will always allocate at least mxPathname+1 bytes for the
+** output buffer xFullPathname. {H11151} The exact size of the output buffer
+** is also passed as a parameter to both methods. {END} If the output buffer
+** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
+** handled as a fatal error by SQLite, vfs implementations should endeavor
+** to prevent this by setting mxPathname to a sufficiently large value.
+**
** The xRandomness(), xSleep(), and xCurrentTime() interfaces
** are not strictly a part of the filesystem, but they are
** included in the VFS structure for completeness.
** The xRandomness() function attempts to return nBytes bytes
** of good-quality randomness into zOut. The return value is
-** the actual number of bytes of randomness obtained. The
-** xSleep() method causes the calling thread to sleep for at
+** the actual number of bytes of randomness obtained.
+** The xSleep() method causes the calling thread to sleep for at
** least the number of microseconds given. The xCurrentTime()
-** method returns a Julian Day Number for the current date and
-** time.
+** method returns a Julian Day Number for the current date and time.
*/
typedef struct sqlite3_vfs sqlite3_vfs;
struct sqlite3_vfs {
int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
int flags, int *pOutFlags);
int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
- int (*xAccess)(sqlite3_vfs*, const char *zName, int flags);
- int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut);
+ int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
int (*xSleep)(sqlite3_vfs*, int microseconds);
int (*xCurrentTime)(sqlite3_vfs*, double*);
+ int (*xGetLastError)(sqlite3_vfs*, int, char *);
/* New fields may be appended in figure versions. The iVersion
** value will increment whenever this happens. */
};
/*
-** CAPI3REF: Flags for the xAccess VFS method {F11190}
+** CAPI3REF: Flags for the xAccess VFS method {H11190} <H11140>
**
-** {F11191} These integer constants can be used as the third parameter to
+** {H11191} These integer constants can be used as the third parameter to
** the xAccess method of an [sqlite3_vfs] object. {END} They determine
-** what kind of permissions the xAccess method is
-** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method
-** simply checks to see if the file exists. {F11193} With
-** SQLITE_ACCESS_READWRITE, the xAccess method checks to see
-** if the file is both readable and writable. {F11194} With
-** SQLITE_ACCESS_READ the xAccess method
-** checks to see if the file is readable.
+** what kind of permissions the xAccess method is looking for.
+** {H11192} With SQLITE_ACCESS_EXISTS, the xAccess method
+** simply checks whether the file exists.
+** {H11193} With SQLITE_ACCESS_READWRITE, the xAccess method
+** checks whether the file is both readable and writable.
+** {H11194} With SQLITE_ACCESS_READ, the xAccess method
+** checks whether the file is readable.
*/
#define SQLITE_ACCESS_EXISTS 0
#define SQLITE_ACCESS_READWRITE 1
#define SQLITE_ACCESS_READ 2
/*
-** CAPI3REF: Enable Or Disable Extended Result Codes {F12200}
+** CAPI3REF: Initialize The SQLite Library {H10130} <S20000><S30100>
+**
+** The sqlite3_initialize() routine initializes the
+** SQLite library. The sqlite3_shutdown() routine
+** deallocates any resources that were allocated by sqlite3_initialize().
+**
+** A call to sqlite3_initialize() is an "effective" call if it is
+** the first time sqlite3_initialize() is invoked during the lifetime of
+** the process, or if it is the first time sqlite3_initialize() is invoked
+** following a call to sqlite3_shutdown(). Only an effective call
+** of sqlite3_initialize() does any initialization. All other calls
+** are harmless no-ops.
+**
+** Among other things, sqlite3_initialize() shall invoke
+** sqlite3_os_init(). Similarly, sqlite3_shutdown()
+** shall invoke sqlite3_os_end().
+**
+** The sqlite3_initialize() routine returns SQLITE_OK on success.
+** If for some reason, sqlite3_initialize() is unable to initialize
+** the library (perhaps it is unable to allocate a needed resource such
+** as a mutex) it returns an [error code] other than SQLITE_OK.
+**
+** The sqlite3_initialize() routine is called internally by many other
+** SQLite interfaces so that an application usually does not need to
+** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
+** calls sqlite3_initialize() so the SQLite library will be automatically
+** initialized when [sqlite3_open()] is called if it has not be initialized
+** already. However, if SQLite is compiled with the SQLITE_OMIT_AUTOINIT
+** compile-time option, then the automatic calls to sqlite3_initialize()
+** are omitted and the application must call sqlite3_initialize() directly
+** prior to using any other SQLite interface. For maximum portability,
+** it is recommended that applications always invoke sqlite3_initialize()
+** directly prior to using any other SQLite interface. Future releases
+** of SQLite may require this. In other words, the behavior exhibited
+** when SQLite is compiled with SQLITE_OMIT_AUTOINIT might become the
+** default behavior in some future release of SQLite.
+**
+** The sqlite3_os_init() routine does operating-system specific
+** initialization of the SQLite library. The sqlite3_os_end()
+** routine undoes the effect of sqlite3_os_init(). Typical tasks
+** performed by these routines include allocation or deallocation
+** of static resources, initialization of global variables,
+** setting up a default [sqlite3_vfs] module, or setting up
+** a default configuration using [sqlite3_config()].
+**
+** The application should never invoke either sqlite3_os_init()
+** or sqlite3_os_end() directly. The application should only invoke
+** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
+** interface is called automatically by sqlite3_initialize() and
+** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
+** implementations for sqlite3_os_init() and sqlite3_os_end()
+** are built into SQLite when it is compiled for unix, windows, or os/2.
+** When built for other platforms (using the SQLITE_OS_OTHER=1 compile-time
+** option) the application must supply a suitable implementation for
+** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
+** implementation of sqlite3_os_init() or sqlite3_os_end()
+** must return SQLITE_OK on success and some other [error code] upon
+** failure.
+*/
+int sqlite3_initialize(void);
+int sqlite3_shutdown(void);
+int sqlite3_os_init(void);
+int sqlite3_os_end(void);
+
+/*
+** CAPI3REF: Configuring The SQLite Library {H10145} <S20000><S30200>
+** EXPERIMENTAL
+**
+** The sqlite3_config() interface is used to make global configuration
+** changes to SQLite in order to tune SQLite to the specific needs of
+** the application. The default configuration is recommended for most
+** applications and so this routine is usually not necessary. It is
+** provided to support rare applications with unusual needs.
+**
+** The sqlite3_config() interface is not threadsafe. The application
+** must insure that no other SQLite interfaces are invoked by other
+** threads while sqlite3_config() is running. Furthermore, sqlite3_config()
+** may only be invoked prior to library initialization using
+** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
+** Note, however, that sqlite3_config() can be called as part of the
+** implementation of an application-defined [sqlite3_os_init()].
+**
+** The first argument to sqlite3_config() is an integer
+** [SQLITE_CONFIG_SINGLETHREAD | configuration option] that determines
+** what property of SQLite is to be configured. Subsequent arguments
+** vary depending on the [SQLITE_CONFIG_SINGLETHREAD | configuration option]
+** in the first argument.
+**
+** When a configuration option is set, sqlite3_config() returns SQLITE_OK.
+** If the option is unknown or SQLite is unable to set the option
+** then this routine returns a non-zero [error code].
+*/
+int sqlite3_config(int, ...);
+
+/*
+** CAPI3REF: Configure database connections {H10180} <S20000>
+** EXPERIMENTAL
+**
+** The sqlite3_db_config() interface is used to make configuration
+** changes to a [database connection]. The interface is similar to
+** [sqlite3_config()] except that the changes apply to a single
+** [database connection] (specified in the first argument). The
+** sqlite3_db_config() interface can only be used immediately after
+** the database connection is created using [sqlite3_open()],
+** [sqlite3_open16()], or [sqlite3_open_v2()].
+**
+** The second argument to sqlite3_db_config(D,V,...) is the
+** configuration verb - an integer code that indicates what
+** aspect of the [database connection] is being configured.
+** The only choice for this value is [SQLITE_DBCONFIG_LOOKASIDE].
+** New verbs are likely to be added in future releases of SQLite.
+** Additional arguments depend on the verb.
+*/
+int sqlite3_db_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Memory Allocation Routines {H10155} <S20120>
+** EXPERIMENTAL
+**
+** An instance of this object defines the interface between SQLite
+** and low-level memory allocation routines.
+**
+** This object is used in only one place in the SQLite interface.
+** A pointer to an instance of this object is the argument to
+** [sqlite3_config()] when the configuration option is
+** [SQLITE_CONFIG_MALLOC]. By creating an instance of this object
+** and passing it to [sqlite3_config()] during configuration, an
+** application can specify an alternative memory allocation subsystem
+** for SQLite to use for all of its dynamic memory needs.
+**
+** Note that SQLite comes with a built-in memory allocator that is
+** perfectly adequate for the overwhelming majority of applications
+** and that this object is only useful to a tiny minority of applications
+** with specialized memory allocation requirements. This object is
+** also used during testing of SQLite in order to specify an alternative
+** memory allocator that simulates memory out-of-memory conditions in
+** order to verify that SQLite recovers gracefully from such
+** conditions.
+**
+** The xMalloc, xFree, and xRealloc methods must work like the
+** malloc(), free(), and realloc() functions from the standard library.
+**
+** xSize should return the allocated size of a memory allocation
+** previously obtained from xMalloc or xRealloc. The allocated size
+** is always at least as big as the requested size but may be larger.
+**
+** The xRoundup method returns what would be the allocated size of
+** a memory allocation given a particular requested size. Most memory
+** allocators round up memory allocations at least to the next multiple
+** of 8. Some allocators round up to a larger multiple or to a power of 2.
+**
+** The xInit method initializes the memory allocator. (For example,
+** it might allocate any require mutexes or initialize internal data
+** structures. The xShutdown method is invoked (indirectly) by
+** [sqlite3_shutdown()] and should deallocate any resources acquired
+** by xInit. The pAppData pointer is used as the only parameter to
+** xInit and xShutdown.
+*/
+typedef struct sqlite3_mem_methods sqlite3_mem_methods;
+struct sqlite3_mem_methods {
+ void *(*xMalloc)(int); /* Memory allocation function */
+ void (*xFree)(void*); /* Free a prior allocation */
+ void *(*xRealloc)(void*,int); /* Resize an allocation */
+ int (*xSize)(void*); /* Return the size of an allocation */
+ int (*xRoundup)(int); /* Round up request size to allocation size */
+ int (*xInit)(void*); /* Initialize the memory allocator */
+ void (*xShutdown)(void*); /* Deinitialize the memory allocator */
+ void *pAppData; /* Argument to xInit() and xShutdown() */
+};
+
+/*
+** CAPI3REF: Configuration Options {H10160} <S20000>
+** EXPERIMENTAL
+**
+** These constants are the available integer configuration options that
+** can be passed as the first argument to the [sqlite3_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_config()] to make sure that
+** the call worked. The [sqlite3_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
+** <dd>There are no arguments to this option. This option disables
+** all mutexing and puts SQLite into a mode where it can only be used
+** by a single thread.</dd>
+**
+** <dt>SQLITE_CONFIG_MULTITHREAD</dt>
+** <dd>There are no arguments to this option. This option disables
+** mutexing on [database connection] and [prepared statement] objects.
+** The application is responsible for serializing access to
+** [database connections] and [prepared statements]. But other mutexes
+** are enabled so that SQLite will be safe to use in a multi-threaded
+** environment.</dd>
+**
+** <dt>SQLITE_CONFIG_SERIALIZED</dt>
+** <dd>There are no arguments to this option. This option enables
+** all mutexes including the recursive
+** mutexes on [database connection] and [prepared statement] objects.
+** In this mode (which is the default when SQLite is compiled with
+** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
+** to [database connections] and [prepared statements] so that the
+** application is free to use the same [database connection] or the
+** same [prepared statement] in different threads at the same time.
+**
+** <p>This configuration option merely sets the default mutex
+** behavior to serialize access to [database connections]. Individual
+** [database connections] can override this setting
+** using the [SQLITE_OPEN_NOMUTEX] flag to [sqlite3_open_v2()].</p></dd>
+**
+** <dt>SQLITE_CONFIG_MALLOC</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mem_methods] structure. The argument specifies
+** alternative low-level memory allocation routines to be used in place of
+** the memory allocation routines built into SQLite.</dd>
+**
+** <dt>SQLITE_CONFIG_GETMALLOC</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods]
+** structure is filled with the currently defined memory allocation routines.
+** This option can be used to overload the default memory allocation
+** routines with a wrapper that simulations memory allocation failure or
+** tracks memory usage, for example.</dd>
+**
+** <dt>SQLITE_CONFIG_MEMSTATUS</dt>
+** <dd>This option takes single argument of type int, interpreted as a
+** boolean, which enables or disables the collection of memory allocation
+** statistics. When disabled, the following SQLite interfaces become
+** non-operational:
+** <ul>
+** <li> [sqlite3_memory_used()]
+** <li> [sqlite3_memory_highwater()]
+** <li> [sqlite3_soft_heap_limit()]
+** <li> [sqlite3_status()]
+** </ul>
+** </dd>
+**
+** <dt>SQLITE_CONFIG_SCRATCH</dt>
+** <dd>This option specifies a static memory buffer that SQLite can use for
+** scratch memory. There are three arguments: A pointer to the memory, the
+** size of each scratch buffer (sz), and the number of buffers (N). The sz
+** argument must be a multiple of 16. The sz parameter should be a few bytes
+** larger than the actual scratch space required due internal overhead.
+** The first
+** argument should point to an allocation of at least sz*N bytes of memory.
+** SQLite will use no more than one scratch buffer at once per thread, so
+** N should be set to the expected maximum number of threads. The sz
+** parameter should be 6 times the size of the largest database page size.
+** Scratch buffers are used as part of the btree balance operation. If
+** The btree balancer needs additional memory beyond what is provided by
+** scratch buffers or if no scratch buffer space is specified, then SQLite
+** goes to [sqlite3_malloc()] to obtain the memory it needs.</dd>
+**
+** <dt>SQLITE_CONFIG_PAGECACHE</dt>
+** <dd>This option specifies a static memory buffer that SQLite can use for
+** the database page cache. There are three arguments: A pointer to the
+** memory, the size of each page buffer (sz), and the number of pages (N).
+** The sz argument must be a power of two between 512 and 32768. The first
+** argument should point to an allocation of at least sz*N bytes of memory.
+** SQLite will use the memory provided by the first argument to satisfy its
+** memory needs for the first N pages that it adds to cache. If additional
+** page cache memory is needed beyond what is provided by this option, then
+** SQLite goes to [sqlite3_malloc()] for the additional storage space.
+** The implementation might use one or more of the N buffers to hold
+** memory accounting information. </dd>
+**
+** <dt>SQLITE_CONFIG_HEAP</dt>
+** <dd>This option specifies a static memory buffer that SQLite will use
+** for all of its dynamic memory allocation needs beyond those provided
+** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
+** There are three arguments: A pointer to the memory, the number of
+** bytes in the memory buffer, and the minimum allocation size. If
+** the first pointer (the memory pointer) is NULL, then SQLite reverts
+** to using its default memory allocator (the system malloc() implementation),
+** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. If the
+** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
+** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
+** allocator is engaged to handle all of SQLites memory allocation needs.</dd>
+**
+** <dt>SQLITE_CONFIG_MUTEX</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mutex_methods] structure. The argument specifies
+** alternative low-level mutex routines to be used in place
+** the mutex routines built into SQLite.</dd>
+**
+** <dt>SQLITE_CONFIG_GETMUTEX</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mutex_methods] structure. The
+** [sqlite3_mutex_methods]
+** structure is filled with the currently defined mutex routines.
+** This option can be used to overload the default mutex allocation
+** routines with a wrapper used to track mutex usage for performance
+** profiling or testing, for example.</dd>
+**
+** <dt>SQLITE_CONFIG_LOOKASIDE</dt>
+** <dd>This option takes two arguments that determine the default
+** memory allcation lookaside optimization. The first argument is the
+** size of each lookaside buffer slot and the second is the number of
+** slots allocated to each database connection.</dd>
+**
+** </dl>
+*/
+#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */
+#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */
+#define SQLITE_CONFIG_SERIALIZED 3 /* nil */
+#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */
+#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */
+#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */
+#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */
+#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */
+#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */
+#define SQLITE_CONFIG_CHUNKALLOC 12 /* int threshold */
+#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */
+
+/*
+** CAPI3REF: Configuration Options {H10170} <S20000>
+** EXPERIMENTAL
+**
+** These constants are the available integer configuration options that
+** can be passed as the second argument to the [sqlite3_db_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_db_config()] to make sure that
+** the call worked. The [sqlite3_db_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
+** <dd>This option takes three additional arguments that determine the
+** [lookaside memory allocator] configuration for the [database connection].
+** The first argument (the third parameter to [sqlite3_db_config()] is a
+** pointer to a memory buffer to use for lookaside memory. The first
+** argument may be NULL in which case SQLite will allocate the lookaside
+** buffer itself using [sqlite3_malloc()]. The second argument is the
+** size of each lookaside buffer slot and the third argument is the number of
+** slots. The size of the buffer in the first argument must be greater than
+** or equal to the product of the second and third arguments.</dd>
+**
+** </dl>
+*/
+#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */
+
+
+/*
+** CAPI3REF: Enable Or Disable Extended Result Codes {H12200} <S10700>
**
** The sqlite3_extended_result_codes() routine enables or disables the
-** [SQLITE_IOERR_READ | extended result codes] feature of SQLite.
-** The extended result codes are disabled by default for historical
-** compatibility.
+** [extended result codes] feature of SQLite. The extended result
+** codes are disabled by default for historical compatibility considerations.
**
** INVARIANTS:
**
-** {F12201} Each new [database connection] has the
-** [extended result codes] feature
-** disabled by default.
+** {H12201} Each new [database connection] shall have the
+** [extended result codes] feature disabled by default.
**
-** {F12202} The [sqlite3_extended_result_codes(D,F)] interface will enable
-** [extended result codes] for the
-** [database connection] D if the F parameter
-** is true, or disable them if F is false.
+** {H12202} The [sqlite3_extended_result_codes(D,F)] interface shall enable
+** [extended result codes] for the [database connection] D
+** if the F parameter is true, or disable them if F is false.
*/
int sqlite3_extended_result_codes(sqlite3*, int onoff);
/*
-** CAPI3REF: Last Insert Rowid {F12220}
+** CAPI3REF: Last Insert Rowid {H12220} <S10700>
**
** Each entry in an SQLite table has a unique 64-bit signed
** integer key called the "rowid". The rowid is always available
** is another alias for the rowid.
**
** This routine returns the rowid of the most recent
-** successful INSERT into the database from the database connection
-** shown in the first argument. If no successful inserts
-** have ever occurred on this database connection, zero is returned.
+** successful INSERT into the database from the [database connection]
+** in the first argument. If no successful INSERTs
+** have ever occurred on that database connection, zero is returned.
**
-** If an INSERT occurs within a trigger, then the rowid of the
-** inserted row is returned by this routine as long as the trigger
-** is running. But once the trigger terminates, the value returned
-** by this routine reverts to the last value inserted before the
-** trigger fired.
+** If an INSERT occurs within a trigger, then the rowid of the inserted
+** row is returned by this routine as long as the trigger is running.
+** But once the trigger terminates, the value returned by this routine
+** reverts to the last value inserted before the trigger fired.
**
** An INSERT that fails due to a constraint violation is not a
-** successful insert and does not change the value returned by this
+** successful INSERT and does not change the value returned by this
** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
** and INSERT OR ABORT make no changes to the return value of this
-** routine when their insertion fails. When INSERT OR REPLACE
+** routine when their insertion fails. When INSERT OR REPLACE
** encounters a constraint violation, it does not fail. The
** INSERT continues to completion after deleting rows that caused
** the constraint problem so INSERT OR REPLACE will always change
-** the return value of this interface.
+** the return value of this interface.
**
-** For the purposes of this routine, an insert is considered to
+** For the purposes of this routine, an INSERT is considered to
** be successful even if it is subsequently rolled back.
**
** INVARIANTS:
**
-** {F12221} The [sqlite3_last_insert_rowid()] function returns the
-** rowid of the most recent successful insert done
-** on the same database connection and within the same
-** trigger context, or zero if there have
-** been no qualifying inserts on that connection.
+** {H12221} The [sqlite3_last_insert_rowid()] function returns the rowid
+** of the most recent successful INSERT performed on the same
+** [database connection] and within the same or higher level
+** trigger context, or zero if there have been no qualifying inserts.
**
-** {F12223} The [sqlite3_last_insert_rowid()] function returns
+** {H12223} The [sqlite3_last_insert_rowid()] function returns the
** same value when called from the same trigger context
** immediately before and after a ROLLBACK.
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U12232} If a separate thread does a new insert on the same
+** {A12232} If a separate thread performs a new INSERT on the same
** database connection while the [sqlite3_last_insert_rowid()]
** function is running and thus changes the last insert rowid,
** then the value returned by [sqlite3_last_insert_rowid()] is
sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
/*
-** CAPI3REF: Count The Number Of Rows Modified {F12240}
+** CAPI3REF: Count The Number Of Rows Modified {H12240} <S10600>
**
** This function returns the number of database rows that were changed
** or inserted or deleted by the most recently completed SQL statement
-** on the connection specified by the first parameter. Only
-** changes that are directly specified by the INSERT, UPDATE, or
-** DELETE statement are counted. Auxiliary changes caused by
+** on the [database connection] specified by the first parameter.
+** Only changes that are directly specified by the INSERT, UPDATE,
+** or DELETE statement are counted. Auxiliary changes caused by
** triggers are not counted. Use the [sqlite3_total_changes()] function
** to find the total number of changes including changes caused by triggers.
**
** most recent INSERT, UPDATE, or DELETE statement within the same
** trigger context.
**
-** So when called from the top level, this function returns the
+** Thus, when called from the top level, this function returns the
** number of changes in the most recent INSERT, UPDATE, or DELETE
-** that also occurred at the top level.
-** Within the body of a trigger, the sqlite3_changes() interface
-** can be called to find the number of
+** that also occurred at the top level. Within the body of a trigger,
+** the sqlite3_changes() interface can be called to find the number of
** changes in the most recently completed INSERT, UPDATE, or DELETE
** statement within the body of the same trigger.
-** However, the number returned does not include in changes
-** caused by subtriggers since they have their own context.
-**
-** SQLite implements the command "DELETE FROM table" without
-** a WHERE clause by dropping and recreating the table. (This is much
-** faster than going through and deleting individual elements from the
-** table.) Because of this optimization, the deletions in
-** "DELETE FROM table" are not row changes and will not be counted
-** by the sqlite3_changes() or [sqlite3_total_changes()] functions.
-** To get an accurate count of the number of rows deleted, use
+** However, the number returned does not include changes
+** caused by subtriggers since those have their own context.
+**
+** SQLite implements the command "DELETE FROM table" without a WHERE clause
+** by dropping and recreating the table. (This is much faster than going
+** through and deleting individual elements from the table.) Because of this
+** optimization, the deletions in "DELETE FROM table" are not row changes and
+** will not be counted by the sqlite3_changes() or [sqlite3_total_changes()]
+** functions, regardless of the number of elements that were originally
+** in the table. To get an accurate count of the number of rows deleted, use
** "DELETE FROM table WHERE 1" instead.
**
** INVARIANTS:
**
-** {F12241} The [sqlite3_changes()] function returns the number of
+** {H12241} The [sqlite3_changes()] function shall return the number of
** row changes caused by the most recent INSERT, UPDATE,
** or DELETE statement on the same database connection and
-** within the same trigger context, or zero if there have
+** within the same or higher trigger context, or zero if there have
** not been any qualifying row changes.
**
-** LIMITATIONS:
+** {H12243} Statements of the form "DELETE FROM tablename" with no
+** WHERE clause shall cause subsequent calls to
+** [sqlite3_changes()] to return zero, regardless of the
+** number of rows originally in the table.
+**
+** ASSUMPTIONS:
**
-** {U12252} If a separate thread makes changes on the same database connection
+** {A12252} If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
-** is unpredictable and unmeaningful.
+** is unpredictable and not meaningful.
*/
int sqlite3_changes(sqlite3*);
/*
-** CAPI3REF: Total Number Of Rows Modified {F12260}
-***
-** This function returns the number of row changes caused
-** by INSERT, UPDATE or DELETE statements since the database handle
-** was opened. The count includes all changes from all trigger
-** contexts. But the count does not include changes used to
-** implement REPLACE constraints, do rollbacks or ABORT processing,
-** or DROP table processing.
-** The changes
-** are counted as soon as the statement that makes them is completed
-** (when the statement handle is passed to [sqlite3_reset()] or
+** CAPI3REF: Total Number Of Rows Modified {H12260} <S10600>
+**
+** This function returns the number of row changes caused by INSERT,
+** UPDATE or DELETE statements since the [database connection] was opened.
+** The count includes all changes from all trigger contexts. However,
+** the count does not include changes used to implement REPLACE constraints,
+** do rollbacks or ABORT processing, or DROP table processing.
+** The changes are counted as soon as the statement that makes them is
+** completed (when the statement handle is passed to [sqlite3_reset()] or
** [sqlite3_finalize()]).
**
-** SQLite implements the command "DELETE FROM table" without
-** a WHERE clause by dropping and recreating the table. (This is much
-** faster than going
-** through and deleting individual elements from the table.) Because of
-** this optimization, the change count for "DELETE FROM table" will be
-** zero regardless of the number of elements that were originally in the
-** table. To get an accurate count of the number of rows deleted, use
+** SQLite implements the command "DELETE FROM table" without a WHERE clause
+** by dropping and recreating the table. (This is much faster than going
+** through and deleting individual elements from the table.) Because of this
+** optimization, the deletions in "DELETE FROM table" are not row changes and
+** will not be counted by the sqlite3_changes() or [sqlite3_total_changes()]
+** functions, regardless of the number of elements that were originally
+** in the table. To get an accurate count of the number of rows deleted, use
** "DELETE FROM table WHERE 1" instead.
**
** See also the [sqlite3_changes()] interface.
**
** INVARIANTS:
-**
-** {F12261} The [sqlite3_total_changes()] returns the total number
+**
+** {H12261} The [sqlite3_total_changes()] returns the total number
** of row changes caused by INSERT, UPDATE, and/or DELETE
** statements on the same [database connection], in any
-** trigger context, since the database connection was
-** created.
+** trigger context, since the database connection was created.
+**
+** {H12263} Statements of the form "DELETE FROM tablename" with no
+** WHERE clause shall not change the value returned
+** by [sqlite3_total_changes()].
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U12264} If a separate thread makes changes on the same database connection
-** while [sqlite3_total_changes()] is running then the value
-** returned is unpredictable and unmeaningful.
+** {A12264} If a separate thread makes changes on the same database connection
+** while [sqlite3_total_changes()] is running then the value
+** returned is unpredictable and not meaningful.
*/
int sqlite3_total_changes(sqlite3*);
/*
-** CAPI3REF: Interrupt A Long-Running Query {F12270}
+** CAPI3REF: Interrupt A Long-Running Query {H12270} <S30500>
**
** This function causes any pending database operation to abort and
** return at its earliest opportunity. This routine is typically
**
** It is safe to call this routine from a thread different from the
** thread that is currently running the database operation. But it
-** is not safe to call this routine with a database connection that
+** is not safe to call this routine with a [database connection] that
** is closed or might close before sqlite3_interrupt() returns.
**
-** If an SQL is very nearly finished at the time when sqlite3_interrupt()
-** is called, then it might not have an opportunity to be interrupted.
-** It might continue to completion.
-** An SQL operation that is interrupted will return
-** [SQLITE_INTERRUPT]. If the interrupted SQL operation is an
-** INSERT, UPDATE, or DELETE that is inside an explicit transaction,
-** then the entire transaction will be rolled back automatically.
+** If an SQL operation is very nearly finished at the time when
+** sqlite3_interrupt() is called, then it might not have an opportunity
+** to be interrupted and might continue to completion.
+**
+** An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
+** If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
+** that is inside an explicit transaction, then the entire transaction
+** will be rolled back automatically.
+**
** A call to sqlite3_interrupt() has no effect on SQL statements
** that are started after sqlite3_interrupt() returns.
**
** INVARIANTS:
**
-** {F12271} The [sqlite3_interrupt()] interface will force all running
+** {H12271} The [sqlite3_interrupt()] interface will force all running
** SQL statements associated with the same database connection
-** to halt after processing at most one additional row of
-** data.
+** to halt after processing at most one additional row of data.
**
-** {F12272} Any SQL statement that is interrupted by [sqlite3_interrupt()]
+** {H12272} Any SQL statement that is interrupted by [sqlite3_interrupt()]
** will return [SQLITE_INTERRUPT].
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U12279} If the database connection closes while [sqlite3_interrupt()]
+** {A12279} If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
void sqlite3_interrupt(sqlite3*);
/*
-** CAPI3REF: Determine If An SQL Statement Is Complete {F10510}
+** CAPI3REF: Determine If An SQL Statement Is Complete {H10510} <S70200>
**
** These routines are useful for command-line input to determine if the
** currently entered text seems to form complete a SQL statement or
** independent tokens (they are part of the token in which they are
** embedded) and thus do not count as a statement terminator.
**
-** These routines do not parse the SQL and
-** so will not detect syntactically incorrect SQL.
+** These routines do not parse the SQL statements thus
+** will not detect syntactically incorrect SQL.
**
** INVARIANTS:
**
-** {F10511} The sqlite3_complete() and sqlite3_complete16() functions
-** return true (non-zero) if and only if the last
-** non-whitespace token in their input is a semicolon that
-** is not in between the BEGIN and END of a CREATE TRIGGER
-** statement.
+** {H10511} A successful evaluation of [sqlite3_complete()] or
+** [sqlite3_complete16()] functions shall
+** return a numeric 1 if and only if the last non-whitespace
+** token in their input is a semicolon that is not in between
+** the BEGIN and END of a CREATE TRIGGER statement.
+**
+** {H10512} If a memory allocation error occurs during an invocation
+** of [sqlite3_complete()] or [sqlite3_complete16()] then the
+** routine shall return [SQLITE_NOMEM].
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U10512} The input to sqlite3_complete() must be a zero-terminated
+** {A10512} The input to [sqlite3_complete()] must be a zero-terminated
** UTF-8 string.
**
-** {U10513} The input to sqlite3_complete16() must be a zero-terminated
+** {A10513} The input to [sqlite3_complete16()] must be a zero-terminated
** UTF-16 string in native byte order.
*/
int sqlite3_complete(const char *sql);
int sqlite3_complete16(const void *sql);
/*
-** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310}
-**
-** This routine identifies a callback function that might be
-** invoked whenever an attempt is made to open a database table
-** that another thread or process has locked.
-** If the busy callback is NULL, then [SQLITE_BUSY]
-** or [SQLITE_IOERR_BLOCKED]
-** is returned immediately upon encountering the lock.
-** If the busy callback is not NULL, then the
-** callback will be invoked with two arguments. The
-** first argument to the handler is a copy of the void* pointer which
-** is the third argument to this routine. The second argument to
-** the handler is the number of times that the busy handler has
-** been invoked for this locking event. If the
+** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {H12310} <S40400>
+**
+** This routine sets a callback function that might be invoked whenever
+** an attempt is made to open a database table that another thread
+** or process has locked.
+**
+** If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]
+** is returned immediately upon encountering the lock. If the busy callback
+** is not NULL, then the callback will be invoked with two arguments.
+**
+** The first argument to the handler is a copy of the void* pointer which
+** is the third argument to sqlite3_busy_handler(). The second argument to
+** the handler callback is the number of times that the busy handler has
+** been invoked for this locking event. If the
** busy callback returns 0, then no additional attempts are made to
** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
** If the callback returns non-zero, then another attempt
** is made to open the database for reading and the cycle repeats.
**
-** The presence of a busy handler does not guarantee that
-** it will be invoked when there is lock contention.
-** If SQLite determines that invoking the busy handler could result in
-** a deadlock, it will go ahead and return [SQLITE_BUSY] or
-** [SQLITE_IOERR_BLOCKED] instead of invoking the
-** busy handler.
+** The presence of a busy handler does not guarantee that it will be invoked
+** when there is lock contention. If SQLite determines that invoking the busy
+** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
+** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler.
** Consider a scenario where one process is holding a read lock that
** it is trying to promote to a reserved lock and
** a second process is holding a reserved lock that it is trying
** code is promoted from the relatively benign [SQLITE_BUSY] to
** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion
** forces an automatic rollback of the changes. See the
-** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError">
+** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError">
** CorruptionFollowingBusyError</a> wiki page for a discussion of why
** this is important.
-**
-** There can only be a single busy handler defined for each database
-** connection. Setting a new busy handler clears any previous one.
-** Note that calling [sqlite3_busy_timeout()] will also set or clear
-** the busy handler.
+**
+** There can only be a single busy handler defined for each
+** [database connection]. Setting a new busy handler clears any
+** previously set handler. Note that calling [sqlite3_busy_timeout()]
+** will also set or clear the busy handler.
**
** INVARIANTS:
**
-** {F12311} The [sqlite3_busy_handler()] function replaces the busy handler
-** callback in the database connection identified by the 1st
-** parameter with a new busy handler identified by the 2nd and 3rd
-** parameters.
+** {H12311} The [sqlite3_busy_handler(D,C,A)] function shall replace
+** busy callback in the [database connection] D with a new
+** a new busy handler C and application data pointer A.
**
-** {F12312} The default busy handler for new database connections is NULL.
+** {H12312} Newly created [database connections] shall have a busy
+** handler of NULL.
**
-** {F12314} When two or more database connection share a common cache,
+** {H12314} When two or more [database connections] share a
+** [sqlite3_enable_shared_cache | common cache],
** the busy handler for the database connection currently using
-** the cache is invoked when the cache encounters a lock.
+** the cache shall be invoked when the cache encounters a lock.
**
-** {F12316} If a busy handler callback returns zero, then the SQLite
-** interface that provoked the locking event will return
-** [SQLITE_BUSY].
+** {H12316} If a busy handler callback returns zero, then the SQLite interface
+** that provoked the locking event shall return [SQLITE_BUSY].
**
-** {F12318} SQLite will invokes the busy handler with two argument which
+** {H12318} SQLite shall invokes the busy handler with two arguments which
** are a copy of the pointer supplied by the 3rd parameter to
** [sqlite3_busy_handler()] and a count of the number of prior
** invocations of the busy handler for the same locking event.
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U12319} A busy handler should not call close the database connection
-** or prepared statement that invoked the busy handler.
+** {A12319} A busy handler must not close the database connection
+** or [prepared statement] that invoked the busy handler.
*/
int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
/*
-** CAPI3REF: Set A Busy Timeout {F12340}
+** CAPI3REF: Set A Busy Timeout {H12340} <S40410>
**
-** This routine sets a [sqlite3_busy_handler | busy handler]
-** that sleeps for a while when a
-** table is locked. The handler will sleep multiple times until
-** at least "ms" milliseconds of sleeping have been done. {F12343} After
-** "ms" milliseconds of sleeping, the handler returns 0 which
-** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
+** This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
+** for a specified amount of time when a table is locked. The handler
+** will sleep multiple times until at least "ms" milliseconds of sleeping
+** have accumulated. {H12343} After "ms" milliseconds of sleeping,
+** the handler returns 0 which causes [sqlite3_step()] to return
+** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
**
** Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
**
-** There can only be a single busy handler for a particular database
-** connection. If another busy handler was defined
-** (using [sqlite3_busy_handler()]) prior to calling
+** There can only be a single busy handler for a particular
+** [database connection] any any given moment. If another busy handler
+** was defined (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.
**
** INVARIANTS:
**
-** {F12341} The [sqlite3_busy_timeout()] function overrides any prior
+** {H12341} The [sqlite3_busy_timeout()] function shall override any prior
** [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting
-** on the same database connection.
+** on the same [database connection].
**
-** {F12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than
-** or equal to zero, then the busy handler is cleared so that
+** {H12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than
+** or equal to zero, then the busy handler shall be cleared so that
** all subsequent locking events immediately return [SQLITE_BUSY].
**
-** {F12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive
-** number N, then a busy handler is set that repeatedly calls
-** the xSleep() method in the VFS interface until either the
-** lock clears or until the cumulative sleep time reported back
-** by xSleep() exceeds N milliseconds.
+** {H12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive
+** number N, then a busy handler shall be set that repeatedly calls
+** the xSleep() method in the [sqlite3_vfs | VFS interface] until
+** either the lock clears or until the cumulative sleep time
+** reported back by xSleep() exceeds N milliseconds.
*/
int sqlite3_busy_timeout(sqlite3*, int ms);
/*
-** CAPI3REF: Convenience Routines For Running Queries {F12370}
+** CAPI3REF: Convenience Routines For Running Queries {H12370} <S10000>
**
** Definition: A <b>result table</b> is memory data structure created by the
** [sqlite3_get_table()] interface. A result table records the
** numbers are obtained separately. Let N be the number of rows
** and M be the number of columns.
**
-** A result table is an array of pointers to zero-terminated
-** UTF-8 strings. There are (N+1)*M elements in the array.
-** The first M pointers point to zero-terminated strings that
-** contain the names of the columns.
-** The remaining entries all point to query results. NULL
-** values are give a NULL pointer. All other values are in
-** their UTF-8 zero-terminated string representation as returned by
-** [sqlite3_column_text()].
+** A result table is an array of pointers to zero-terminated UTF-8 strings.
+** There are (N+1)*M elements in the array. The first M pointers point
+** to zero-terminated strings that contain the names of the columns.
+** The remaining entries all point to query results. NULL values result
+** in NULL pointers. All other values are in their UTF-8 zero-terminated
+** string representation as returned by [sqlite3_column_text()].
**
-** A result table might consists of one or more memory allocations.
+** A result table might consist of one or more memory allocations.
** It is not safe to pass a result table directly to [sqlite3_free()].
** A result table should be deallocated using [sqlite3_free_table()].
**
** string of its 2nd parameter. It returns a result table to the
** pointer given in its 3rd parameter.
**
-** After the calling function has finished using the result, it should
-** pass the pointer to the result table to sqlite3_free_table() in order to
-** release the memory that was malloc-ed. Because of the way the
+** After the calling function has finished using the result, it should
+** pass the pointer to the result table to sqlite3_free_table() in order to
+** release the memory that was malloced. Because of the way the
** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
-** function must not try to call [sqlite3_free()] directly. Only
+** function must not try to call [sqlite3_free()] directly. Only
** [sqlite3_free_table()] is able to release the memory properly and safely.
**
** The sqlite3_get_table() interface is implemented as a wrapper around
** to any internal data structures of SQLite. It uses only the public
** interface defined here. As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
-** reflected in subsequent calls to [sqlite3_errcode()] or
-** [sqlite3_errmsg()].
+** reflected in subsequent calls to [sqlite3_errcode()] or [sqlite3_errmsg()].
**
** INVARIANTS:
**
-** {F12371} If a [sqlite3_get_table()] fails a memory allocation, then
-** it frees the result table under construction, aborts the
-** query in process, skips any subsequent queries, sets the
-** *resultp output pointer to NULL and returns [SQLITE_NOMEM].
-**
-** {F12373} If the ncolumn parameter to [sqlite3_get_table()] is not NULL
-** then [sqlite3_get_table()] write the number of columns in the
-** result set of the query into *ncolumn if the query is
-** successful (if the function returns SQLITE_OK).
+** {H12371} If a [sqlite3_get_table()] fails a memory allocation, then
+** it shall free the result table under construction, abort the
+** query in process, skip any subsequent queries, set the
+** *pazResult output pointer to NULL and return [SQLITE_NOMEM].
+**
+** {H12373} If the pnColumn parameter to [sqlite3_get_table()] is not NULL
+** then a successful invocation of [sqlite3_get_table()] shall
+** write the number of columns in the
+** result set of the query into *pnColumn.
+**
+** {H12374} If the pnRow parameter to [sqlite3_get_table()] is not NULL
+** then a successful invocation of [sqlite3_get_table()] shall
+** writes the number of rows in the
+** result set of the query into *pnRow.
+**
+** {H12376} A successful invocation of [sqlite3_get_table()] that computes
+** N rows of result with C columns per row shall make *pazResult
+** point to an array of pointers to (N+1)*C strings where the first
+** C strings are column names as obtained from
+** [sqlite3_column_name()] and the rest are column result values
+** obtained from [sqlite3_column_text()].
**
-** {F12374} If the nrow parameter to [sqlite3_get_table()] is not NULL
-** then [sqlite3_get_table()] write the number of rows in the
-** result set of the query into *nrow if the query is
-** successful (if the function returns SQLITE_OK).
+** {H12379} The values in the pazResult array returned by [sqlite3_get_table()]
+** shall remain valid until cleared by [sqlite3_free_table()].
**
-** {F12376} The [sqlite3_get_table()] function sets its *ncolumn value
-** to the number of columns in the result set of the query in the
-** sql parameter, or to zero if the query in sql has an empty
-** result set.
+** {H12382} When an error occurs during evaluation of [sqlite3_get_table()]
+** the function shall set *pazResult to NULL, write an error message
+** into memory obtained from [sqlite3_malloc()], make
+** **pzErrmsg point to that error message, and return a
+** appropriate [error code].
*/
int sqlite3_get_table(
- sqlite3*, /* An open database */
- const char *sql, /* SQL to be evaluated */
- char ***pResult, /* Results of the query */
- int *nrow, /* Number of result rows written here */
- int *ncolumn, /* Number of result columns written here */
- char **errmsg /* Error msg written here */
+ sqlite3 *db, /* An open database */
+ const char *zSql, /* SQL to be evaluated */
+ char ***pazResult, /* Results of the query */
+ int *pnRow, /* Number of result rows written here */
+ int *pnColumn, /* Number of result columns written here */
+ char **pzErrmsg /* Error msg written here */
);
void sqlite3_free_table(char **result);
/*
-** CAPI3REF: Formatted String Printing Functions {F17400}
+** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000>
**
** These routines are workalikes of the "printf()" family of functions
** from the standard C library.
** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
-** released by [sqlite3_free()]. Both routines return a
+** released by [sqlite3_free()]. Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
** memory to hold the resulting string.
**
**
** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
-** All of the usual printf formatting options apply. In addition, there
+** All of the usual printf() formatting options apply. In addition, there
** is are "%q", "%Q", and "%z" options.
**
** The %q option works like %s in that it substitutes a null-terminated
** character it escapes that character and allows it to be inserted into
** the string.
**
-** For example, so some string variable contains text as follows:
+** For example, assume the string variable zText contains text as follows:
**
** <blockquote><pre>
** char *zText = "It's a happy day!";
** INSERT INTO table1 VALUES('It's a happy day!');
** </pre></blockquote>
**
-** This second example is an SQL syntax error. As a general rule you
-** should always use %q instead of %s when inserting text into a string
-** literal.
+** This second example is an SQL syntax error. As a general rule you should
+** always use %q instead of %s when inserting text into a string literal.
**
** The %Q option works like %q except it also adds single quotes around
-** the outside of the total string. Or if the parameter in the argument
-** list is a NULL pointer, %Q substitutes the text "NULL" (without single
-** quotes) in place of the %Q option. {END} So, for example, one could say:
+** the outside of the total string. Additionally, if the parameter in the
+** argument list is a NULL pointer, %Q substitutes the text "NULL" (without
+** single quotes) in place of the %Q option. So, for example, one could say:
**
** <blockquote><pre>
** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
**
** INVARIANTS:
**
-** {F17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
+** {H17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
** return either pointers to zero-terminated UTF-8 strings held in
** memory obtained from [sqlite3_malloc()] or NULL pointers if
** a call to [sqlite3_malloc()] fails.
**
-** {F17406} The [sqlite3_snprintf()] interface writes a zero-terminated
+** {H17406} The [sqlite3_snprintf()] interface writes a zero-terminated
** UTF-8 string into the buffer pointed to by the second parameter
** provided that the first parameter is greater than zero.
**
-** {F17407} The [sqlite3_snprintf()] interface does not writes slots of
+** {H17407} The [sqlite3_snprintf()] interface does not write slots of
** its output buffer (the second parameter) outside the range
** of 0 through N-1 (where N is the first parameter)
** regardless of the length of the string
** requested by the format specification.
-**
*/
char *sqlite3_mprintf(const char*,...);
char *sqlite3_vmprintf(const char*, va_list);
char *sqlite3_snprintf(int,char*,const char*, ...);
/*
-** CAPI3REF: Memory Allocation Subsystem {F17300}
+** CAPI3REF: Memory Allocation Subsystem {H17300} <S20000>
**
** The SQLite core uses these three routines for all of its own
** internal memory allocation needs. "Core" in the previous sentence
** does not include operating-system specific VFS implementation. The
-** windows VFS uses native malloc and free for some operations.
+** Windows VFS uses native malloc() and free() for some operations.
**
** The sqlite3_malloc() routine returns a pointer to a block
** of memory at least N bytes in length, where N is the parameter.
** If the second parameter to sqlite3_realloc() is zero or
** negative then the behavior is exactly the same as calling
** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
-** Sqlite3_realloc() returns a pointer to a memory allocation
+** sqlite3_realloc() returns a pointer to a memory allocation
** of at least N bytes in size or NULL if sufficient memory is unavailable.
** If M is the size of the prior allocation, then min(N,M) bytes
** of the prior allocation are copied into the beginning of buffer returned
** The memory returned by sqlite3_malloc() and sqlite3_realloc()
** is always aligned to at least an 8 byte boundary. {END}
**
-** The default implementation
-** of the memory allocation subsystem uses the malloc(), realloc()
-** and free() provided by the standard C library. {F17382} However, if
-** SQLite is compiled with the following C preprocessor macro
-**
-** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote>
-**
-** where <i>NNN</i> is an integer, then SQLite create a static
-** array of at least <i>NNN</i> bytes in size and use that array
-** for all of its dynamic memory allocation needs. {END} Additional
-** memory allocator options may be added in future releases.
+** The default implementation of the memory allocation subsystem uses
+** the malloc(), realloc() and free() provided by the standard C library.
+** {H17382} However, if SQLite is compiled with the
+** SQLITE_MEMORY_SIZE=<i>NNN</i> C preprocessor macro (where <i>NNN</i>
+** is an integer), then SQLite create a static array of at least
+** <i>NNN</i> bytes in size and uses that array for all of its dynamic
+** memory allocation needs. {END} Additional memory allocator options
+** may be added in future releases.
**
** In SQLite version 3.5.0 and 3.5.1, it was possible to define
** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
** implementation of these routines to be omitted. That capability
-** is no longer provided. Only built-in memory allocators can be
-** used.
+** is no longer provided. Only built-in memory allocators can be used.
**
-** The windows OS interface layer calls
+** The Windows OS interface layer calls
** the system malloc() and free() directly when converting
** filenames between the UTF-8 encoding used by SQLite
-** and whatever filename encoding is used by the particular windows
+** and whatever filename encoding is used by the particular Windows
** installation. Memory allocation errors are detected, but
** they are reported back as [SQLITE_CANTOPEN] or
** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
**
** INVARIANTS:
**
-** {F17303} The [sqlite3_malloc(N)] interface returns either a pointer to
-** newly checked-out block of at least N bytes of memory
-** that is 8-byte aligned,
-** or it returns NULL if it is unable to fulfill the request.
+** {H17303} The [sqlite3_malloc(N)] interface returns either a pointer to
+** a newly checked-out block of at least N bytes of memory
+** that is 8-byte aligned, or it returns NULL if it is unable
+** to fulfill the request.
**
-** {F17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if
+** {H17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if
** N is less than or equal to zero.
**
-** {F17305} The [sqlite3_free(P)] interface releases memory previously
+** {H17305} The [sqlite3_free(P)] interface releases memory previously
** returned from [sqlite3_malloc()] or [sqlite3_realloc()],
** making it available for reuse.
**
-** {F17306} A call to [sqlite3_free(NULL)] is a harmless no-op.
+** {H17306} A call to [sqlite3_free(NULL)] is a harmless no-op.
**
-** {F17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call
+** {H17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call
** to [sqlite3_malloc(N)].
**
-** {F17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call
+** {H17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call
** to [sqlite3_free(P)].
**
-** {F17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()],
+** {H17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()],
** and [sqlite3_free()] for all of its memory allocation and
** deallocation needs.
**
-** {F17318} The [sqlite3_realloc(P,N)] interface returns either a pointer
+** {H17318} The [sqlite3_realloc(P,N)] interface returns either a pointer
** to a block of checked-out memory of at least N bytes in size
** that is 8-byte aligned, or a NULL pointer.
**
-** {F17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
-** copies the first K bytes of content from P into the newly allocated
-** where K is the lessor of N and the size of the buffer P.
+** {H17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
+** copies the first K bytes of content from P into the newly
+** allocated block, where K is the lesser of N and the size of
+** the buffer P.
**
-** {F17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
+** {H17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
** releases the buffer P.
**
-** {F17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is
+** {H17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is
** not modified or released.
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
-** must be either NULL or else a pointer obtained from a prior
-** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that has
-** not been released.
+** {A17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
+** must be either NULL or else pointers obtained from a prior
+** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
+** not yet been released.
**
-** {U17351} The application must not read or write any part of
+** {A17351} The application must not read or write any part of
** a block of memory after it has been released using
** [sqlite3_free()] or [sqlite3_realloc()].
-**
*/
void *sqlite3_malloc(int);
void *sqlite3_realloc(void*, int);
void sqlite3_free(void*);
/*
-** CAPI3REF: Memory Allocator Statistics {F17370}
+** CAPI3REF: Memory Allocator Statistics {H17370} <S30210>
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
-** the memory allocation subsystem included within the SQLite.
+** routines, which form the built-in memory allocation subsystem.
**
** INVARIANTS:
**
-** {F17371} The [sqlite3_memory_used()] routine returns the
-** number of bytes of memory currently outstanding
-** (malloced but not freed).
+** {H17371} The [sqlite3_memory_used()] routine returns the number of bytes
+** of memory currently outstanding (malloced but not freed).
**
-** {F17373} The [sqlite3_memory_highwater()] routine returns the maximum
-** value of [sqlite3_memory_used()]
-** since the highwater mark was last reset.
+** {H17373} The [sqlite3_memory_highwater()] routine returns the maximum
+** value of [sqlite3_memory_used()] since the high-water mark
+** was last reset.
**
-** {F17374} The values returned by [sqlite3_memory_used()] and
+** {H17374} The values returned by [sqlite3_memory_used()] and
** [sqlite3_memory_highwater()] include any overhead
** added by SQLite in its implementation of [sqlite3_malloc()],
** but not overhead added by the any underlying system library
** routines that [sqlite3_malloc()] may call.
-**
-** {F17375} The memory highwater mark is reset to the current value of
+**
+** {H17375} The memory high-water mark is reset to the current value of
** [sqlite3_memory_used()] if and only if the parameter to
** [sqlite3_memory_highwater()] is true. The value returned
-** by [sqlite3_memory_highwater(1)] is the highwater mark
+** by [sqlite3_memory_highwater(1)] is the high-water mark
** prior to the reset.
*/
sqlite3_int64 sqlite3_memory_used(void);
sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
/*
-** CAPI3REF: Pseudo-Random Number Generator {F17390}
+** CAPI3REF: Pseudo-Random Number Generator {H17390} <S20000>
**
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random ROWIDs when inserting new records into a table that
** already uses the largest possible ROWID. The PRNG is also used for
** the build-in random() and randomblob() SQL functions. This interface allows
-** appliations to access the same PRNG for other purposes.
+** applications to access the same PRNG for other purposes.
**
** A call to this routine stores N bytes of randomness into buffer P.
**
**
** INVARIANTS:
**
-** {F17392} The [sqlite3_randomness(N,P)] interface writes N bytes of
+** {H17392} The [sqlite3_randomness(N,P)] interface writes N bytes of
** high-quality pseudo-randomness into buffer P.
*/
void sqlite3_randomness(int N, void *P);
/*
-** CAPI3REF: Compile-Time Authorization Callbacks {F12500}
+** CAPI3REF: Compile-Time Authorization Callbacks {H12500} <S70100>
**
** This routine registers a authorizer callback with a particular
** [database connection], supplied in the first argument.
** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
** specific action but allow the SQL statement to continue to be
** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
-** rejected with an error. If the authorizer callback returns
+** rejected with an error. If the authorizer callback returns
** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
-** then [sqlite3_prepare_v2()] or equivalent call that triggered
+** then the [sqlite3_prepare_v2()] or equivalent call that triggered
** the authorizer will fail with an error message.
**
** When the callback returns [SQLITE_OK], that means the operation
** return can be used to deny an untrusted user access to individual
** columns of a table.
**
-** The first parameter to the authorizer callback is a copy of
-** the third parameter to the sqlite3_set_authorizer() interface.
-** The second parameter to the callback is an integer
-** [SQLITE_COPY | action code] that specifies the particular action
-** to be authorized. The third through sixth
-** parameters to the callback are zero-terminated strings that contain
-** additional details about the action to be authorized.
+** The first parameter to the authorizer callback is a copy of the third
+** parameter to the sqlite3_set_authorizer() interface. The second parameter
+** to the callback is an integer [SQLITE_COPY | action code] that specifies
+** the particular action to be authorized. The third through sixth parameters
+** to the callback are zero-terminated strings that contain additional
+** details about the action to be authorized.
**
** An authorizer is used when [sqlite3_prepare | preparing]
-** SQL statements from an untrusted
-** source, to ensure that the SQL statements do not try to access data
-** that they are not allowed to see, or that they do not try to
-** execute malicious statements that damage the database. For
+** SQL statements from an untrusted source, to ensure that the SQL statements
+** do not try to access data they are not allowed to see, or that they do not
+** try to execute malicious statements that damage the database. For
** example, an application may allow a user to enter arbitrary
** SQL queries for evaluation by a database. But the application does
** not want the user to be able to make arbitrary changes to the
** previous call. Disable the authorizer by installing a NULL callback.
** The authorizer is disabled by default.
**
-** Note that the authorizer callback is invoked only during
+** Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants. Authorization is not
** performed during statement evaluation in [sqlite3_step()].
**
** INVARIANTS:
**
-** {F12501} The [sqlite3_set_authorizer(D,...)] interface registers a
+** {H12501} The [sqlite3_set_authorizer(D,...)] interface registers a
** authorizer callback with database connection D.
**
-** {F12502} The authorizer callback is invoked as SQL statements are
-** being compiled
+** {H12502} The authorizer callback is invoked as SQL statements are
+** being compiled.
**
-** {F12503} If the authorizer callback returns any value other than
-** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] then
+** {H12503} If the authorizer callback returns any value other than
+** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY], then
** the [sqlite3_prepare_v2()] or equivalent call that caused
** the authorizer callback to run shall fail with an
** [SQLITE_ERROR] error code and an appropriate error message.
**
-** {F12504} When the authorizer callback returns [SQLITE_OK], the operation
-** described is coded normally.
+** {H12504} When the authorizer callback returns [SQLITE_OK], the operation
+** described is processed normally.
**
-** {F12505} When the authorizer callback returns [SQLITE_DENY], the
+** {H12505} When the authorizer callback returns [SQLITE_DENY], the
** [sqlite3_prepare_v2()] or equivalent call that caused the
** authorizer callback to run shall fail
** with an [SQLITE_ERROR] error code and an error message
** explaining that access is denied.
**
-** {F12506} If the authorizer code (the 2nd parameter to the authorizer
+** {H12506} If the authorizer code (the 2nd parameter to the authorizer
** callback) is [SQLITE_READ] and the authorizer callback returns
-** [SQLITE_IGNORE] then the prepared statement is constructed to
+** [SQLITE_IGNORE], then the prepared statement is constructed to
** insert a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.
**
-** {F12507} If the authorizer code (the 2nd parameter to the authorizer
+** {H12507} If the authorizer code (the 2nd parameter to the authorizer
** callback) is anything other than [SQLITE_READ], then
-** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY].
+** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY].
**
-** {F12510} The first parameter to the authorizer callback is a copy of
+** {H12510} The first parameter to the authorizer callback is a copy of
** the third parameter to the [sqlite3_set_authorizer()] interface.
**
-** {F12511} The second parameter to the callback is an integer
+** {H12511} The second parameter to the callback is an integer
** [SQLITE_COPY | action code] that specifies the particular action
** to be authorized.
**
-** {F12512} The third through sixth parameters to the callback are
-** zero-terminated strings that contain
+** {H12512} The third through sixth parameters to the callback are
+** zero-terminated strings that contain
** additional details about the action to be authorized.
**
-** {F12520} Each call to [sqlite3_set_authorizer()] overrides the
+** {H12520} Each call to [sqlite3_set_authorizer()] overrides
** any previously installed authorizer.
**
-** {F12521} A NULL authorizer means that no authorization
+** {H12521} A NULL authorizer means that no authorization
** callback is invoked.
**
-** {F12522} The default authorizer is NULL.
+** {H12522} The default authorizer is NULL.
*/
int sqlite3_set_authorizer(
sqlite3*,
);
/*
-** CAPI3REF: Authorizer Return Codes {F12590}
+** CAPI3REF: Authorizer Return Codes {H12590} <H12500>
**
** The [sqlite3_set_authorizer | authorizer callback function] must
** return either [SQLITE_OK] or one of these two constants in order
#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
/*
-** CAPI3REF: Authorizer Action Codes {F12550}
+** CAPI3REF: Authorizer Action Codes {H12550} <H12500>
**
** The [sqlite3_set_authorizer()] interface registers a callback function
-** that is invoked to authorizer certain SQL statement actions. The
+** that is invoked to authorize certain SQL statement actions. The
** second parameter to the callback is an integer code that specifies
** what action is being authorized. These are the integer action codes that
** the authorizer callback may be passed.
**
-** These action code values signify what kind of operation is to be
+** These action code values signify what kind of operation is to be
** authorized. The 3rd and 4th parameters to the authorization
** callback function will be parameters or NULL depending on which of these
** codes is used as the second parameter. The 5th parameter to the
-** authorizer callback is the name of the database ("main", "temp",
+** authorizer callback is the name of the database ("main", "temp",
** etc.) if applicable. The 6th parameter to the authorizer callback
** is the name of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from
+** the access attempt or NULL if this access attempt is directly from
** top-level SQL code.
**
** INVARIANTS:
**
-** {F12551} The second parameter to an
-** [sqlite3_set_authorizer | authorizer callback is always an integer
+** {H12551} The second parameter to an
+** [sqlite3_set_authorizer | authorizer callback] is always an integer
** [SQLITE_COPY | authorizer code] that specifies what action
** is being authorized.
**
-** {F12552} The 3rd and 4th parameters to the
-** [sqlite3_set_authorizer | authorization callback function]
-** will be parameters or NULL depending on which
+** {H12552} The 3rd and 4th parameters to the
+** [sqlite3_set_authorizer | authorization callback]
+** will be parameters or NULL depending on which
** [SQLITE_COPY | authorizer code] is used as the second parameter.
**
-** {F12553} The 5th parameter to the
+** {H12553} The 5th parameter to the
** [sqlite3_set_authorizer | authorizer callback] is the name
** of the database (example: "main", "temp", etc.) if applicable.
**
-** {F12554} The 6th parameter to the
+** {H12554} The 6th parameter to the
** [sqlite3_set_authorizer | authorizer callback] is the name
** of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from
+** the access attempt or NULL if this access attempt is directly from
** top-level SQL code.
*/
/******************************************* 3rd ************ 4th ***********/
#define SQLITE_COPY 0 /* No longer used */
/*
-** CAPI3REF: Tracing And Profiling Functions {F12280}
+** CAPI3REF: Tracing And Profiling Functions {H12280} <S60400>
+** EXPERIMENTAL
**
** These routines register callback functions that can be used for
** tracing and profiling the execution of SQL statements.
** various times when an SQL statement is being run by [sqlite3_step()].
** The callback returns a UTF-8 rendering of the SQL statement text
** as the statement first begins executing. Additional callbacks occur
-** as each triggersubprogram is entered. The callbacks for triggers
+** as each triggered subprogram is entered. The callbacks for triggers
** contain a UTF-8 SQL comment that identifies the trigger.
-**
+**
** The callback function registered by sqlite3_profile() is invoked
** as each SQL statement finishes. The profile callback contains
** the original statement text and an estimate of wall-clock time
** of how long that statement took to run.
**
-** The sqlite3_profile() API is currently considered experimental and
-** is subject to change or removal in a future release.
-**
-** The trigger reporting feature of the trace callback is considered
-** experimental and is subject to change or removal in future releases.
-** Future versions of SQLite might also add new trace callback
-** invocations.
-**
** INVARIANTS:
**
-** {F12281} The callback function registered by [sqlite3_trace()] is
+** {H12281} The callback function registered by [sqlite3_trace()] is
** whenever an SQL statement first begins to execute and
** whenever a trigger subprogram first begins to run.
**
-** {F12282} Each call to [sqlite3_trace()] overrides the previously
+** {H12282} Each call to [sqlite3_trace()] overrides the previously
** registered trace callback.
**
-** {F12283} A NULL trace callback disables tracing.
+** {H12283} A NULL trace callback disables tracing.
**
-** {F12284} The first argument to the trace callback is a copy of
+** {H12284} The first argument to the trace callback is a copy of
** the pointer which was the 3rd argument to [sqlite3_trace()].
**
-** {F12285} The second argument to the trace callback is a
-** zero-terminated UTF8 string containing the original text
+** {H12285} The second argument to the trace callback is a
+** zero-terminated UTF-8 string containing the original text
** of the SQL statement as it was passed into [sqlite3_prepare_v2()]
** or the equivalent, or an SQL comment indicating the beginning
** of a trigger subprogram.
**
-** {F12287} The callback function registered by [sqlite3_profile()] is invoked
+** {H12287} The callback function registered by [sqlite3_profile()] is invoked
** as each SQL statement finishes.
**
-** {F12288} The first parameter to the profile callback is a copy of
+** {H12288} The first parameter to the profile callback is a copy of
** the 3rd parameter to [sqlite3_profile()].
**
-** {F12289} The second parameter to the profile callback is a
+** {H12289} The second parameter to the profile callback is a
** zero-terminated UTF-8 string that contains the complete text of
** the SQL statement as it was processed by [sqlite3_prepare_v2()]
** or the equivalent.
**
-** {F12290} The third parameter to the profile callback is an estimate
+** {H12290} The third parameter to the profile callback is an estimate
** of the number of nanoseconds of wall-clock time required to
** run the SQL statement from start to finish.
*/
void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
/*
-** CAPI3REF: Query Progress Callbacks {F12910}
+** CAPI3REF: Query Progress Callbacks {H12910} <S60400>
**
** This routine configures a callback function - the
** progress callback - that is invoked periodically during long
** running calls to [sqlite3_exec()], [sqlite3_step()] and
-** [sqlite3_get_table()]. An example use for this
+** [sqlite3_get_table()]. An example use for this
** interface is to keep a GUI updated during a large query.
**
-** If the progress callback returns non-zero, the opertion is
+** If the progress callback returns non-zero, the operation is
** interrupted. This feature can be used to implement a
** "Cancel" button on a GUI dialog box.
**
** INVARIANTS:
**
-** {F12911} The callback function registered by [sqlite3_progress_handler()]
+** {H12911} The callback function registered by sqlite3_progress_handler()
** is invoked periodically during long running calls to
** [sqlite3_step()].
**
-** {F12912} The progress callback is invoked once for every N virtual
-** machine opcodes, where N is the second argument to
+** {H12912} The progress callback is invoked once for every N virtual
+** machine opcodes, where N is the second argument to
** the [sqlite3_progress_handler()] call that registered
-** the callback. <todo>What if N is less than 1?</todo>
+** the callback. If N is less than 1, sqlite3_progress_handler()
+** acts as if a NULL progress handler had been specified.
**
-** {F12913} The progress callback itself is identified by the third
-** argument to [sqlite3_progress_handler()].
+** {H12913} The progress callback itself is identified by the third
+** argument to sqlite3_progress_handler().
**
-** {F12914} The fourth argument [sqlite3_progress_handler()] is a
-*** void pointer passed to the progress callback
+** {H12914} The fourth argument to sqlite3_progress_handler() is a
+** void pointer passed to the progress callback
** function each time it is invoked.
**
-** {F12915} If a call to [sqlite3_step()] results in fewer than
-** N opcodes being executed,
-** then the progress callback is never invoked. {END}
-**
-** {F12916} Every call to [sqlite3_progress_handler()]
-** overwrites any previously registere progress handler.
+** {H12915} If a call to [sqlite3_step()] results in fewer than N opcodes
+** being executed, then the progress callback is never invoked.
**
-** {F12917} If the progress handler callback is NULL then no progress
+** {H12916} Every call to [sqlite3_progress_handler()]
+** overwrites any previously registered progress handler.
+**
+** {H12917} If the progress handler callback is NULL then no progress
** handler is invoked.
**
-** {F12918} If the progress callback returns a result other than 0, then
+** {H12918} If the progress callback returns a result other than 0, then
** the behavior is a if [sqlite3_interrupt()] had been called.
+** <S30500>
*/
void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
/*
-** CAPI3REF: Opening A New Database Connection {F12700}
-**
-** These routines open an SQLite database file whose name
-** is given by the filename argument.
-** The filename argument is interpreted as UTF-8
-** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
-** in the native byte order for [sqlite3_open16()].
-** An [sqlite3*] handle is usually returned in *ppDb, even
-** if an error occurs. The only exception is if SQLite is unable
-** to allocate memory to hold the [sqlite3] object, a NULL will
-** be written into *ppDb instead of a pointer to the [sqlite3] object.
-** If the database is opened (and/or created)
-** successfully, then [SQLITE_OK] is returned. Otherwise an
-** error code is returned. The
-** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
+** CAPI3REF: Opening A New Database Connection {H12700} <S40200>
+**
+** These routines open an SQLite database file whose name is given by the
+** filename argument. The filename argument is interpreted as UTF-8 for
+** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
+** order for sqlite3_open16(). A [database connection] handle is usually
+** returned in *ppDb, even if an error occurs. The only exception is that
+** if SQLite is unable to allocate memory to hold the [sqlite3] object,
+** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
+** object. If the database is opened (and/or created) successfully, then
+** [SQLITE_OK] is returned. Otherwise an [error code] is returned. The
+** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
** an English language description of the error.
**
** The default encoding for the database will be UTF-8 if
-** [sqlite3_open()] or [sqlite3_open_v2()] is called and
-** UTF-16 in the native byte order if [sqlite3_open16()] is used.
+** sqlite3_open() or sqlite3_open_v2() is called and
+** UTF-16 in the native byte order if sqlite3_open16() is used.
**
** Whether or not an error occurs when it is opened, resources
-** associated with the [sqlite3*] handle should be released by passing it
-** to [sqlite3_close()] when it is no longer required.
+** associated with the [database connection] handle should be released by
+** passing it to [sqlite3_close()] when it is no longer required.
**
-** The [sqlite3_open_v2()] interface works like [sqlite3_open()]
-** except that it acccepts two additional parameters for additional control
-** over the new database connection. The flags parameter can be
-** one of:
+** The sqlite3_open_v2() interface works like sqlite3_open()
+** except that it accepts two additional parameters for additional control
+** over the new database connection. The flags parameter can take one of
+** the following three values, optionally combined with the
+** [SQLITE_OPEN_NOMUTEX] flag:
**
-** <ol>
-** <li> [SQLITE_OPEN_READONLY]
-** <li> [SQLITE_OPEN_READWRITE]
-** <li> [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
-** </ol>
+** <dl>
+** <dt>[SQLITE_OPEN_READONLY]</dt>
+** <dd>The database is opened in read-only mode. If the database does not
+** already exist, an error is returned.</dd>
+**
+** <dt>[SQLITE_OPEN_READWRITE]</dt>
+** <dd>The database is opened for reading and writing if possible, or reading
+** only if the file is write protected by the operating system. In either
+** case the database must already exist, otherwise an error is returned.</dd>
+**
+** <dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
+** <dd>The database is opened for reading and writing, and is creates it if
+** it does not already exist. This is the behavior that is always used for
+** sqlite3_open() and sqlite3_open16().</dd>
+** </dl>
**
-** The first value opens the database read-only.
-** If the database does not previously exist, an error is returned.
-** The second option opens
-** the database for reading and writing if possible, or reading only if
-** if the file is write protected. In either case the database
-** must already exist or an error is returned. The third option
-** opens the database for reading and writing and creates it if it does
-** not already exist.
-** The third options is behavior that is always used for [sqlite3_open()]
-** and [sqlite3_open16()].
-**
-** If the 3rd parameter to [sqlite3_open_v2()] is not one of the
-** combinations shown above then the behavior is undefined.
-**
-** If the filename is ":memory:", then an private
-** in-memory database is created for the connection. This in-memory
-** database will vanish when the database connection is closed. Future
-** version of SQLite might make use of additional special filenames
-** that begin with the ":" character. It is recommended that
-** when a database filename really does begin with
-** ":" that you prefix the filename with a pathname like "./" to
-** avoid ambiguity.
-**
-** If the filename is an empty string, then a private temporary
+** If the 3rd parameter to sqlite3_open_v2() is not one of the
+** combinations shown above or one of the combinations shown above combined
+** with the [SQLITE_OPEN_NOMUTEX] flag, then the behavior is undefined.
+**
+** If the [SQLITE_OPEN_NOMUTEX] flag is set, then mutexes on the
+** opened [database connection] are disabled and the appliation must
+** insure that access to the [database connection] and its associated
+** [prepared statements] is serialized. The [SQLITE_OPEN_NOMUTEX] flag
+** is the default behavior is SQLite is configured using the
+** [SQLITE_CONFIG_MULTITHREAD] or [SQLITE_CONFIG_SINGLETHREAD] options
+** to [sqlite3_config()]. The [SQLITE_OPEN_NOMUTEX] flag only makes a
+** difference when SQLite is in its default [SQLITE_CONFIG_SERIALIZED] mode.
+**
+** If the filename is ":memory:", then a private, temporary in-memory database
+** is created for the connection. This in-memory database will vanish when
+** the database connection is closed. Future versions of SQLite might
+** make use of additional special filenames that begin with the ":" character.
+** It is recommended that when a database filename actually does begin with
+** a ":" character you should prefix the filename with a pathname such as
+** "./" to avoid ambiguity.
+**
+** If the filename is an empty string, then a private, temporary
** on-disk database will be created. This private database will be
** automatically deleted as soon as the database connection is closed.
**
** The fourth parameter to sqlite3_open_v2() is the name of the
-** [sqlite3_vfs] object that defines the operating system
-** interface that the new database connection should use. If the
-** fourth parameter is a NULL pointer then the default [sqlite3_vfs]
-** object is used.
+** [sqlite3_vfs] object that defines the operating system interface that
+** the new database connection should use. If the fourth parameter is
+** a NULL pointer then the default [sqlite3_vfs] object is used.
**
-** <b>Note to windows users:</b> The encoding used for the filename argument
-** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever
+** <b>Note to Windows users:</b> The encoding used for the filename argument
+** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
** codepage is currently defined. Filenames containing international
** characters must be converted to UTF-8 prior to passing them into
-** [sqlite3_open()] or [sqlite3_open_v2()].
+** sqlite3_open() or sqlite3_open_v2().
**
** INVARIANTS:
**
-** {F12701} The [sqlite3_open()], [sqlite3_open16()], and
+** {H12701} The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces create a new
** [database connection] associated with
** the database file given in their first parameter.
**
-** {F12702} The filename argument is interpreted as UTF-8
+** {H12702} The filename argument is interpreted as UTF-8
** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
** in the native byte order for [sqlite3_open16()].
**
-** {F12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()],
+** {H12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()],
** or [sqlite3_open_v2()] writes a pointer to a new
** [database connection] into *ppDb.
**
-** {F12704} The [sqlite3_open()], [sqlite3_open16()], and
+** {H12704} The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success,
** or an appropriate [error code] on failure.
**
-** {F12706} The default text encoding for a new database created using
+** {H12706} The default text encoding for a new database created using
** [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8.
**
-** {F12707} The default text encoding for a new database created using
+** {H12707} The default text encoding for a new database created using
** [sqlite3_open16()] will be UTF-16.
**
-** {F12709} The [sqlite3_open(F,D)] interface is equivalent to
+** {H12709} The [sqlite3_open(F,D)] interface is equivalent to
** [sqlite3_open_v2(F,D,G,0)] where the G parameter is
** [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE].
**
-** {F12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
+** {H12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
** bit value [SQLITE_OPEN_READONLY] then the database is opened
** for reading only.
**
-** {F12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
+** {H12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
** bit value [SQLITE_OPEN_READWRITE] then the database is opened
** reading and writing if possible, or for reading only if the
** file is write protected by the operating system.
**
-** {F12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the
+** {H12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the
** bit value [SQLITE_OPEN_CREATE] and the database does not
** previously exist, an error is returned.
**
-** {F12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the
+** {H12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the
** bit value [SQLITE_OPEN_CREATE] and the database does not
** previously exist, then an attempt is made to create and
** initialize the database.
**
-** {F12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()],
+** {H12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()],
** or [sqlite3_open_v2()] is ":memory:", then an private,
** ephemeral, in-memory database is created for the connection.
** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
** in sqlite3_open_v2()?</todo>
**
-** {F12719} If the filename is NULL or an empty string, then a private,
-** ephermeral on-disk database will be created.
+** {H12719} If the filename is NULL or an empty string, then a private,
+** ephemeral on-disk database will be created.
** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
** in sqlite3_open_v2()?</todo>
**
-** {F12721} The [database connection] created by
-** [sqlite3_open_v2(F,D,G,V)] will use the
-** [sqlite3_vfs] object identified by the V parameter, or
-** the default [sqlite3_vfs] object is V is a NULL pointer.
+** {H12721} The [database connection] created by [sqlite3_open_v2(F,D,G,V)]
+** will use the [sqlite3_vfs] object identified by the V parameter,
+** or the default [sqlite3_vfs] object if V is a NULL pointer.
+**
+** {H12723} Two [database connections] will share a common cache if both were
+** opened with the same VFS while [shared cache mode] was enabled and
+** if both filenames compare equal using memcmp() after having been
+** processed by the [sqlite3_vfs | xFullPathname] method of the VFS.
*/
int sqlite3_open(
const char *filename, /* Database filename (UTF-8) */
);
/*
-** CAPI3REF: Error Codes And Messages {F12800}
+** CAPI3REF: Error Codes And Messages {H12800} <S60200>
**
-** The sqlite3_errcode() interface returns the numeric
-** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code]
-** for the most recent failed sqlite3_* API call associated
-** with [sqlite3] handle 'db'. If a prior API call failed but the
-** most recent API call succeeded, the return value from sqlite3_errcode()
-** is undefined.
+** The sqlite3_errcode() interface returns the numeric [result code] or
+** [extended result code] for the most recent failed sqlite3_* API call
+** associated with a [database connection]. If a prior API call failed
+** but the most recent API call succeeded, the return value from
+** sqlite3_errcode() is undefined.
**
** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
-** text that describes the error, as either UTF8 or UTF16 respectively.
+** text that describes the error, as either UTF-8 or UTF-16 respectively.
** Memory to hold the error message string is managed internally.
-** The application does not need to worry with freeing the result.
+** The application does not need to worry about freeing the result.
** However, the error string might be overwritten or deallocated by
** subsequent calls to other SQLite interface functions.
**
+** If an interface fails with SQLITE_MISUSE, that means the interface
+** was invoked incorrectly by the application. In that case, the
+** error code and message may or may not be set.
+**
** INVARIANTS:
**
-** {F12801} The [sqlite3_errcode(D)] interface returns the numeric
-** [SQLITE_OK | result code] or
-** [SQLITE_IOERR_READ | extended result code]
-** for the most recently failed interface call associated
-** with [database connection] D.
+** {H12801} The [sqlite3_errcode(D)] interface returns the numeric
+** [result code] or [extended result code] for the most recently
+** failed interface call associated with the [database connection] D.
**
-** {F12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)]
+** {H12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)]
** interfaces return English-language text that describes
** the error in the mostly recently failed interface call,
-** encoded as either UTF8 or UTF16 respectively.
+** encoded as either UTF-8 or UTF-16 respectively.
**
-** {F12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]
+** {H12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]
** are valid until the next SQLite interface call.
**
-** {F12808} Calls to API routines that do not return an error code
+** {H12808} Calls to API routines that do not return an error code
** (example: [sqlite3_data_count()]) do not
** change the error code or message returned by
** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
**
-** {F12809} Interfaces that are not associated with a specific
+** {H12809} Interfaces that are not associated with a specific
** [database connection] (examples:
** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()]
** do not change the values returned by
const void *sqlite3_errmsg16(sqlite3*);
/*
-** CAPI3REF: SQL Statement Object {F13000}
+** CAPI3REF: SQL Statement Object {H13000} <H13010>
** KEYWORDS: {prepared statement} {prepared statements}
**
-** An instance of this object represent single SQL statements. This
-** object is variously known as a "prepared statement" or a
+** An instance of this object represents a single SQL statement.
+** This object is variously known as a "prepared statement" or a
** "compiled SQL statement" or simply as a "statement".
-**
+**
** The life of a statement object goes something like this:
**
** <ol>
** <li> Create the object using [sqlite3_prepare_v2()] or a related
** function.
-** <li> Bind values to host parameters using
-** [sqlite3_bind_blob | sqlite3_bind_* interfaces].
+** <li> Bind values to [host parameters] using the sqlite3_bind_*()
+** interfaces.
** <li> Run the SQL by calling [sqlite3_step()] one or more times.
** <li> Reset the statement using [sqlite3_reset()] then go back
** to step 2. Do this zero or more times.
typedef struct sqlite3_stmt sqlite3_stmt;
/*
-** CAPI3REF: Run-time Limits {F12760}
+** CAPI3REF: Run-time Limits {H12760} <S20600>
**
** This interface allows the size of various constructs to be limited
** on a connection by connection basis. The first parameter is the
**
** If the new limit is a negative number, the limit is unchanged.
** For the limit category of SQLITE_LIMIT_XYZ there is a hard upper
-** bound set by a compile-time C-preprocess macro named SQLITE_MAX_XYZ.
+** bound set by a compile-time C preprocessor macro named SQLITE_MAX_XYZ.
** (The "_LIMIT_" in the name is changed to "_MAX_".)
** Attempts to increase a limit above its hard upper bound are
** silently truncated to the hard upper limit.
** both their own internal database and also databases that are controlled
** by untrusted external sources. An example application might be a
** webbrowser that has its own databases for storing history and
-** separate databases controlled by javascript applications downloaded
-** off the internet. The internal databases can be given the
+** separate databases controlled by JavaScript applications downloaded
+** off the Internet. The internal databases can be given the
** large, default limits. Databases managed by external sources can
** be given much smaller limits designed to prevent a denial of service
-** attach. Developers might also want to use the [sqlite3_set_authorizer()]
+** attack. Developers might also want to use the [sqlite3_set_authorizer()]
** interface to further control untrusted SQL. The size of the database
** created by an untrusted script can be contained using the
** [max_page_count] [PRAGMA].
**
-** This interface is currently considered experimental and is subject
-** to change or removal without prior notice.
+** New run-time limit categories may be added in future releases.
**
** INVARIANTS:
**
-** {F12762} A successful call to [sqlite3_limit(D,C,V)] where V is
-** positive changes the
-** limit on the size of construct C in [database connection] D
-** to the lessor of V and the hard upper bound on the size
-** of C that is set at compile-time.
+** {H12762} A successful call to [sqlite3_limit(D,C,V)] where V is
+** positive changes the limit on the size of construct C in the
+** [database connection] D to the lesser of V and the hard upper
+** bound on the size of C that is set at compile-time.
**
-** {F12766} A successful call to [sqlite3_limit(D,C,V)] where V is negative
-** leaves the state of [database connection] D unchanged.
+** {H12766} A successful call to [sqlite3_limit(D,C,V)] where V is negative
+** leaves the state of the [database connection] D unchanged.
**
-** {F12769} A successful call to [sqlite3_limit(D,C,V)] returns the
-** value of the limit on the size of construct C in
-** in [database connection] D as it was prior to the call.
+** {H12769} A successful call to [sqlite3_limit(D,C,V)] returns the
+** value of the limit on the size of construct C in the
+** [database connection] D as it was prior to the call.
*/
int sqlite3_limit(sqlite3*, int id, int newVal);
/*
-** CAPI3REF: Run-Time Limit Categories {F12790}
+** CAPI3REF: Run-Time Limit Categories {H12790} <H12760>
** KEYWORDS: {limit category} {limit categories}
-**
+**
** These constants define various aspects of a [database connection]
** that can be limited in size by calls to [sqlite3_limit()].
** The meanings of the various limits are as follows:
**
** <dl>
** <dt>SQLITE_LIMIT_LENGTH</dt>
-** <dd>The maximum size of any
-** string or blob or table row.<dd>
+** <dd>The maximum size of any string or BLOB or table row.<dd>
**
** <dt>SQLITE_LIMIT_SQL_LENGTH</dt>
** <dd>The maximum length of an SQL statement.</dd>
#define SQLITE_LIMIT_VARIABLE_NUMBER 9
/*
-** CAPI3REF: Compiling An SQL Statement {F13010}
+** CAPI3REF: Compiling An SQL Statement {H13010} <S10000>
+** KEYWORDS: {SQL statement compiler}
**
** To execute an SQL query, it must first be compiled into a byte-code
-** program using one of these routines.
+** program using one of these routines.
**
-** The first argument "db" is an [database connection]
-** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()]
-** or [sqlite3_open16()].
-** The second argument "zSql" is the statement to be compiled, encoded
+** The first argument, "db", is a [database connection] obtained from a
+** prior call to [sqlite3_open()], [sqlite3_open_v2()] or [sqlite3_open16()].
+**
+** The second argument, "zSql", is the statement to be compiled, encoded
** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
-** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2()
-** use UTF-16. {END}
-**
-** If the nByte argument is less
-** than zero, then zSql is read up to the first zero terminator.
-** If nByte is non-negative, then it is the maximum number of
-** bytes read from zSql. When nByte is non-negative, the
-** zSql string ends at either the first '\000' or '\u0000' character or
+** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
+** use UTF-16.
+**
+** If the nByte argument is less than zero, then zSql is read up to the
+** first zero terminator. If nByte is non-negative, then it is the maximum
+** number of bytes read from zSql. When nByte is non-negative, the
+** zSql string ends at either the first '\000' or '\u0000' character or
** the nByte-th byte, whichever comes first. If the caller knows
** that the supplied string is nul-terminated, then there is a small
-** performance advantage to be had by passing an nByte parameter that
-** is equal to the number of bytes in the input string <i>including</i>
-** the nul-terminator bytes.{END}
+** performance advantage to be gained by passing an nByte parameter that
+** is equal to the number of bytes in the input string <i>including</i>
+** the nul-terminator bytes.
**
** *pzTail is made to point to the first byte past the end of the
-** first SQL statement in zSql. These routines only compiles the first
+** first SQL statement in zSql. These routines only compile the first
** statement in zSql, so *pzTail is left pointing to what remains
** uncompiled.
**
** *ppStmt is left pointing to a compiled [prepared statement] that can be
-** executed using [sqlite3_step()]. Or if there is an error, *ppStmt is
-** set to NULL. If the input text contains no SQL (if the input
-** is and empty string or a comment) then *ppStmt is set to NULL.
-** {U13018} The calling procedure is responsible for deleting the
-** compiled SQL statement
-** using [sqlite3_finalize()] after it has finished with it.
+** executed using [sqlite3_step()]. If there is an error, *ppStmt is set
+** to NULL. If the input text contains no SQL (if the input is an empty
+** string or a comment) then *ppStmt is set to NULL.
+** {A13018} The calling procedure is responsible for deleting the compiled
+** SQL statement using [sqlite3_finalize()] after it has finished with it.
**
-** On success, [SQLITE_OK] is returned. Otherwise an
-** [error code] is returned.
+** On success, [SQLITE_OK] is returned, otherwise an [error code] is returned.
**
** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
** recommended for all new programs. The two older interfaces are retained
** for backwards compatibility, but their use is discouraged.
** In the "v2" interfaces, the prepared statement
-** that is returned (the [sqlite3_stmt] object) contains a copy of the
-** original SQL text. {END} This causes the [sqlite3_step()] interface to
+** that is returned (the [sqlite3_stmt] object) contains a copy of the
+** original SQL text. This causes the [sqlite3_step()] interface to
** behave a differently in two ways:
**
** <ol>
** always used to do, [sqlite3_step()] will automatically recompile the SQL
** statement and try to run it again. If the schema has changed in
** a way that makes the statement no longer valid, [sqlite3_step()] will still
-** return [SQLITE_SCHEMA]. But unlike the legacy behavior,
-** [SQLITE_SCHEMA] is now a fatal error. Calling
-** [sqlite3_prepare_v2()] again will not make the
+** return [SQLITE_SCHEMA]. But unlike the legacy behavior, [SQLITE_SCHEMA] is
+** now a fatal error. Calling [sqlite3_prepare_v2()] again will not make the
** error go away. Note: use [sqlite3_errmsg()] to find the text
-** of the parsing error that results in an [SQLITE_SCHEMA] return. {END}
+** of the parsing error that results in an [SQLITE_SCHEMA] return.
** </li>
**
** <li>
-** When an error occurs,
-** [sqlite3_step()] will return one of the detailed
-** [error codes] or [extended error codes].
-** The legacy behavior was that [sqlite3_step()] would only return a generic
-** [SQLITE_ERROR] result code and you would have to make a second call to
-** [sqlite3_reset()] in order to find the underlying cause of the problem.
-** With the "v2" prepare interfaces, the underlying reason for the error is
-** returned immediately.
+** When an error occurs, [sqlite3_step()] will return one of the detailed
+** [error codes] or [extended error codes]. The legacy behavior was that
+** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
+** and you would have to make a second call to [sqlite3_reset()] in order
+** to find the underlying cause of the problem. With the "v2" prepare
+** interfaces, the underlying reason for the error is returned immediately.
** </li>
** </ol>
**
** INVARIANTS:
**
-** {F13011} The [sqlite3_prepare(db,zSql,...)] and
+** {H13011} The [sqlite3_prepare(db,zSql,...)] and
** [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the
** text in their zSql parameter as UTF-8.
**
-** {F13012} The [sqlite3_prepare16(db,zSql,...)] and
+** {H13012} The [sqlite3_prepare16(db,zSql,...)] and
** [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the
** text in their zSql parameter as UTF-16 in the native byte order.
**
-** {F13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
-** and its variants is less than zero, then SQL text is
+** {H13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
+** and its variants is less than zero, the SQL text is
** read from zSql is read up to the first zero terminator.
**
-** {F13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
-** and its variants is non-negative, then at most nBytes bytes
+** {H13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
+** and its variants is non-negative, then at most nBytes bytes of
** SQL text is read from zSql.
**
-** {F13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants
+** {H13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants
** if the zSql input text contains more than one SQL statement
** and pzTail is not NULL, then *pzTail is made to point to the
** first byte past the end of the first SQL statement in zSql.
** <todo>What does *pzTail point to if there is one statement?</todo>
**
-** {F13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)]
+** {H13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)]
** or one of its variants writes into *ppStmt a pointer to a new
-** [prepared statement] or a pointer to NULL
-** if zSql contains nothing other than whitespace or comments.
+** [prepared statement] or a pointer to NULL if zSql contains
+** nothing other than whitespace or comments.
**
-** {F13019} The [sqlite3_prepare_v2()] interface and its variants return
+** {H13019} The [sqlite3_prepare_v2()] interface and its variants return
** [SQLITE_OK] or an appropriate [error code] upon failure.
**
-** {F13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its
-** variants returns an error (any value other than [SQLITE_OK])
-** it first sets *ppStmt to NULL.
+** {H13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its
+** variants returns an error (any value other than [SQLITE_OK]),
+** they first set *ppStmt to NULL.
*/
int sqlite3_prepare(
sqlite3 *db, /* Database handle */
);
/*
-** CAPIREF: Retrieving Statement SQL {F13100}
+** CAPIREF: Retrieving Statement SQL {H13100} <H13000>
**
-** This intereface can be used to retrieve a saved copy of the original
-** SQL text used to create a [prepared statement].
+** This interface can be used to retrieve a saved copy of the original
+** SQL text used to create a [prepared statement] if that statement was
+** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
**
** INVARIANTS:
**
-** {F13101} If the [prepared statement] passed as
-** the an argument to [sqlite3_sql()] was compiled
-** compiled using either [sqlite3_prepare_v2()] or
-** [sqlite3_prepare16_v2()],
-** then [sqlite3_sql()] function returns a pointer to a
-** zero-terminated string containing a UTF-8 rendering
+** {H13101} If the [prepared statement] passed as the argument to
+** [sqlite3_sql()] was compiled using either [sqlite3_prepare_v2()] or
+** [sqlite3_prepare16_v2()], then [sqlite3_sql()] returns
+** a pointer to a zero-terminated string containing a UTF-8 rendering
** of the original SQL statement.
**
-** {F13102} If the [prepared statement] passed as
-** the an argument to [sqlite3_sql()] was compiled
-** compiled using either [sqlite3_prepare()] or
-** [sqlite3_prepare16()],
-** then [sqlite3_sql()] function returns a NULL pointer.
+** {H13102} If the [prepared statement] passed as the argument to
+** [sqlite3_sql()] was compiled using either [sqlite3_prepare()] or
+** [sqlite3_prepare16()], then [sqlite3_sql()] returns a NULL pointer.
**
-** {F13103} The string returned by [sqlite3_sql(S)] is valid until the
+** {H13103} The string returned by [sqlite3_sql(S)] is valid until the
** [prepared statement] S is deleted using [sqlite3_finalize(S)].
*/
const char *sqlite3_sql(sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Dynamically Typed Value Object {F15000}
+** CAPI3REF: Dynamically Typed Value Object {H15000} <S20200>
** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
**
** SQLite uses the sqlite3_value object to represent all values
-** that can be stored in a database table.
-** SQLite uses dynamic typing for the values it stores.
-** Values stored in sqlite3_value objects can be
-** be integers, floating point values, strings, BLOBs, or NULL.
+** that can be stored in a database table. SQLite uses dynamic typing
+** for the values it stores. Values stored in sqlite3_value objects
+** can be integers, floating point values, strings, BLOBs, or NULL.
**
** An sqlite3_value object may be either "protected" or "unprotected".
** Some interfaces require a protected sqlite3_value. Other interfaces
** will accept either a protected or an unprotected sqlite3_value.
-** Every interface that accepts sqlite3_value arguments specifies
+** Every interface that accepts sqlite3_value arguments specifies
** whether or not it requires a protected sqlite3_value.
**
** The terms "protected" and "unprotected" refer to whether or not
** a mutex is held. A internal mutex is held for a protected
** sqlite3_value object but no mutex is held for an unprotected
** sqlite3_value object. If SQLite is compiled to be single-threaded
-** (with SQLITE_THREADSAFE=0 and with [sqlite3_threadsafe()] returning 0)
-** then there is no distinction between
-** protected and unprotected sqlite3_value objects and they can be
-** used interchangable. However, for maximum code portability it
-** is recommended that applications make the distinction between
-** between protected and unprotected sqlite3_value objects even if
-** they are single threaded.
+** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
+** or if SQLite is run in one of reduced mutex modes
+** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
+** then there is no distinction between protected and unprotected
+** sqlite3_value objects and they can be used interchangeably. However,
+** for maximum code portability it is recommended that applications
+** still make the distinction between between protected and unprotected
+** sqlite3_value objects even when not strictly required.
**
** The sqlite3_value objects that are passed as parameters into the
-** implementation of application-defined SQL functions are protected.
+** implementation of [application-defined SQL functions] are protected.
** The sqlite3_value object returned by
** [sqlite3_column_value()] is unprotected.
** Unprotected sqlite3_value objects may only be used with
-** [sqlite3_result_value()] and [sqlite3_bind_value()]. All other
-** interfaces that use sqlite3_value require protected sqlite3_value objects.
+** [sqlite3_result_value()] and [sqlite3_bind_value()].
+** The [sqlite3_value_blob | sqlite3_value_type()] family of
+** interfaces require protected sqlite3_value objects.
*/
typedef struct Mem sqlite3_value;
/*
-** CAPI3REF: SQL Function Context Object {F16001}
+** CAPI3REF: SQL Function Context Object {H16001} <S20200>
**
** The context in which an SQL function executes is stored in an
-** sqlite3_context object. A pointer to an sqlite3_context
-** object is always first parameter to application-defined SQL functions.
+** sqlite3_context object. A pointer to an sqlite3_context object
+** is always first parameter to [application-defined SQL functions].
+** The application-defined SQL function implementation will pass this
+** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
+** [sqlite3_aggregate_context()], [sqlite3_user_data()],
+** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
+** and/or [sqlite3_set_auxdata()].
*/
typedef struct sqlite3_context sqlite3_context;
/*
-** CAPI3REF: Binding Values To Prepared Statements {F13500}
+** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300>
+** KEYWORDS: {host parameter} {host parameters} {host parameter name}
+** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
**
-** In the SQL strings input to [sqlite3_prepare_v2()] and its
-** variants, literals may be replace by a parameter in one
-** of these forms:
+** In the SQL strings input to [sqlite3_prepare_v2()] and its variants,
+** literals may be replaced by a parameter in one of these forms:
**
** <ul>
** <li> ?
** </ul>
**
** In the parameter forms shown above NNN is an integer literal,
-** VVV alpha-numeric parameter name.
-** The values of these parameters (also called "host parameter names"
-** or "SQL parameters")
+** and VVV is an alpha-numeric parameter name. The values of these
+** parameters (also called "host parameter names" or "SQL parameters")
** can be set using the sqlite3_bind_*() routines defined here.
**
-** The first argument to the sqlite3_bind_*() routines always
-** is a pointer to the [sqlite3_stmt] object returned from
-** [sqlite3_prepare_v2()] or its variants. The second
-** argument is the index of the parameter to be set. The
-** first parameter has an index of 1. When the same named
-** parameter is used more than once, second and subsequent
-** occurrences have the same index as the first occurrence.
+** The first argument to the sqlite3_bind_*() routines is always
+** a pointer to the [sqlite3_stmt] object returned from
+** [sqlite3_prepare_v2()] or its variants.
+**
+** The second argument is the index of the SQL parameter to be set.
+** The leftmost SQL parameter has an index of 1. When the same named
+** SQL parameter is used more than once, second and subsequent
+** occurrences have the same index as the first occurrence.
** The index for named parameters can be looked up using the
-** [sqlite3_bind_parameter_name()] API if desired. The index
+** [sqlite3_bind_parameter_index()] API if desired. The index
** for "?NNN" parameters is the value of NNN.
-** The NNN value must be between 1 and the compile-time
-** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999).
+** The NNN value must be between 1 and the [sqlite3_limit()]
+** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
**
** The third argument is the value to bind to the parameter.
**
-** In those
-** routines that have a fourth argument, its value is the number of bytes
-** in the parameter. To be clear: the value is the number of <u>bytes</u>
-** in the value, not the number of characters.
+** In those routines that have a fourth argument, its value is the
+** number of bytes in the parameter. To be clear: the value is the
+** number of <u>bytes</u> in the value, not the number of characters.
** If the fourth parameter is negative, the length of the string is
-** number of bytes up to the first zero terminator.
+** the number of bytes up to the first zero terminator.
**
** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
** the sqlite3_bind_*() routine returns.
**
** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
-** is filled with zeros. A zeroblob uses a fixed amount of memory
-** (just an integer to hold it size) while it is being processed.
-** Zeroblobs are intended to serve as place-holders for BLOBs whose
-** content is later written using
-** [sqlite3_blob_open | increment BLOB I/O] routines. A negative
-** value for the zeroblob results in a zero-length BLOB.
+** is filled with zeroes. A zeroblob uses a fixed amount of memory
+** (just an integer to hold its size) while it is being processed.
+** Zeroblobs are intended to serve as placeholders for BLOBs whose
+** content is later written using
+** [sqlite3_blob_open | incremental BLOB I/O] routines.
+** A negative value for the zeroblob results in a zero-length BLOB.
**
** The sqlite3_bind_*() routines must be called after
** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
**
** These routines return [SQLITE_OK] on success or an error code if
** anything goes wrong. [SQLITE_RANGE] is returned if the parameter
-** index is out of range. [SQLITE_NOMEM] is returned if malloc fails.
+** index is out of range. [SQLITE_NOMEM] is returned if malloc() fails.
** [SQLITE_MISUSE] might be returned if these routines are called on a
** virtual machine that is the wrong state or which has already been finalized.
** Detection of misuse is unreliable. Applications should not depend
** panic rather than return SQLITE_MISUSE.
**
** See also: [sqlite3_bind_parameter_count()],
-** [sqlite3_bind_parameter_name()], and
-** [sqlite3_bind_parameter_index()].
+** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
**
** INVARIANTS:
**
-** {F13506} The [sqlite3_prepare | SQL statement compiler] recognizes
-** tokens of the forms "?", "?NNN", "$VVV", ":VVV", and "@VVV"
-** as SQL parameters, where NNN is any sequence of one or more
-** digits and where VVV is any sequence of one or more
-** alphanumeric characters or "::" optionally followed by
-** a string containing no spaces and contained within parentheses.
+** {H13506} The [SQL statement compiler] recognizes tokens of the forms
+** "?", "?NNN", "$VVV", ":VVV", and "@VVV" as SQL parameters,
+** where NNN is any sequence of one or more digits
+** and where VVV is any sequence of one or more alphanumeric
+** characters or "::" optionally followed by a string containing
+** no spaces and contained within parentheses.
**
-** {F13509} The initial value of an SQL parameter is NULL.
+** {H13509} The initial value of an SQL parameter is NULL.
**
-** {F13512} The index of an "?" SQL parameter is one larger than the
+** {H13512} The index of an "?" SQL parameter is one larger than the
** largest index of SQL parameter to the left, or 1 if
** the "?" is the leftmost SQL parameter.
**
-** {F13515} The index of an "?NNN" SQL parameter is the integer NNN.
+** {H13515} The index of an "?NNN" SQL parameter is the integer NNN.
**
-** {F13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is
-** the same as the index of leftmost occurances of the same
+** {H13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is
+** the same as the index of leftmost occurrences of the same
** parameter, or one more than the largest index over all
-** parameters to the left if this is the first occurrance
+** parameters to the left if this is the first occurrence
** of this parameter, or 1 if this is the leftmost parameter.
**
-** {F13521} The [sqlite3_prepare | SQL statement compiler] fail with
-** an [SQLITE_RANGE] error if the index of an SQL parameter
-** is less than 1 or greater than SQLITE_MAX_VARIABLE_NUMBER.
+** {H13521} The [SQL statement compiler] fails with an [SQLITE_RANGE]
+** error if the index of an SQL parameter is less than 1
+** or greater than the compile-time SQLITE_MAX_VARIABLE_NUMBER
+** parameter.
**
-** {F13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)]
+** {H13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)]
** associate the value V with all SQL parameters having an
** index of N in the [prepared statement] S.
**
-** {F13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)]
+** {H13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)]
** override prior calls with the same values of S and N.
**
-** {F13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)]
+** {H13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)]
** persist across calls to [sqlite3_reset(S)].
**
-** {F13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** {H13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L
-** bytes of the blob or string pointed to by V, when L
+** bytes of the BLOB or string pointed to by V, when L
** is non-negative.
**
-** {F13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or
+** {H13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or
** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters
** from V through the first zero character when L is negative.
**
-** {F13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** {H13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
** constant [SQLITE_STATIC], SQLite assumes that the value V
** is held in static unmanaged space that will not change
** during the lifetime of the binding.
**
-** {F13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** {H13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
-** constant [SQLITE_TRANSIENT], the routine makes a
-** private copy of V value before it returns.
+** constant [SQLITE_TRANSIENT], the routine makes a
+** private copy of the value V before it returns.
**
-** {F13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** {H13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to
** a function, SQLite invokes that function to destroy the
-** V value after it has finished using the V value.
+** value V after it has finished using the value V.
**
-** {F13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound
-** is a blob of L bytes, or a zero-length blob if L is negative.
+** {H13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound
+** is a BLOB of L bytes, or a zero-length BLOB if L is negative.
**
-** {F13551} In calls to [sqlite3_bind_value(S,N,V)] the V argument may
+** {H13551} In calls to [sqlite3_bind_value(S,N,V)] the V argument may
** be either a [protected sqlite3_value] object or an
** [unprotected sqlite3_value] object.
*/
int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
/*
-** CAPI3REF: Number Of SQL Parameters {F13600}
+** CAPI3REF: Number Of SQL Parameters {H13600} <S70300>
**
-** This routine can be used to find the number of SQL parameters
-** in a prepared statement. SQL parameters are tokens of the
+** This routine can be used to find the number of [SQL parameters]
+** in a [prepared statement]. SQL parameters are tokens of the
** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
-** place-holders for values that are [sqlite3_bind_blob | bound]
+** placeholders for values that are [sqlite3_bind_blob | bound]
** to the parameters at a later time.
**
-** This routine actually returns the index of the largest parameter.
-** For all forms except ?NNN, this will correspond to the number of
-** unique parameters. If parameters of the ?NNN are used, there may
-** be gaps in the list.
+** This routine actually returns the index of the largest (rightmost)
+** parameter. For all forms except ?NNN, this will correspond to the
+** number of unique parameters. If parameters of the ?NNN are used,
+** there may be gaps in the list.
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_name()], and
**
** INVARIANTS:
**
-** {F13601} The [sqlite3_bind_parameter_count(S)] interface returns
+** {H13601} The [sqlite3_bind_parameter_count(S)] interface returns
** the largest index of all SQL parameters in the
-** [prepared statement] S, or 0 if S
-** contains no SQL parameters.
+** [prepared statement] S, or 0 if S contains no SQL parameters.
*/
int sqlite3_bind_parameter_count(sqlite3_stmt*);
/*
-** CAPI3REF: Name Of A Host Parameter {F13620}
+** CAPI3REF: Name Of A Host Parameter {H13620} <S70300>
**
** This routine returns a pointer to the name of the n-th
-** SQL parameter in a [prepared statement].
+** [SQL parameter] in a [prepared statement].
** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
** respectively.
** In other words, the initial ":" or "$" or "@" or "?"
** is included as part of the name.
-** Parameters of the form "?" without a following integer have no name.
+** Parameters of the form "?" without a following integer have no name
+** and are also referred to as "anonymous parameters".
**
** The first host parameter has an index of 1, not 0.
**
** If the value n is out of range or if the n-th parameter is
** nameless, then NULL is returned. The returned string is
-** always in the UTF-8 encoding even if the named parameter was
+** always in UTF-8 encoding even if the named parameter was
** originally specified as UTF-16 in [sqlite3_prepare16()] or
** [sqlite3_prepare16_v2()].
**
**
** INVARIANTS:
**
-** {F13621} The [sqlite3_bind_parameter_name(S,N)] interface returns
+** {H13621} The [sqlite3_bind_parameter_name(S,N)] interface returns
** a UTF-8 rendering of the name of the SQL parameter in
-** [prepared statement] S having index N, or
+** the [prepared statement] S having index N, or
** NULL if there is no SQL parameter with index N or if the
** parameter with index N is an anonymous parameter "?".
*/
const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
/*
-** CAPI3REF: Index Of A Parameter With A Given Name {F13640}
+** CAPI3REF: Index Of A Parameter With A Given Name {H13640} <S70300>
**
** Return the index of an SQL parameter given its name. The
** index value returned is suitable for use as the second
**
** INVARIANTS:
**
-** {F13641} The [sqlite3_bind_parameter_index(S,N)] interface returns
-** the index of SQL parameter in [prepared statement]
+** {H13641} The [sqlite3_bind_parameter_index(S,N)] interface returns
+** the index of SQL parameter in the [prepared statement]
** S whose name matches the UTF-8 string N, or 0 if there is
** no match.
*/
int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
/*
-** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660}
+** CAPI3REF: Reset All Bindings On A Prepared Statement {H13660} <S70300>
**
-** Contrary to the intuition of many, [sqlite3_reset()] does not
-** reset the [sqlite3_bind_blob | bindings] on a
-** [prepared statement]. Use this routine to
-** reset all host parameters to NULL.
+** Contrary to the intuition of many, [sqlite3_reset()] does not reset
+** the [sqlite3_bind_blob | bindings] on a [prepared statement].
+** Use this routine to reset all host parameters to NULL.
**
** INVARIANTS:
**
-** {F13661} The [sqlite3_clear_bindings(S)] interface resets all
-** SQL parameter bindings in [prepared statement] S
-** back to NULL.
+** {H13661} The [sqlite3_clear_bindings(S)] interface resets all SQL
+** parameter bindings in the [prepared statement] S back to NULL.
*/
int sqlite3_clear_bindings(sqlite3_stmt*);
/*
-** CAPI3REF: Number Of Columns In A Result Set {F13710}
+** CAPI3REF: Number Of Columns In A Result Set {H13710} <S10700>
**
-** Return the number of columns in the result set returned by the
-** [prepared statement]. This routine returns 0
-** if pStmt is an SQL statement that does not return data (for
-** example an UPDATE).
+** Return the number of columns in the result set returned by the
+** [prepared statement]. This routine returns 0 if pStmt is an SQL
+** statement that does not return data (for example an [UPDATE]).
**
** INVARIANTS:
**
-** {F13711} The [sqlite3_column_count(S)] interface returns the number of
-** columns in the result set generated by the
-** [prepared statement] S, or 0 if S does not generate
-** a result set.
+** {H13711} The [sqlite3_column_count(S)] interface returns the number of
+** columns in the result set generated by the [prepared statement] S,
+** or 0 if S does not generate a result set.
*/
int sqlite3_column_count(sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Column Names In A Result Set {F13720}
+** CAPI3REF: Column Names In A Result Set {H13720} <S10700>
**
** These routines return the name assigned to a particular column
-** in the result set of a SELECT statement. The sqlite3_column_name()
-** interface returns a pointer to a zero-terminated UTF8 string
+** in the result set of a [SELECT] statement. The sqlite3_column_name()
+** interface returns a pointer to a zero-terminated UTF-8 string
** and sqlite3_column_name16() returns a pointer to a zero-terminated
-** UTF16 string. The first parameter is the
-** [prepared statement] that implements the SELECT statement.
-** The second parameter is the column number. The left-most column is
-** number 0.
+** UTF-16 string. The first parameter is the [prepared statement]
+** that implements the [SELECT] statement. The second parameter is the
+** column number. The leftmost column is number 0.
**
-** The returned string pointer is valid until either the
-** [prepared statement] is destroyed by [sqlite3_finalize()]
-** or until the next call sqlite3_column_name() or sqlite3_column_name16()
-** on the same column.
+** The returned string pointer is valid until either the [prepared statement]
+** is destroyed by [sqlite3_finalize()] or until the next call to
+** sqlite3_column_name() or sqlite3_column_name16() on the same column.
**
** If sqlite3_malloc() fails during the processing of either routine
** (for example during a conversion from UTF-8 to UTF-16) then a
**
** INVARIANTS:
**
-** {F13721} A successful invocation of the [sqlite3_column_name(S,N)]
-** interface returns the name
-** of the Nth column (where 0 is the left-most column) for the
-** result set of [prepared statement] S as a
-** zero-terminated UTF-8 string.
+** {H13721} A successful invocation of the [sqlite3_column_name(S,N)]
+** interface returns the name of the Nth column (where 0 is
+** the leftmost column) for the result set of the
+** [prepared statement] S as a zero-terminated UTF-8 string.
**
-** {F13723} A successful invocation of the [sqlite3_column_name16(S,N)]
-** interface returns the name
-** of the Nth column (where 0 is the left-most column) for the
-** result set of [prepared statement] S as a
-** zero-terminated UTF-16 string in the native byte order.
+** {H13723} A successful invocation of the [sqlite3_column_name16(S,N)]
+** interface returns the name of the Nth column (where 0 is
+** the leftmost column) for the result set of the
+** [prepared statement] S as a zero-terminated UTF-16 string
+** in the native byte order.
**
-** {F13724} The [sqlite3_column_name()] and [sqlite3_column_name16()]
+** {H13724} The [sqlite3_column_name()] and [sqlite3_column_name16()]
** interfaces return a NULL pointer if they are unable to
-** allocate memory memory to hold there normal return strings.
+** allocate memory to hold their normal return strings.
**
-** {F13725} If the N parameter to [sqlite3_column_name(S,N)] or
+** {H13725} If the N parameter to [sqlite3_column_name(S,N)] or
** [sqlite3_column_name16(S,N)] is out of range, then the
-** interfaces returns a NULL pointer.
-**
-** {F13726} The strings returned by [sqlite3_column_name(S,N)] and
+** interfaces return a NULL pointer.
+**
+** {H13726} The strings returned by [sqlite3_column_name(S,N)] and
** [sqlite3_column_name16(S,N)] are valid until the next
** call to either routine with the same S and N parameters
** or until [sqlite3_finalize(S)] is called.
**
-** {F13727} When a result column of a [SELECT] statement contains
-** an AS clause, the name of that column is the indentifier
+** {H13727} When a result column of a [SELECT] statement contains
+** an AS clause, the name of that column is the identifier
** to the right of the AS keyword.
*/
const char *sqlite3_column_name(sqlite3_stmt*, int N);
const void *sqlite3_column_name16(sqlite3_stmt*, int N);
/*
-** CAPI3REF: Source Of Data In A Query Result {F13740}
+** CAPI3REF: Source Of Data In A Query Result {H13740} <S10700>
**
** These routines provide a means to determine what column of what
-** table in which database a result of a SELECT statement comes from.
+** table in which database a result of a [SELECT] statement comes from.
** The name of the database or table or column can be returned as
-** either a UTF8 or UTF16 string. The _database_ routines return
+** either a UTF-8 or UTF-16 string. The _database_ routines return
** the database name, the _table_ routines return the table name, and
** the origin_ routines return the column name.
-** The returned string is valid until
-** the [prepared statement] is destroyed using
-** [sqlite3_finalize()] or until the same information is requested
+** The returned string is valid until the [prepared statement] is destroyed
+** using [sqlite3_finalize()] or until the same information is requested
** again in a different encoding.
**
** The names returned are the original un-aliased names of the
** database, table, and column.
**
** The first argument to the following calls is a [prepared statement].
-** These functions return information about the Nth column returned by
+** These functions return information about the Nth column returned by
** the statement, where N is the second function argument.
**
-** If the Nth column returned by the statement is an expression
-** or subquery and is not a column value, then all of these functions
-** return NULL. These routine might also return NULL if a memory
-** allocation error occurs. Otherwise, they return the
-** name of the attached database, table and column that query result
-** column was extracted from.
+** If the Nth column returned by the statement is an expression or
+** subquery and is not a column value, then all of these functions return
+** NULL. These routine might also return NULL if a memory allocation error
+** occurs. Otherwise, they return the name of the attached database, table
+** and column that query result column was extracted from.
**
** As with all other SQLite APIs, those postfixed with "16" return
** UTF-16 encoded strings, the other functions return UTF-8. {END}
**
-** These APIs are only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
+** These APIs are only available if the library was compiled with the
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
**
-** {U13751}
+** {A13751}
** If two or more threads call one or more of these routines against the same
** prepared statement and column at the same time then the results are
** undefined.
**
** INVARIANTS:
**
-** {F13741} The [sqlite3_column_database_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the database from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13742} The [sqlite3_column_database_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the database from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13743} The [sqlite3_column_table_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the table from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
+** {H13741} The [sqlite3_column_database_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the database from which the
+** Nth result column of the [prepared statement] S is extracted,
+** or NULL if the Nth column of S is a general expression
+** or if unable to allocate memory to store the name.
+**
+** {H13742} The [sqlite3_column_database_name16(S,N)] interface returns either
+** the UTF-16 native byte order zero-terminated name of the database
+** from which the Nth result column of the [prepared statement] S is
+** extracted, or NULL if the Nth column of S is a general expression
+** or if unable to allocate memory to store the name.
+**
+** {H13743} The [sqlite3_column_table_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the table from which the
+** Nth result column of the [prepared statement] S is extracted,
+** or NULL if the Nth column of S is a general expression
+** or if unable to allocate memory to store the name.
+**
+** {H13744} The [sqlite3_column_table_name16(S,N)] interface returns either
+** the UTF-16 native byte order zero-terminated name of the table
+** from which the Nth result column of the [prepared statement] S is
+** extracted, or NULL if the Nth column of S is a general expression
+** or if unable to allocate memory to store the name.
+**
+** {H13745} The [sqlite3_column_origin_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the table column from which the
+** Nth result column of the [prepared statement] S is extracted,
+** or NULL if the Nth column of S is a general expression
+** or if unable to allocate memory to store the name.
+**
+** {H13746} The [sqlite3_column_origin_name16(S,N)] interface returns either
+** the UTF-16 native byte order zero-terminated name of the table
+** column from which the Nth result column of the
+** [prepared statement] S is extracted, or NULL if the Nth column
+** of S is a general expression or if unable to allocate memory
** to store the name.
-**
-** {F13744} The [sqlite3_column_table_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the table from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13745} The [sqlite3_column_origin_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the table column from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13746} The [sqlite3_column_origin_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the table column from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13748} The return values from
-** [sqlite3_column_database_name|column metadata interfaces]
-** are valid
-** for the lifetime of the [prepared statement]
+**
+** {H13748} The return values from
+** [sqlite3_column_database_name | column metadata interfaces]
+** are valid for the lifetime of the [prepared statement]
** or until the encoding is changed by another metadata
** interface call for the same prepared statement and column.
**
-** LIMITATIONS:
+** ASSUMPTIONS:
**
-** {U13751} If two or more threads call one or more
-** [sqlite3_column_database_name|column metadata interfaces]
-** the same [prepared statement] and result column
+** {A13751} If two or more threads call one or more
+** [sqlite3_column_database_name | column metadata interfaces]
+** for the same [prepared statement] and result column
** at the same time then the results are undefined.
*/
const char *sqlite3_column_database_name(sqlite3_stmt*,int);
const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
/*
-** CAPI3REF: Declared Datatype Of A Query Result {F13760}
+** CAPI3REF: Declared Datatype Of A Query Result {H13760} <S10700>
**
-** The first parameter is a [prepared statement].
-** If this statement is a SELECT statement and the Nth column of the
-** returned result set of that SELECT is a table column (not an
+** The first parameter is a [prepared statement].
+** If this statement is a [SELECT] statement and the Nth column of the
+** returned result set of that [SELECT] is a table column (not an
** expression or subquery) then the declared type of the table
** column is returned. If the Nth column of the result set is an
** expression or subquery, then a NULL pointer is returned.
-** The returned string is always UTF-8 encoded. {END}
-** For example, in the database schema:
+** The returned string is always UTF-8 encoded. {END}
+**
+** For example, given the database schema:
**
** CREATE TABLE t1(c1 VARIANT);
**
-** And the following statement compiled:
+** and the following statement to be compiled:
**
** SELECT c1 + 1, c1 FROM t1;
**
-** Then this routine would return the string "VARIANT" for the second
-** result column (i==1), and a NULL pointer for the first result column
-** (i==0).
+** this routine would return the string "VARIANT" for the second result
+** column (i==1), and a NULL pointer for the first result column (i==0).
**
** SQLite uses dynamic run-time typing. So just because a column
** is declared to contain a particular type does not mean that the
**
** INVARIANTS:
**
-** {F13761} A successful call to [sqlite3_column_decltype(S,N)]
-** returns a zero-terminated UTF-8 string containing the
-** the declared datatype of the table column that appears
-** as the Nth column (numbered from 0) of the result set to the
-** [prepared statement] S.
+** {H13761} A successful call to [sqlite3_column_decltype(S,N)] returns a
+** zero-terminated UTF-8 string containing the declared datatype
+** of the table column that appears as the Nth column (numbered
+** from 0) of the result set to the [prepared statement] S.
**
-** {F13762} A successful call to [sqlite3_column_decltype16(S,N)]
+** {H13762} A successful call to [sqlite3_column_decltype16(S,N)]
** returns a zero-terminated UTF-16 native byte order string
** containing the declared datatype of the table column that appears
** as the Nth column (numbered from 0) of the result set to the
** [prepared statement] S.
**
-** {F13763} If N is less than 0 or N is greater than or equal to
-** the number of columns in [prepared statement] S
+** {H13763} If N is less than 0 or N is greater than or equal to
+** the number of columns in the [prepared statement] S,
** or if the Nth column of S is an expression or subquery rather
-** than a table column or if a memory allocation failure
+** than a table column, or if a memory allocation failure
** occurs during encoding conversions, then
** calls to [sqlite3_column_decltype(S,N)] or
** [sqlite3_column_decltype16(S,N)] return NULL.
const char *sqlite3_column_decltype(sqlite3_stmt*,int);
const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
-/*
-** CAPI3REF: Evaluate An SQL Statement {F13200}
+/*
+** CAPI3REF: Evaluate An SQL Statement {H13200} <S10000>
**
-** After an [prepared statement] has been prepared with a call
-** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of
-** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()],
-** then this function must be called one or more times to evaluate the
-** statement.
+** After a [prepared statement] has been prepared using either
+** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
+** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
+** must be called one or more times to evaluate the statement.
**
-** The details of the behavior of this sqlite3_step() interface depend
+** The details of the behavior of the sqlite3_step() interface depend
** on whether the statement was prepared using the newer "v2" interface
** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
** new "v2" interface is recommended for new applications but the legacy
** interface will continue to be supported.
**
-** In the legacy interface, the return value will be either [SQLITE_BUSY],
+** In the legacy interface, the return value will be either [SQLITE_BUSY],
** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
-** With the "v2" interface, any of the other [SQLITE_OK | result code]
-** or [SQLITE_IOERR_READ | extended result code] might be returned as
-** well.
+** With the "v2" interface, any of the other [result codes] or
+** [extended result codes] might be returned as well.
**
** [SQLITE_BUSY] means that the database engine was unable to acquire the
-** database locks it needs to do its job. If the statement is a COMMIT
+** database locks it needs to do its job. If the statement is a [COMMIT]
** or occurs outside of an explicit transaction, then you can retry the
-** statement. If the statement is not a COMMIT and occurs within a
+** statement. If the statement is not a [COMMIT] and occurs within a
** explicit transaction then you should rollback the transaction before
** continuing.
**
** machine without first calling [sqlite3_reset()] to reset the virtual
** machine back to its initial state.
**
-** If the SQL statement being executed returns any data, then
-** [SQLITE_ROW] is returned each time a new row of data is ready
-** for processing by the caller. The values may be accessed using
-** the [sqlite3_column_int | column access functions].
+** If the SQL statement being executed returns any data, then [SQLITE_ROW]
+** is returned each time a new row of data is ready for processing by the
+** caller. The values may be accessed using the [column access functions].
** sqlite3_step() is called again to retrieve the next row of data.
-**
+**
** [SQLITE_ERROR] means that a run-time error (such as a constraint
** violation) has occurred. sqlite3_step() should not be called again on
** the VM. More information may be found by calling [sqlite3_errmsg()].
-** With the legacy interface, a more specific error code (example:
+** With the legacy interface, a more specific error code (for example,
** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
** can be obtained by calling [sqlite3_reset()] on the
** [prepared statement]. In the "v2" interface,
**
** [SQLITE_MISUSE] means that the this routine was called inappropriately.
** Perhaps it was called on a [prepared statement] that has
-** already been [sqlite3_finalize | finalized] or on one that had
+** already been [sqlite3_finalize | finalized] or on one that had
** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
** be the case that the same database connection is being used by two or
** more threads at the same moment in time.
**
-** <b>Goofy Interface Alert:</b>
-** In the legacy interface,
-** the sqlite3_step() API always returns a generic error code,
-** [SQLITE_ERROR], following any error other than [SQLITE_BUSY]
-** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or
-** [sqlite3_finalize()] in order to find one of the specific
-** [error codes] that better describes the error.
+** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
+** API always returns a generic error code, [SQLITE_ERROR], following any
+** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
+** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
+** specific [error codes] that better describes the error.
** We admit that this is a goofy design. The problem has been fixed
** with the "v2" interface. If you prepare all of your SQL statements
** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
-** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the
-** more specific [error codes] are returned directly
+** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
+** then the more specific [error codes] are returned directly
** by sqlite3_step(). The use of the "v2" interface is recommended.
**
** INVARIANTS:
**
-** {F13202} If [prepared statement] S is ready to be
-** run, then [sqlite3_step(S)] advances that prepared statement
-** until to completion or until it is ready to return another
-** row of the result set or an interrupt or run-time error occurs.
+** {H13202} If the [prepared statement] S is ready to be run, then
+** [sqlite3_step(S)] advances that prepared statement until
+** completion or until it is ready to return another row of the
+** result set, or until an [sqlite3_interrupt | interrupt]
+** or a run-time error occurs.
**
-** {F15304} When a call to [sqlite3_step(S)] causes the
-** [prepared statement] S to run to completion,
-** the function returns [SQLITE_DONE].
+** {H15304} When a call to [sqlite3_step(S)] causes the [prepared statement]
+** S to run to completion, the function returns [SQLITE_DONE].
**
-** {F15306} When a call to [sqlite3_step(S)] stops because it is ready
-** to return another row of the result set, it returns
-** [SQLITE_ROW].
+** {H15306} When a call to [sqlite3_step(S)] stops because it is ready to
+** return another row of the result set, it returns [SQLITE_ROW].
**
-** {F15308} If a call to [sqlite3_step(S)] encounters an
-** [sqlite3_interrupt|interrupt] or a run-time error,
-** it returns an appropraite error code that is not one of
+** {H15308} If a call to [sqlite3_step(S)] encounters an
+** [sqlite3_interrupt | interrupt] or a run-time error,
+** it returns an appropriate error code that is not one of
** [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE].
**
-** {F15310} If an [sqlite3_interrupt|interrupt] or run-time error
+** {H15310} If an [sqlite3_interrupt | interrupt] or a run-time error
** occurs during a call to [sqlite3_step(S)]
** for a [prepared statement] S created using
** legacy interfaces [sqlite3_prepare()] or
-** [sqlite3_prepare16()] then the function returns either
+** [sqlite3_prepare16()], then the function returns either
** [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE].
*/
int sqlite3_step(sqlite3_stmt*);
/*
-** CAPI3REF: Number of columns in a result set {F13770}
+** CAPI3REF: Number of columns in a result set {H13770} <S10700>
**
-** Return the number of values in the current row of the result set.
+** Returns the number of values in the current row of the result set.
**
** INVARIANTS:
**
-** {F13771} After a call to [sqlite3_step(S)] that returns
-** [SQLITE_ROW], the [sqlite3_data_count(S)] routine
-** will return the same value as the
-** [sqlite3_column_count(S)] function.
+** {H13771} After a call to [sqlite3_step(S)] that returns [SQLITE_ROW],
+** the [sqlite3_data_count(S)] routine will return the same value
+** as the [sqlite3_column_count(S)] function.
**
-** {F13772} After [sqlite3_step(S)] has returned any value other than
-** [SQLITE_ROW] or before [sqlite3_step(S)] has been
-** called on the [prepared statement] for
-** the first time since it was [sqlite3_prepare|prepared]
-** or [sqlite3_reset|reset], the [sqlite3_data_count(S)]
-** routine returns zero.
+** {H13772} After [sqlite3_step(S)] has returned any value other than
+** [SQLITE_ROW] or before [sqlite3_step(S)] has been called on the
+** [prepared statement] for the first time since it was
+** [sqlite3_prepare | prepared] or [sqlite3_reset | reset],
+** the [sqlite3_data_count(S)] routine returns zero.
*/
int sqlite3_data_count(sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Fundamental Datatypes {F10265}
+** CAPI3REF: Fundamental Datatypes {H10265} <S10110><S10120>
** KEYWORDS: SQLITE_TEXT
**
-** {F10266}Every value in SQLite has one of five fundamental datatypes:
+** {H10266} Every value in SQLite has one of five fundamental datatypes:
**
** <ul>
** <li> 64-bit signed integer
**
** Note that the SQLITE_TEXT constant was also used in SQLite version 2
** for a completely different meaning. Software that links against both
-** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not
+** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
** SQLITE_TEXT.
*/
#define SQLITE_INTEGER 1
#define SQLITE3_TEXT 3
/*
-** CAPI3REF: Results Values From A Query {F13800}
+** CAPI3REF: Result Values From A Query {H13800} <S10700>
+** KEYWORDS: {column access functions}
**
** These routines form the "result set query" interface.
**
-** These routines return information about
-** a single column of the current result row of a query. In every
-** case the first argument is a pointer to the
-** [prepared statement] that is being
-** evaluated (the [sqlite3_stmt*] that was returned from
-** [sqlite3_prepare_v2()] or one of its variants) and
-** the second argument is the index of the column for which information
-** should be returned. The left-most column of the result set
-** has an index of 0.
-**
-** If the SQL statement is not currently point to a valid row, or if the
-** the column index is out of range, the result is undefined.
+** These routines return information about a single column of the current
+** result row of a query. In every case the first argument is a pointer
+** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
+** that was returned from [sqlite3_prepare_v2()] or one of its variants)
+** and the second argument is the index of the column for which information
+** should be returned. The leftmost column of the result set has the index 0.
+**
+** If the SQL statement does not currently point to a valid row, or if the
+** column index is out of range, the result is undefined.
** These routines may only be called when the most recent call to
** [sqlite3_step()] has returned [SQLITE_ROW] and neither
-** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently.
+** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
** If any of these routines are called after [sqlite3_reset()] or
** [sqlite3_finalize()] or after [sqlite3_step()] has returned
** something other than [SQLITE_ROW], the results are undefined.
** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
** are called from a different thread while any of these routines
-** are pending, then the results are undefined.
+** are pending, then the results are undefined.
**
-** The sqlite3_column_type() routine returns
+** The sqlite3_column_type() routine returns the
** [SQLITE_INTEGER | datatype code] for the initial data type
** of the result column. The returned value is one of [SQLITE_INTEGER],
** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
** versions of SQLite may change the behavior of sqlite3_column_type()
** following a type conversion.
**
-** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
+** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
** routine returns the number of bytes in that BLOB or string.
** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
** the string to UTF-8 and then returns the number of bytes.
**
** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
** even empty strings, are always zero terminated. The return
-** value from sqlite3_column_blob() for a zero-length blob is an arbitrary
+** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary
** pointer, possibly even a NULL pointer.
**
** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
-** but leaves the result in UTF-16 in native byte order instead of UTF-8.
+** but leaves the result in UTF-16 in native byte order instead of UTF-8.
** The zero terminator is not included in this count.
**
** The object returned by [sqlite3_column_value()] is an
** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
** If the [unprotected sqlite3_value] object returned by
** [sqlite3_column_value()] is used in any other way, including calls
-** to routines like
-** [sqlite3_value_int()], [sqlite3_value_text()], or [sqlite3_value_bytes()],
-** then the behavior is undefined.
+** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
+** or [sqlite3_value_bytes()], then the behavior is undefined.
**
** These routines attempt to convert the value where appropriate. For
** example, if the internal representation is FLOAT and a text result
-** is requested, [sqlite3_snprintf()] is used internally to do the conversion
-** automatically. The following table details the conversions that
-** are applied:
+** is requested, [sqlite3_snprintf()] is used internally to perform the
+** conversion automatically. The following table details the conversions
+** that are applied:
**
** <blockquote>
** <table border="1">
** <tr><td> NULL <td> BLOB <td> Result is NULL pointer
** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
-** <tr><td> INTEGER <td> BLOB <td> Same as for INTEGER->TEXT
+** <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT
** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer
** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT
**
** The table above makes reference to standard C library functions atoi()
** and atof(). SQLite does not really use these functions. It has its
-** on equavalent internal routines. The atoi() and atof() names are
+** own equivalent internal routines. The atoi() and atof() names are
** used in the table for brevity and because they are familiar to most
** C programmers.
**
** Note that when type conversions occur, pointers returned by prior
** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
-** sqlite3_column_text16() may be invalidated.
+** sqlite3_column_text16() may be invalidated.
** Type conversions and pointer invalidations might occur
** in the following cases:
**
** <ul>
-** <li><p> The initial content is a BLOB and sqlite3_column_text()
-** or sqlite3_column_text16() is called. A zero-terminator might
-** need to be added to the string.</p></li>
-**
-** <li><p> The initial content is UTF-8 text and sqlite3_column_bytes16() or
-** sqlite3_column_text16() is called. The content must be converted
-** to UTF-16.</p></li>
-**
-** <li><p> The initial content is UTF-16 text and sqlite3_column_bytes() or
-** sqlite3_column_text() is called. The content must be converted
-** to UTF-8.</p></li>
+** <li> The initial content is a BLOB and sqlite3_column_text() or
+** sqlite3_column_text16() is called. A zero-terminator might
+** need to be added to the string.</li>
+** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
+** sqlite3_column_text16() is called. The content must be converted
+** to UTF-16.</li>
+** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
+** sqlite3_column_text() is called. The content must be converted
+** to UTF-8.</li>
** </ul>
**
** Conversions between UTF-16be and UTF-16le are always done in place and do
** not invalidate a prior pointer, though of course the content of the buffer
** that the prior pointer points to will have been modified. Other kinds
-** of conversion are done in place when it is possible, but sometime it is
-** not possible and in those cases prior pointers are invalidated.
+** of conversion are done in place when it is possible, but sometimes they
+** are not possible and in those cases prior pointers are invalidated.
**
** The safest and easiest to remember policy is to invoke these routines
** in one of the following ways:
**
-** <ul>
+** <ul>
** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
-** </ul>
+** </ul>
**
-** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(),
-** or sqlite3_column_text16() first to force the result into the desired
-** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to
-** find the size of the result. Do not mix call to sqlite3_column_text() or
-** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not
-** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes().
+** In other words, you should call sqlite3_column_text(),
+** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
+** into the desired format, then invoke sqlite3_column_bytes() or
+** sqlite3_column_bytes16() to find the size of the result. Do not mix calls
+** to sqlite3_column_text() or sqlite3_column_blob() with calls to
+** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
+** with calls to sqlite3_column_bytes().
**
** The pointers returned are valid until a type conversion occurs as
** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
** [sqlite3_finalize()] is called. The memory space used to hold strings
-** and blobs is freed automatically. Do <b>not</b> pass the pointers returned
-** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
+** and BLOBs is freed automatically. Do <b>not</b> pass the pointers returned
+** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
** [sqlite3_free()].
**
** If a memory allocation error occurs during the evaluation of any
**
** INVARIANTS:
**
-** {F13803} The [sqlite3_column_blob(S,N)] interface converts the
+** {H13803} The [sqlite3_column_blob(S,N)] interface converts the
** Nth column in the current row of the result set for
-** [prepared statement] S into a blob and then returns a
+** the [prepared statement] S into a BLOB and then returns a
** pointer to the converted value.
**
-** {F13806} The [sqlite3_column_bytes(S,N)] interface returns the
-** number of bytes in the blob or string (exclusive of the
+** {H13806} The [sqlite3_column_bytes(S,N)] interface returns the
+** number of bytes in the BLOB or string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_column_blob(S,N)] or
** [sqlite3_column_text(S,N)].
**
-** {F13809} The [sqlite3_column_bytes16(S,N)] interface returns the
+** {H13809} The [sqlite3_column_bytes16(S,N)] interface returns the
** number of bytes in the string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_column_text16(S,N)].
**
-** {F13812} The [sqlite3_column_double(S,N)] interface converts the
-** Nth column in the current row of the result set for
+** {H13812} The [sqlite3_column_double(S,N)] interface converts the
+** Nth column in the current row of the result set for the
** [prepared statement] S into a floating point value and
** returns a copy of that value.
**
-** {F13815} The [sqlite3_column_int(S,N)] interface converts the
-** Nth column in the current row of the result set for
+** {H13815} The [sqlite3_column_int(S,N)] interface converts the
+** Nth column in the current row of the result set for the
** [prepared statement] S into a 64-bit signed integer and
** returns the lower 32 bits of that integer.
**
-** {F13818} The [sqlite3_column_int64(S,N)] interface converts the
-** Nth column in the current row of the result set for
+** {H13818} The [sqlite3_column_int64(S,N)] interface converts the
+** Nth column in the current row of the result set for the
** [prepared statement] S into a 64-bit signed integer and
** returns a copy of that integer.
**
-** {F13821} The [sqlite3_column_text(S,N)] interface converts the
+** {H13821} The [sqlite3_column_text(S,N)] interface converts the
** Nth column in the current row of the result set for
-** [prepared statement] S into a zero-terminated UTF-8
+** the [prepared statement] S into a zero-terminated UTF-8
** string and returns a pointer to that string.
**
-** {F13824} The [sqlite3_column_text16(S,N)] interface converts the
-** Nth column in the current row of the result set for
+** {H13824} The [sqlite3_column_text16(S,N)] interface converts the
+** Nth column in the current row of the result set for the
** [prepared statement] S into a zero-terminated 2-byte
-** aligned UTF-16 native byte order
-** string and returns a pointer to that string.
+** aligned UTF-16 native byte order string and returns
+** a pointer to that string.
**
-** {F13827} The [sqlite3_column_type(S,N)] interface returns
+** {H13827} The [sqlite3_column_type(S,N)] interface returns
** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
** the Nth column in the current row of the result set for
-** [prepared statement] S.
+** the [prepared statement] S.
**
-** {F13830} The [sqlite3_column_value(S,N)] interface returns a
+** {H13830} The [sqlite3_column_value(S,N)] interface returns a
** pointer to an [unprotected sqlite3_value] object for the
** Nth column in the current row of the result set for
-** [prepared statement] S.
+** the [prepared statement] S.
*/
const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
/*
-** CAPI3REF: Destroy A Prepared Statement Object {F13300}
+** CAPI3REF: Destroy A Prepared Statement Object {H13300} <S70300><S30100>
**
-** The sqlite3_finalize() function is called to delete a
-** [prepared statement]. If the statement was
-** executed successfully, or not executed at all, then SQLITE_OK is returned.
-** If execution of the statement failed then an
-** [error code] or [extended error code]
-** is returned.
+** The sqlite3_finalize() function is called to delete a [prepared statement].
+** If the statement was executed successfully or not executed at all, then
+** SQLITE_OK is returned. If execution of the statement failed then an
+** [error code] or [extended error code] is returned.
**
** This routine can be called at any point during the execution of the
-** [prepared statement]. If the virtual machine has not
+** [prepared statement]. If the virtual machine has not
** completed execution when this routine is called, that is like
-** encountering an error or an interrupt. (See [sqlite3_interrupt()].)
-** Incomplete updates may be rolled back and transactions cancelled,
-** depending on the circumstances, and the
+** encountering an error or an [sqlite3_interrupt | interrupt].
+** Incomplete updates may be rolled back and transactions canceled,
+** depending on the circumstances, and the
** [error code] returned will be [SQLITE_ABORT].
**
** INVARIANTS:
**
-** {F11302} The [sqlite3_finalize(S)] interface destroys the
+** {H11302} The [sqlite3_finalize(S)] interface destroys the
** [prepared statement] S and releases all
** memory and file resources held by that object.
**
-** {F11304} If the most recent call to [sqlite3_step(S)] for the
+** {H11304} If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S returned an error,
** then [sqlite3_finalize(S)] returns that same error.
*/
int sqlite3_finalize(sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Reset A Prepared Statement Object {F13330}
+** CAPI3REF: Reset A Prepared Statement Object {H13330} <S70300>
**
-** The sqlite3_reset() function is called to reset a
-** [prepared statement] object.
-** back to its initial state, ready to be re-executed.
+** The sqlite3_reset() function is called to reset a [prepared statement]
+** object back to its initial state, ready to be re-executed.
** Any SQL statement variables that had values bound to them using
** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
** Use [sqlite3_clear_bindings()] to reset the bindings.
**
-** {F11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
+** {H11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
** back to the beginning of its program.
**
-** {F11334} If the most recent call to [sqlite3_step(S)] for
+** {H11334} If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
** or if [sqlite3_step(S)] has never before been called on S,
** then [sqlite3_reset(S)] returns [SQLITE_OK].
**
-** {F11336} If the most recent call to [sqlite3_step(S)] for
+** {H11336} If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S indicated an error, then
** [sqlite3_reset(S)] returns an appropriate [error code].
**
-** {F11338} The [sqlite3_reset(S)] interface does not change the values
-** of any [sqlite3_bind_blob|bindings] on [prepared statement] S.
+** {H11338} The [sqlite3_reset(S)] interface does not change the values
+** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
*/
int sqlite3_reset(sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Create Or Redefine SQL Functions {F16100}
-** KEYWORDS: {function creation routines}
-**
-** These two functions (collectively known as
-** "function creation routines") are used to add SQL functions or aggregates
-** or to redefine the behavior of existing SQL functions or aggregates. The
-** difference only between the two is that the second parameter, the
-** name of the (scalar) function or aggregate, is encoded in UTF-8 for
-** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
+** CAPI3REF: Create Or Redefine SQL Functions {H16100} <S20200>
+** KEYWORDS: {function creation routines}
+** KEYWORDS: {application-defined SQL function}
+** KEYWORDS: {application-defined SQL functions}
+**
+** These two functions (collectively known as "function creation routines")
+** are used to add SQL functions or aggregates or to redefine the behavior
+** of existing SQL functions or aggregates. The only difference between the
+** two is that the second parameter, the name of the (scalar) function or
+** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16
+** for sqlite3_create_function16().
**
** The first parameter is the [database connection] to which the SQL
-** function is to be added. If a single
-** program uses more than one [database connection] internally, then SQL
-** functions must be added individually to each [database connection].
-**
-** The second parameter is the name of the SQL function to be created
-** or redefined.
-** The length of the name is limited to 255 bytes, exclusive of the
-** zero-terminator. Note that the name length limit is in bytes, not
+** function is to be added. If a single program uses more than one database
+** connection internally, then SQL functions must be added individually to
+** each database connection.
+**
+** The second parameter is the name of the SQL function to be created or
+** redefined. The length of the name is limited to 255 bytes, exclusive of
+** the zero-terminator. Note that the name length limit is in bytes, not
** characters. Any attempt to create a function with a longer name
-** will result in an SQLITE_ERROR error.
+** will result in [SQLITE_ERROR] being returned.
**
** The third parameter is the number of arguments that the SQL function or
** aggregate takes. If this parameter is negative, then the SQL function or
** aggregate may take any number of arguments.
**
-** The fourth parameter, eTextRep, specifies what
+** The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
** its parameters. Any SQL function implementation should be able to work
** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
** times with the same function but with different values of eTextRep.
** When multiple implementations of the same function are available, SQLite
** will pick the one that involves the least amount of data conversion.
-** If there is only a single implementation which does not care what
-** text encoding is used, then the fourth argument should be
-** [SQLITE_ANY].
+** If there is only a single implementation which does not care what text
+** encoding is used, then the fourth argument should be [SQLITE_ANY].
**
-** The fifth parameter is an arbitrary pointer. The implementation
-** of the function can gain access to this pointer using
-** [sqlite3_user_data()].
+** The fifth parameter is an arbitrary pointer. The implementation of the
+** function can gain access to this pointer using [sqlite3_user_data()].
**
** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
-** pointers to C-language functions that implement the SQL
-** function or aggregate. A scalar SQL function requires an implementation of
-** the xFunc callback only, NULL pointers should be passed as the xStep
-** and xFinal parameters. An aggregate SQL function requires an implementation
-** of xStep and xFinal and NULL should be passed for xFunc. To delete an
-** existing SQL function or aggregate, pass NULL for all three function
-** callback.
+** pointers to C-language functions that implement the SQL function or
+** aggregate. A scalar SQL function requires an implementation of the xFunc
+** callback only, NULL pointers should be passed as the xStep and xFinal
+** parameters. An aggregate SQL function requires an implementation of xStep
+** and xFinal and NULL should be passed for xFunc. To delete an existing
+** SQL function or aggregate, pass NULL for all three function callbacks.
**
** It is permitted to register multiple implementations of the same
** functions with the same name but with either differing numbers of
-** arguments or differing perferred text encodings. SQLite will use
+** arguments or differing preferred text encodings. SQLite will use
** the implementation most closely matches the way in which the
** SQL function is used.
**
** INVARIANTS:
**
-** {F16103} The [sqlite3_create_function16()] interface behaves exactly
+** {H16103} The [sqlite3_create_function16()] interface behaves exactly
** like [sqlite3_create_function()] in every way except that it
-** interprets the zFunctionName argument as
-** zero-terminated UTF-16 native byte order instead of as a
-** zero-terminated UTF-8.
+** interprets the zFunctionName argument as zero-terminated UTF-16
+** native byte order instead of as zero-terminated UTF-8.
**
-** {F16106} A successful invocation of
+** {H16106} A successful invocation of
** the [sqlite3_create_function(D,X,N,E,...)] interface registers
-** or replaces callback functions in [database connection] D
+** or replaces callback functions in the [database connection] D
** used to implement the SQL function named X with N parameters
-** and having a perferred text encoding of E.
+** and having a preferred text encoding of E.
**
-** {F16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)]
+** {H16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)]
** replaces the P, F, S, and L values from any prior calls with
** the same D, X, N, and E values.
**
-** {F16112} The [sqlite3_create_function(D,X,...)] interface fails with
+** {H16112} The [sqlite3_create_function(D,X,...)] interface fails with
** a return code of [SQLITE_ERROR] if the SQL function name X is
** longer than 255 bytes exclusive of the zero terminator.
**
-** {F16118} Either F must be NULL and S and L are non-NULL or else F
+** {H16118} Either F must be NULL and S and L are non-NULL or else F
** is non-NULL and S and L are NULL, otherwise
** [sqlite3_create_function(D,X,N,E,P,F,S,L)] returns [SQLITE_ERROR].
**
-** {F16121} The [sqlite3_create_function(D,...)] interface fails with an
+** {H16121} The [sqlite3_create_function(D,...)] interface fails with an
** error code of [SQLITE_BUSY] if there exist [prepared statements]
** associated with the [database connection] D.
**
-** {F16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an
+** {H16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an
** error code of [SQLITE_ERROR] if parameter N (specifying the number
** of arguments to the SQL function being registered) is less
** than -1 or greater than 127.
**
-** {F16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)]
+** {H16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)]
** interface causes callbacks to be invoked for the SQL function
** named X when the number of arguments to the SQL function is
** exactly N.
**
-** {F16130} When N is -1, the [sqlite3_create_function(D,X,N,...)]
+** {H16130} When N is -1, the [sqlite3_create_function(D,X,N,...)]
** interface causes callbacks to be invoked for the SQL function
** named X with any number of arguments.
**
-** {F16133} When calls to [sqlite3_create_function(D,X,N,...)]
+** {H16133} When calls to [sqlite3_create_function(D,X,N,...)]
** specify multiple implementations of the same function X
** and when one implementation has N>=0 and the other has N=(-1)
** the implementation with a non-zero N is preferred.
**
-** {F16136} When calls to [sqlite3_create_function(D,X,N,E,...)]
+** {H16136} When calls to [sqlite3_create_function(D,X,N,E,...)]
** specify multiple implementations of the same function X with
** the same number of arguments N but with different
** encodings E, then the implementation where E matches the
** database encoding is preferred.
**
-** {F16139} For an aggregate SQL function created using
-** [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finializer
+** {H16139} For an aggregate SQL function created using
+** [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finalizer
** function L will always be invoked exactly once if the
** step function S is called one or more times.
**
-** {F16142} When SQLite invokes either the xFunc or xStep function of
+** {H16142} When SQLite invokes either the xFunc or xStep function of
** an application-defined SQL function or aggregate created
** by [sqlite3_create_function()] or [sqlite3_create_function16()],
** then the array of [sqlite3_value] objects passed as the
);
/*
-** CAPI3REF: Text Encodings {F10267}
+** CAPI3REF: Text Encodings {H10267} <S50200> <H16100>
**
** These constant define integer codes that represent the various
** text encodings supported by SQLite.
#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
/*
-** CAPI3REF: Obsolete Functions
+** CAPI3REF: Deprecated Functions
+** DEPRECATED
**
-** These functions are all now obsolete. In order to maintain
-** backwards compatibility with older code, we continue to support
-** these functions. However, new development projects should avoid
+** These functions are [deprecated]. In order to maintain
+** backwards compatibility with older code, these functions continue
+** to be supported. However, new applications should avoid
** the use of these functions. To help encourage people to avoid
** using these functions, we are not going to tell you want they do.
*/
int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
/*
-** CAPI3REF: Obtaining SQL Function Parameter Values {F15100}
+** CAPI3REF: Obtaining SQL Function Parameter Values {H15100} <S20200>
**
** The C-language implementation of SQL functions and aggregates uses
** this set of interface routines to access the parameter values on
** Any attempt to use these routines on an [unprotected sqlite3_value]
** object results in undefined behavior.
**
-** These routines work just like the corresponding
-** [sqlite3_column_blob | sqlite3_column_* routines] except that
-** these routines take a single [protected sqlite3_value] object pointer
-** instead of an [sqlite3_stmt*] pointer and an integer column number.
+** These routines work just like the corresponding [column access functions]
+** except that these routines take a single [protected sqlite3_value] object
+** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
**
-** The sqlite3_value_text16() interface extracts a UTF16 string
+** The sqlite3_value_text16() interface extracts a UTF-16 string
** in the native byte-order of the host machine. The
** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
-** extract UTF16 strings as big-endian and little-endian respectively.
+** extract UTF-16 strings as big-endian and little-endian respectively.
**
** The sqlite3_value_numeric_type() interface attempts to apply
** numeric affinity to the value. This means that an attempt is
** made to convert the value to an integer or floating point. If
** such a conversion is possible without loss of information (in other
-** words if the value is a string that looks like a number)
-** then the conversion is done. Otherwise no conversion occurs. The
-** [SQLITE_INTEGER | datatype] after conversion is returned.
+** words, if the value is a string that looks like a number)
+** then the conversion is performed. Otherwise no conversion occurs.
+** The [SQLITE_INTEGER | datatype] after conversion is returned.
**
-** Please pay particular attention to the fact that the pointer that
-** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or
+** Please pay particular attention to the fact that the pointer returned
+** from [sqlite3_value_blob()], [sqlite3_value_text()], or
** [sqlite3_value_text16()] can be invalidated by a subsequent call to
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
-** or [sqlite3_value_text16()].
+** or [sqlite3_value_text16()].
**
** These routines must be called from the same thread as
** the SQL function that supplied the [sqlite3_value*] parameters.
**
-**
** INVARIANTS:
**
-** {F15103} The [sqlite3_value_blob(V)] interface converts the
-** [protected sqlite3_value] object V into a blob and then returns a
-** pointer to the converted value.
+** {H15103} The [sqlite3_value_blob(V)] interface converts the
+** [protected sqlite3_value] object V into a BLOB and then
+** returns a pointer to the converted value.
**
-** {F15106} The [sqlite3_value_bytes(V)] interface returns the
-** number of bytes in the blob or string (exclusive of the
+** {H15106} The [sqlite3_value_bytes(V)] interface returns the
+** number of bytes in the BLOB or string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_value_blob(V)] or
** [sqlite3_value_text(V)].
**
-** {F15109} The [sqlite3_value_bytes16(V)] interface returns the
+** {H15109} The [sqlite3_value_bytes16(V)] interface returns the
** number of bytes in the string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_value_text16(V)],
** [sqlite3_value_text16be(V)], or [sqlite3_value_text16le(V)].
**
-** {F15112} The [sqlite3_value_double(V)] interface converts the
+** {H15112} The [sqlite3_value_double(V)] interface converts the
** [protected sqlite3_value] object V into a floating point value and
** returns a copy of that value.
**
-** {F15115} The [sqlite3_value_int(V)] interface converts the
+** {H15115} The [sqlite3_value_int(V)] interface converts the
** [protected sqlite3_value] object V into a 64-bit signed integer and
** returns the lower 32 bits of that integer.
**
-** {F15118} The [sqlite3_value_int64(V)] interface converts the
+** {H15118} The [sqlite3_value_int64(V)] interface converts the
** [protected sqlite3_value] object V into a 64-bit signed integer and
** returns a copy of that integer.
**
-** {F15121} The [sqlite3_value_text(V)] interface converts the
-** [protected sqlite3_value] object V into a zero-terminated UTF-8
+** {H15121} The [sqlite3_value_text(V)] interface converts the
+** [protected sqlite3_value] object V into a zero-terminated UTF-8
** string and returns a pointer to that string.
**
-** {F15124} The [sqlite3_value_text16(V)] interface converts the
+** {H15124} The [sqlite3_value_text16(V)] interface converts the
** [protected sqlite3_value] object V into a zero-terminated 2-byte
** aligned UTF-16 native byte order
** string and returns a pointer to that string.
**
-** {F15127} The [sqlite3_value_text16be(V)] interface converts the
+** {H15127} The [sqlite3_value_text16be(V)] interface converts the
** [protected sqlite3_value] object V into a zero-terminated 2-byte
** aligned UTF-16 big-endian
** string and returns a pointer to that string.
**
-** {F15130} The [sqlite3_value_text16le(V)] interface converts the
+** {H15130} The [sqlite3_value_text16le(V)] interface converts the
** [protected sqlite3_value] object V into a zero-terminated 2-byte
** aligned UTF-16 little-endian
** string and returns a pointer to that string.
**
-** {F15133} The [sqlite3_value_type(V)] interface returns
+** {H15133} The [sqlite3_value_type(V)] interface returns
** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
** the [sqlite3_value] object V.
**
-** {F15136} The [sqlite3_value_numeric_type(V)] interface converts
+** {H15136} The [sqlite3_value_numeric_type(V)] interface converts
** the [protected sqlite3_value] object V into either an integer or
** a floating point value if it can do so without loss of
** information, and returns one of [SQLITE_NULL],
** [SQLITE_INTEGER], [SQLITE_FLOAT], [SQLITE_TEXT], or
-** [SQLITE_BLOB] as appropriate for
-** the [protected sqlite3_value] object V after the conversion attempt.
+** [SQLITE_BLOB] as appropriate for the
+** [protected sqlite3_value] object V after the conversion attempt.
*/
const void *sqlite3_value_blob(sqlite3_value*);
int sqlite3_value_bytes(sqlite3_value*);
int sqlite3_value_numeric_type(sqlite3_value*);
/*
-** CAPI3REF: Obtain Aggregate Function Context {F16210}
+** CAPI3REF: Obtain Aggregate Function Context {H16210} <S20200>
**
** The implementation of aggregate SQL functions use this routine to allocate
-** a structure for storing their state.
-** The first time the sqlite3_aggregate_context() routine is
-** is called for a particular aggregate, SQLite allocates nBytes of memory
-** zeros that memory, and returns a pointer to it.
-** On second and subsequent calls to sqlite3_aggregate_context()
-** for the same aggregate function index, the same buffer is returned.
-** The implementation
-** of the aggregate can use the returned buffer to accumulate data.
+** a structure for storing their state.
+**
+** The first time the sqlite3_aggregate_context() routine is called for a
+** particular aggregate, SQLite allocates nBytes of memory, zeroes out that
+** memory, and returns a pointer to it. On second and subsequent calls to
+** sqlite3_aggregate_context() for the same aggregate function index,
+** the same buffer is returned. The implementation of the aggregate can use
+** the returned buffer to accumulate data.
**
** SQLite automatically frees the allocated buffer when the aggregate
** query concludes.
**
-** The first parameter should be a copy of the
-** [sqlite3_context | SQL function context] that is the first
-** parameter to the callback routine that implements the aggregate
-** function.
+** The first parameter should be a copy of the
+** [sqlite3_context | SQL function context] that is the first parameter
+** to the callback routine that implements the aggregate function.
**
** This routine must be called from the same thread in which
** the aggregate SQL function is running.
**
** INVARIANTS:
**
-** {F16211} The first invocation of [sqlite3_aggregate_context(C,N)] for
+** {H16211} The first invocation of [sqlite3_aggregate_context(C,N)] for
** a particular instance of an aggregate function (for a particular
-** context C) causes SQLite to allocation N bytes of memory,
-** zero that memory, and return a pointer to the allocationed
-** memory.
+** context C) causes SQLite to allocate N bytes of memory,
+** zero that memory, and return a pointer to the allocated memory.
**
-** {F16213} If a memory allocation error occurs during
+** {H16213} If a memory allocation error occurs during
** [sqlite3_aggregate_context(C,N)] then the function returns 0.
**
-** {F16215} Second and subsequent invocations of
+** {H16215} Second and subsequent invocations of
** [sqlite3_aggregate_context(C,N)] for the same context pointer C
** ignore the N parameter and return a pointer to the same
** block of memory returned by the first invocation.
**
-** {F16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is
+** {H16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is
** automatically freed on the next call to [sqlite3_reset()]
** or [sqlite3_finalize()] for the [prepared statement] containing
** the aggregate function associated with context C.
void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
/*
-** CAPI3REF: User Data For Functions {F16240}
+** CAPI3REF: User Data For Functions {H16240} <S20200>
**
** The sqlite3_user_data() interface returns a copy of
** the pointer that was the pUserData parameter (the 5th parameter)
-** of the the [sqlite3_create_function()]
+** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function. {END}
**
**
** INVARIANTS:
**
-** {F16243} The [sqlite3_user_data(C)] interface returns a copy of the
+** {H16243} The [sqlite3_user_data(C)] interface returns a copy of the
** P pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
-** registered the SQL function associated with
-** [sqlite3_context] C.
+** registered the SQL function associated with [sqlite3_context] C.
*/
void *sqlite3_user_data(sqlite3_context*);
/*
-** CAPI3REF: Database Connection For Functions {F16250}
+** CAPI3REF: Database Connection For Functions {H16250} <S60600><S20200>
**
** The sqlite3_context_db_handle() interface returns a copy of
** the pointer to the [database connection] (the 1st parameter)
-** of the the [sqlite3_create_function()]
+** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
**
** INVARIANTS:
**
-** {F16253} The [sqlite3_context_db_handle(C)] interface returns a copy of the
+** {H16253} The [sqlite3_context_db_handle(C)] interface returns a copy of the
** D pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
-** registered the SQL function associated with
-** [sqlite3_context] C.
+** registered the SQL function associated with [sqlite3_context] C.
*/
sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
/*
-** CAPI3REF: Function Auxiliary Data {F16270}
+** CAPI3REF: Function Auxiliary Data {H16270} <S20200>
**
** The following two functions may be used by scalar SQL functions to
-** associate meta-data with argument values. If the same value is passed to
+** associate metadata with argument values. If the same value is passed to
** multiple invocations of the same SQL function during query execution, under
-** some circumstances the associated meta-data may be preserved. This may
+** some circumstances the associated metadata may be preserved. This may
** be used, for example, to add a regular-expression matching scalar
** function. The compiled version of the regular expression is stored as
-** meta-data associated with the SQL value passed as the regular expression
+** metadata associated with the SQL value passed as the regular expression
** pattern. The compiled regular expression can be reused on multiple
** invocations of the same function so that the original pattern string
** does not need to be recompiled on each invocation.
**
-** The sqlite3_get_auxdata() interface returns a pointer to the meta-data
+** The sqlite3_get_auxdata() interface returns a pointer to the metadata
** associated by the sqlite3_set_auxdata() function with the Nth argument
-** value to the application-defined function.
-** If no meta-data has been ever been set for the Nth
-** argument of the function, or if the cooresponding function parameter
-** has changed since the meta-data was set, then sqlite3_get_auxdata()
-** returns a NULL pointer.
-**
-** The sqlite3_set_auxdata() interface saves the meta-data
-** pointed to by its 3rd parameter as the meta-data for the N-th
+** value to the application-defined function. If no metadata has been ever
+** been set for the Nth argument of the function, or if the corresponding
+** function parameter has changed since the meta-data was set,
+** then sqlite3_get_auxdata() returns a NULL pointer.
+**
+** The sqlite3_set_auxdata() interface saves the metadata
+** pointed to by its 3rd parameter as the metadata for the N-th
** argument of the application-defined function. Subsequent
** calls to sqlite3_get_auxdata() might return this data, if it has
-** not been destroyed.
-** If it is not NULL, SQLite will invoke the destructor
+** not been destroyed.
+** If it is not NULL, SQLite will invoke the destructor
** function given by the 4th parameter to sqlite3_set_auxdata() on
-** the meta-data when the corresponding function parameter changes
+** the metadata when the corresponding function parameter changes
** or when the SQL statement completes, whichever comes first.
**
-** SQLite is free to call the destructor and drop meta-data on
-** any parameter of any function at any time. The only guarantee
-** is that the destructor will be called before the metadata is
-** dropped.
+** SQLite is free to call the destructor and drop metadata on any
+** parameter of any function at any time. The only guarantee is that
+** the destructor will be called before the metadata is dropped.
**
-** In practice, meta-data is preserved between function calls for
+** In practice, metadata is preserved between function calls for
** expressions that are constant at compile time. This includes literal
** values and SQL variables.
**
**
** INVARIANTS:
**
-** {F16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer
+** {H16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer
** to metadata associated with the Nth parameter of the SQL function
** whose context is C, or NULL if there is no metadata associated
** with that parameter.
**
-** {F16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata
-** pointer P to the Nth parameter of the SQL function with context
-** C.
+** {H16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata
+** pointer P to the Nth parameter of the SQL function with context C.
**
-** {F16276} SQLite will invoke the destructor D with a single argument
+** {H16276} SQLite will invoke the destructor D with a single argument
** which is the metadata pointer P following a call to
** [sqlite3_set_auxdata(C,N,P,D)] when SQLite ceases to hold
** the metadata.
**
-** {F16277} SQLite ceases to hold metadata for an SQL function parameter
+** {H16277} SQLite ceases to hold metadata for an SQL function parameter
** when the value of that parameter changes.
**
-** {F16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor
+** {H16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor
** is called for any prior metadata associated with the same function
** context C and parameter N.
**
-** {F16279} SQLite will call destructors for any metadata it is holding
+** {H16279} SQLite will call destructors for any metadata it is holding
** in a particular [prepared statement] S when either
** [sqlite3_reset(S)] or [sqlite3_finalize(S)] is called.
*/
/*
-** CAPI3REF: Constants Defining Special Destructor Behavior {F10280}
+** CAPI3REF: Constants Defining Special Destructor Behavior {H10280} <S30100>
**
-** These are special value for the destructor that is passed in as the
+** These are special values for the destructor that is passed in as the
** final argument to routines like [sqlite3_result_blob()]. If the destructor
** argument is SQLITE_STATIC, it means that the content pointer is constant
-** and will never change. It does not need to be destroyed. The
+** and will never change. It does not need to be destroyed. The
** SQLITE_TRANSIENT value means that the content will likely change in
** the near future and that SQLite should make its own private copy of
** the content before returning.
#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
/*
-** CAPI3REF: Setting The Result Of An SQL Function {F16400}
+** CAPI3REF: Setting The Result Of An SQL Function {H16400} <S20200>
**
** These routines are used by the xFunc or xFinal callbacks that
** implement SQL functions and aggregates. See
** [sqlite3_create_function()] and [sqlite3_create_function16()]
** for additional information.
**
-** These functions work very much like the
-** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used
-** to bind values to host parameters in prepared statements.
-** Refer to the
-** [sqlite3_bind_blob | sqlite3_bind_* documentation] for
-** additional information.
+** These functions work very much like the [parameter binding] family of
+** functions used to bind values to host parameters in prepared statements.
+** Refer to the [SQL parameter] documentation for additional information.
**
** The sqlite3_result_blob() interface sets the result from
-** an application defined function to be the BLOB whose content is pointed
+** an application-defined function to be the BLOB whose content is pointed
** to by the second parameter and which is N bytes long where N is the
-** third parameter.
-** The sqlite3_result_zeroblob() inerfaces set the result of
-** the application defined function to be a BLOB containing all zero
+** third parameter.
+**
+** The sqlite3_result_zeroblob() interfaces set the result of
+** the application-defined function to be a BLOB containing all zero
** bytes and N bytes in size, where N is the value of the 2nd parameter.
**
** The sqlite3_result_double() interface sets the result from
-** an application defined function to be a floating point value specified
+** an application-defined function to be a floating point value specified
** by its 2nd argument.
**
** The sqlite3_result_error() and sqlite3_result_error16() functions
** SQLite uses the string pointed to by the
** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
** as the text of an error message. SQLite interprets the error
-** message string from sqlite3_result_error() as UTF8. SQLite
-** interprets the string from sqlite3_result_error16() as UTF16 in native
+** message string from sqlite3_result_error() as UTF-8. SQLite
+** interprets the string from sqlite3_result_error16() as UTF-16 in native
** byte order. If the third parameter to sqlite3_result_error()
** or sqlite3_result_error16() is negative then SQLite takes as the error
** message all text up through the first zero character.
** sqlite3_result_error16() is non-negative then SQLite takes that many
** bytes (not characters) from the 2nd parameter as the error message.
** The sqlite3_result_error() and sqlite3_result_error16()
-** routines make a copy private copy of the error message text before
+** routines make a private copy of the error message text before
** they return. Hence, the calling function can deallocate or
** modify the text after they return without harm.
** The sqlite3_result_error_code() function changes the error code
** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error()
** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
**
-** The sqlite3_result_toobig() interface causes SQLite
-** to throw an error indicating that a string or BLOB is to long
-** to represent. The sqlite3_result_nomem() interface
-** causes SQLite to throw an exception indicating that the a
-** memory allocation failed.
+** The sqlite3_result_toobig() interface causes SQLite to throw an error
+** indicating that a string or BLOB is to long to represent.
+**
+** The sqlite3_result_nomem() interface causes SQLite to throw an error
+** indicating that a memory allocation failed.
**
** The sqlite3_result_int() interface sets the return value
** of the application-defined function to be the 32-bit signed integer
** The sqlite3_result_null() interface sets the return value
** of the application-defined function to be NULL.
**
-** The sqlite3_result_text(), sqlite3_result_text16(),
+** The sqlite3_result_text(), sqlite3_result_text16(),
** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
** set the return value of the application-defined function to be
** a text string which is represented as UTF-8, UTF-16 native byte order,
** SQLite takes the text result from the application from
** the 2nd parameter of the sqlite3_result_text* interfaces.
** If the 3rd parameter to the sqlite3_result_text* interfaces
-** is negative, then SQLite takes result text from the 2nd parameter
+** is negative, then SQLite takes result text from the 2nd parameter
** through the first zero character.
** If the 3rd parameter to the sqlite3_result_text* interfaces
** is non-negative, then as many bytes (not characters) of the text
** function result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
-** function as the destructor on the text or blob result when it has
-** finished using that result.
-** If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is the special constant SQLITE_STATIC, then
-** SQLite assumes that the text or blob result is constant space and
-** does not copy the space or call a destructor when it has
+** function as the destructor on the text or BLOB result when it has
** finished using that result.
+** If the 4th parameter to the sqlite3_result_text* interfaces or
+** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
+** assumes that the text or BLOB result is in constant space and does not
+** copy the it or call a destructor when it has finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
** then SQLite makes a copy of the result into space obtained from
** the application-defined function to be a copy the
** [unprotected sqlite3_value] object specified by the 2nd parameter. The
** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
-** so that [sqlite3_value] specified in the parameter may change or
+** so that the [sqlite3_value] specified in the parameter may change or
** be deallocated after sqlite3_result_value() returns without harm.
** A [protected sqlite3_value] object may always be used where an
** [unprotected sqlite3_value] object is required, so either
** kind of [sqlite3_value] object can be used with this interface.
**
-** If these routines are called from within the different thread
-** than the one containing the application-defined function that recieved
+** If these routines are called from within the different thread
+** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
**
** INVARIANTS:
**
-** {F16403} The default return value from any SQL function is NULL.
+** {H16403} The default return value from any SQL function is NULL.
**
-** {F16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the
-** return value of function C to be a blob that is N bytes
+** {H16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the
+** return value of function C to be a BLOB that is N bytes
** in length and with content pointed to by V.
**
-** {F16409} The [sqlite3_result_double(C,V)] interface changes the
+** {H16409} The [sqlite3_result_double(C,V)] interface changes the
** return value of function C to be the floating point value V.
**
-** {F16412} The [sqlite3_result_error(C,V,N)] interface changes the return
+** {H16412} The [sqlite3_result_error(C,V,N)] interface changes the return
** value of function C to be an exception with error code
-** [SQLITE_ERROR] and a UTF8 error message copied from V up to the
+** [SQLITE_ERROR] and a UTF-8 error message copied from V up to the
** first zero byte or until N bytes are read if N is positive.
**
-** {F16415} The [sqlite3_result_error16(C,V,N)] interface changes the return
+** {H16415} The [sqlite3_result_error16(C,V,N)] interface changes the return
** value of function C to be an exception with error code
-** [SQLITE_ERROR] and a UTF16 native byte order error message
+** [SQLITE_ERROR] and a UTF-16 native byte order error message
** copied from V up to the first zero terminator or until N bytes
** are read if N is positive.
**
-** {F16418} The [sqlite3_result_error_toobig(C)] interface changes the return
+** {H16418} The [sqlite3_result_error_toobig(C)] interface changes the return
** value of the function C to be an exception with error code
** [SQLITE_TOOBIG] and an appropriate error message.
**
-** {F16421} The [sqlite3_result_error_nomem(C)] interface changes the return
+** {H16421} The [sqlite3_result_error_nomem(C)] interface changes the return
** value of the function C to be an exception with error code
** [SQLITE_NOMEM] and an appropriate error message.
**
-** {F16424} The [sqlite3_result_error_code(C,E)] interface changes the return
+** {H16424} The [sqlite3_result_error_code(C,E)] interface changes the return
** value of the function C to be an exception with error code E.
** The error message text is unchanged.
**
-** {F16427} The [sqlite3_result_int(C,V)] interface changes the
+** {H16427} The [sqlite3_result_int(C,V)] interface changes the
** return value of function C to be the 32-bit integer value V.
**
-** {F16430} The [sqlite3_result_int64(C,V)] interface changes the
+** {H16430} The [sqlite3_result_int64(C,V)] interface changes the
** return value of function C to be the 64-bit integer value V.
**
-** {F16433} The [sqlite3_result_null(C)] interface changes the
+** {H16433} The [sqlite3_result_null(C)] interface changes the
** return value of function C to be NULL.
**
-** {F16436} The [sqlite3_result_text(C,V,N,D)] interface changes the
-** return value of function C to be the UTF8 string
+** {H16436} The [sqlite3_result_text(C,V,N,D)] interface changes the
+** return value of function C to be the UTF-8 string
** V up to the first zero if N is negative
** or the first N bytes of V if N is non-negative.
**
-** {F16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 native byte order
-** string V up to the first zero if N is
-** negative or the first N bytes of V if N is non-negative.
+** {H16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the
+** return value of function C to be the UTF-16 native byte order
+** string V up to the first zero if N is negative
+** or the first N bytes of V if N is non-negative.
**
-** {F16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 big-endian
-** string V up to the first zero if N is
-** is negative or the first N bytes or V if N is non-negative.
+** {H16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the
+** return value of function C to be the UTF-16 big-endian
+** string V up to the first zero if N is negative
+** or the first N bytes or V if N is non-negative.
**
-** {F16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 little-endian
-** string V up to the first zero if N is
-** negative or the first N bytes of V if N is non-negative.
+** {H16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the
+** return value of function C to be the UTF-16 little-endian
+** string V up to the first zero if N is negative
+** or the first N bytes of V if N is non-negative.
**
-** {F16448} The [sqlite3_result_value(C,V)] interface changes the
-** return value of function C to be [unprotected sqlite3_value]
+** {H16448} The [sqlite3_result_value(C,V)] interface changes the
+** return value of function C to be the [unprotected sqlite3_value]
** object V.
**
-** {F16451} The [sqlite3_result_zeroblob(C,N)] interface changes the
-** return value of function C to be an N-byte blob of all zeros.
+** {H16451} The [sqlite3_result_zeroblob(C,N)] interface changes the
+** return value of function C to be an N-byte BLOB of all zeros.
**
-** {F16454} The [sqlite3_result_error()] and [sqlite3_result_error16()]
+** {H16454} The [sqlite3_result_error()] and [sqlite3_result_error16()]
** interfaces make a copy of their error message strings before
** returning.
**
-** {F16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** {H16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
** [sqlite3_result_text16be(C,V,N,D)], or
** [sqlite3_result_text16le(C,V,N,D)] is the constant [SQLITE_STATIC]
** then no destructor is ever called on the pointer V and SQLite
** assumes that V is immutable.
**
-** {F16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** {H16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
** [sqlite3_result_text16be(C,V,N,D)], or
** [sqlite3_result_text16le(C,V,N,D)] is the constant
** [SQLITE_TRANSIENT] then the interfaces makes a copy of the
** content of V and retains the copy.
**
-** {F16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** {H16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
** [sqlite3_result_text16be(C,V,N,D)], or
** [sqlite3_result_text16le(C,V,N,D)] is some value other than
-** the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then
+** the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then
** SQLite will invoke the destructor D with V as its only argument
** when it has finished with the V value.
*/
void sqlite3_result_zeroblob(sqlite3_context*, int n);
/*
-** CAPI3REF: Define New Collating Sequences {F16600}
+** CAPI3REF: Define New Collating Sequences {H16600} <S20300>
**
** These functions are used to add new collation sequences to the
-** [sqlite3*] handle specified as the first argument.
+** [database connection] specified as the first argument.
**
** The name of the new collation sequence is specified as a UTF-8 string
** for sqlite3_create_collation() and sqlite3_create_collation_v2()
** The third argument may be one of the constants [SQLITE_UTF8],
** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied
** routine expects to be passed pointers to strings encoded using UTF-8,
-** UTF-16 little-endian or UTF-16 big-endian respectively. The
+** UTF-16 little-endian, or UTF-16 big-endian, respectively. The
** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that
** the routine expects pointers to 16-bit word aligned strings
-** of UTF16 in the native byte order of the host computer.
+** of UTF-16 in the native byte order of the host computer.
**
** A pointer to the user supplied routine must be passed as the fifth
** argument. If it is NULL, this is the same as deleting the collation
** sequence (so that SQLite cannot call it anymore).
-** Each time the application
-** supplied function is invoked, it is passed a copy of the void* passed as
-** the fourth argument to sqlite3_create_collation() or
-** sqlite3_create_collation16() as its first parameter.
+** Each time the application supplied function is invoked, it is passed
+** as its first parameter a copy of the void* passed as the fourth argument
+** to sqlite3_create_collation() or sqlite3_create_collation16().
**
** The remaining arguments to the application-supplied routine are two strings,
** each represented by a (length, data) pair and encoded in the encoding
** that was passed as the third argument when the collation sequence was
-** registered. {END} The application defined collation routine should
-** return negative, zero or positive if
-** the first string is less than, equal to, or greater than the second
-** string. i.e. (STRING1 - STRING2).
+** registered. {END} The application defined collation routine should
+** return negative, zero or positive if the first string is less than,
+** equal to, or greater than the second string. i.e. (STRING1 - STRING2).
**
** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
-** excapt that it takes an extra argument which is a destructor for
+** except that it takes an extra argument which is a destructor for
** the collation. The destructor is called when the collation is
** destroyed and is passed a copy of the fourth parameter void* pointer
** of the sqlite3_create_collation_v2().
-** Collations are destroyed when
-** they are overridden by later calls to the collation creation functions
-** or when the [sqlite3*] database handle is closed using [sqlite3_close()].
+** Collations are destroyed when they are overridden by later calls to the
+** collation creation functions or when the [database connection] is closed
+** using [sqlite3_close()].
**
** INVARIANTS:
**
-** {F16603} A successful call to the
+** {H16603} A successful call to the
** [sqlite3_create_collation_v2(B,X,E,P,F,D)] interface
** registers function F as the comparison function used to
-** implement collation X on [database connection] B for
+** implement collation X on the [database connection] B for
** databases having encoding E.
**
-** {F16604} SQLite understands the X parameter to
+** {H16604} SQLite understands the X parameter to
** [sqlite3_create_collation_v2(B,X,E,P,F,D)] as a zero-terminated
** UTF-8 string in which case is ignored for ASCII characters and
** is significant for non-ASCII characters.
**
-** {F16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** {H16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)]
** with the same values for B, X, and E, override prior values
** of P, F, and D.
**
-** {F16609} The destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** {H16609} If the destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
** is not NULL then it is called with argument P when the
** collating function is dropped by SQLite.
**
-** {F16612} A collating function is dropped when it is overloaded.
+** {H16612} A collating function is dropped when it is overloaded.
**
-** {F16615} A collating function is dropped when the database connection
+** {H16615} A collating function is dropped when the database connection
** is closed using [sqlite3_close()].
**
-** {F16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** {H16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
** is passed through as the first parameter to the comparison
** function F for all subsequent invocations of F.
**
-** {F16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly
+** {H16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly
** the same as a call to [sqlite3_create_collation_v2()] with
** the same parameters and a NULL destructor.
**
-** {F16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)],
+** {H16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)],
** SQLite uses the comparison function F for all text comparison
-** operations on [database connection] B on text values that
-** use the collating sequence name X.
+** operations on the [database connection] B on text values that
+** use the collating sequence named X.
**
-** {F16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same
+** {H16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same
** as [sqlite3_create_collation(B,X,E,P,F)] except that the
** collation name X is understood as UTF-16 in native byte order
** instead of UTF-8.
**
-** {F16630} When multiple comparison functions are available for the same
+** {H16630} When multiple comparison functions are available for the same
** collating sequence, SQLite chooses the one whose text encoding
** requires the least amount of conversion from the default
** text encoding of the database.
);
int sqlite3_create_collation16(
sqlite3*,
- const char *zName,
+ const void *zName,
int eTextRep,
void*,
int(*xCompare)(void*,int,const void*,int,const void*)
);
/*
-** CAPI3REF: Collation Needed Callbacks {F16700}
+** CAPI3REF: Collation Needed Callbacks {H16700} <S20300>
**
** To avoid having to register all collation sequences before a database
** can be used, a single callback function may be registered with the
-** database handle to be called whenever an undefined collation sequence is
-** required.
+** [database connection] to be called whenever an undefined collation
+** sequence is required.
**
** If the function is registered using the sqlite3_collation_needed() API,
** then it is passed the names of undefined collation sequences as strings
-** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names
-** are passed as UTF-16 in machine native byte order. A call to either
-** function replaces any existing callback.
+** encoded in UTF-8. {H16703} If sqlite3_collation_needed16() is used,
+** the names are passed as UTF-16 in machine native byte order.
+** A call to either function replaces any existing callback.
**
** When the callback is invoked, the first argument passed is a copy
** of the second argument to sqlite3_collation_needed() or
** sqlite3_collation_needed16(). The second argument is the database
-** handle. The third argument is one of [SQLITE_UTF8],
-** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most
-** desirable form of the collation sequence function required.
-** The fourth parameter is the name of the
+** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
+** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
+** sequence function required. The fourth parameter is the name of the
** required collation sequence.
**
** The callback function should register the desired collation using
**
** INVARIANTS:
**
-** {F16702} A successful call to [sqlite3_collation_needed(D,P,F)]
+** {H16702} A successful call to [sqlite3_collation_needed(D,P,F)]
** or [sqlite3_collation_needed16(D,P,F)] causes
** the [database connection] D to invoke callback F with first
** parameter P whenever it needs a comparison function for a
** collating sequence that it does not know about.
**
-** {F16704} Each successful call to [sqlite3_collation_needed()] or
+** {H16704} Each successful call to [sqlite3_collation_needed()] or
** [sqlite3_collation_needed16()] overrides the callback registered
** on the same [database connection] by prior calls to either
** interface.
**
-** {F16706} The name of the requested collating function passed in the
+** {H16706} The name of the requested collating function passed in the
** 4th parameter to the callback is in UTF-8 if the callback
** was registered using [sqlite3_collation_needed()] and
** is in UTF-16 native byte order if the callback was
** registered using [sqlite3_collation_needed16()].
-**
-**
*/
int sqlite3_collation_needed(
sqlite3*,
);
/*
-** CAPI3REF: Suspend Execution For A Short Time {F10530}
+** CAPI3REF: Suspend Execution For A Short Time {H10530} <S40410>
**
-** The sqlite3_sleep() function
-** causes the current thread to suspend execution
+** The sqlite3_sleep() function causes the current thread to suspend execution
** for at least a number of milliseconds specified in its parameter.
**
-** If the operating system does not support sleep requests with
-** millisecond time resolution, then the time will be rounded up to
-** the nearest second. The number of milliseconds of sleep actually
+** If the operating system does not support sleep requests with
+** millisecond time resolution, then the time will be rounded up to
+** the nearest second. The number of milliseconds of sleep actually
** requested from the operating system is returned.
**
** SQLite implements this interface by calling the xSleep()
**
** INVARIANTS:
**
-** {F10533} The [sqlite3_sleep(M)] interface invokes the xSleep
+** {H10533} The [sqlite3_sleep(M)] interface invokes the xSleep
** method of the default [sqlite3_vfs|VFS] in order to
** suspend execution of the current thread for at least
** M milliseconds.
**
-** {F10536} The [sqlite3_sleep(M)] interface returns the number of
+** {H10536} The [sqlite3_sleep(M)] interface returns the number of
** milliseconds of sleep actually requested of the operating
** system, which might be larger than the parameter M.
*/
int sqlite3_sleep(int);
/*
-** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310}
+** CAPI3REF: Name Of The Folder Holding Temporary Files {H10310} <S20000>
**
** If this global variable is made to point to a string which is
-** the name of a folder (a.ka. directory), then all temporary files
+** the name of a folder (a.k.a. directory), then all temporary files
** created by SQLite will be placed in that directory. If this variable
-** is NULL pointer, then SQLite does a search for an appropriate temporary
-** file directory.
+** is a NULL pointer, then SQLite performs a search for an appropriate
+** temporary file directory.
**
-** It is not safe to modify this variable once a database connection
+** It is not safe to modify this variable once a [database connection]
** has been opened. It is intended that this variable be set once
** as part of process initialization and before any SQLite interface
** routines have been call and remain unchanged thereafter.
SQLITE_EXTERN char *sqlite3_temp_directory;
/*
-** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930}
+** CAPI3REF: Test For Auto-Commit Mode {H12930} <S60200>
+** KEYWORDS: {autocommit mode}
**
-** The sqlite3_get_autocommit() interfaces returns non-zero or
+** The sqlite3_get_autocommit() interface returns non-zero or
** zero if the given database connection is or is not in autocommit mode,
-** respectively. Autocommit mode is on
-** by default. Autocommit mode is disabled by a [BEGIN] statement.
-** Autocommit mode is reenabled by a [COMMIT] or [ROLLBACK].
+** respectively. Autocommit mode is on by default.
+** Autocommit mode is disabled by a [BEGIN] statement.
+** Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
**
** If certain kinds of errors occur on a statement within a multi-statement
-** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR],
+** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
** transaction might be rolled back automatically. The only way to
-** find out if SQLite automatically rolled back the transaction after
+** find out whether SQLite automatically rolled back the transaction after
** an error is to use this function.
**
** INVARIANTS:
**
-** {F12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or
+** {H12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or
** zero if the [database connection] D is or is not in autocommit
** mode, respectively.
**
-** {F12932} Autocommit mode is on by default.
+** {H12932} Autocommit mode is on by default.
**
-** {F12933} Autocommit mode is disabled by a successful [BEGIN] statement.
+** {H12933} Autocommit mode is disabled by a successful [BEGIN] statement.
**
-** {F12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK]
+** {H12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK]
** statement.
-**
**
-** LIMITATIONS:
-***
-** {U12936} If another thread changes the autocommit status of the database
+** ASSUMPTIONS:
+**
+** {A12936} If another thread changes the autocommit status of the database
** connection while this routine is running, then the return value
** is undefined.
*/
int sqlite3_get_autocommit(sqlite3*);
/*
-** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120}
+** CAPI3REF: Find The Database Handle Of A Prepared Statement {H13120} <S60600>
**
-** The sqlite3_db_handle interface
-** returns the [sqlite3*] database handle to which a
-** [prepared statement] belongs.
-** The database handle returned by sqlite3_db_handle
-** is the same database handle that was
-** the first argument to the [sqlite3_prepare_v2()] or its variants
-** that was used to create the statement in the first place.
+** The sqlite3_db_handle interface returns the [database connection] handle
+** to which a [prepared statement] belongs. The database handle returned by
+** sqlite3_db_handle is the same database handle that was the first argument
+** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
+** create the statement in the first place.
**
** INVARIANTS:
**
-** {F13123} The [sqlite3_db_handle(S)] interface returns a pointer
-** to the [database connection] associated with
+** {H13123} The [sqlite3_db_handle(S)] interface returns a pointer
+** to the [database connection] associated with the
** [prepared statement] S.
*/
sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
+/*
+** CAPI3REF: Find the next prepared statement {H13140} <S60600>
+**
+** This interface returns a pointer to the next [prepared statement] after
+** pStmt associated with the [database connection] pDb. If pStmt is NULL
+** then this interface returns a pointer to the first prepared statement
+** associated with the database connection pDb. If no prepared statement
+** satisfies the conditions of this routine, it returns NULL.
+**
+** INVARIANTS:
+**
+** {H13143} If D is a [database connection] that holds one or more
+** unfinalized [prepared statements] and S is a NULL pointer,
+** then [sqlite3_next_stmt(D, S)] routine shall return a pointer
+** to one of the prepared statements associated with D.
+**
+** {H13146} If D is a [database connection] that holds no unfinalized
+** [prepared statements] and S is a NULL pointer, then
+** [sqlite3_next_stmt(D, S)] routine shall return a NULL pointer.
+**
+** {H13149} If S is a [prepared statement] in the [database connection] D
+** and S is not the last prepared statement in D, then
+** [sqlite3_next_stmt(D, S)] routine shall return a pointer
+** to the next prepared statement in D after S.
+**
+** {H13152} If S is the last [prepared statement] in the
+** [database connection] D then the [sqlite3_next_stmt(D, S)]
+** routine shall return a NULL pointer.
+**
+** ASSUMPTIONS:
+**
+** {A13154} The [database connection] pointer D in a call to
+** [sqlite3_next_stmt(D,S)] must refer to an open database
+** connection and in particular must not be a NULL pointer.
+*/
+sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
/*
-** CAPI3REF: Commit And Rollback Notification Callbacks {F12950}
+** CAPI3REF: Commit And Rollback Notification Callbacks {H12950} <S60400>
**
** The sqlite3_commit_hook() interface registers a callback
** function to be invoked whenever a transaction is committed.
** function to be invoked whenever a transaction is committed.
** Any callback set by a previous call to sqlite3_commit_hook()
** for the same database connection is overridden.
-** The pArg argument is passed through
-** to the callback. If the callback on a commit hook function
-** returns non-zero, then the commit is converted into a rollback.
+** The pArg argument is passed through to the callback.
+** If the callback on a commit hook function returns non-zero,
+** then the commit is converted into a rollback.
**
** If another function was previously registered, its
** pArg value is returned. Otherwise NULL is returned.
**
** Registering a NULL function disables the callback.
**
-** For the purposes of this API, a transaction is said to have been
+** For the purposes of this API, a transaction is said to have been
** rolled back if an explicit "ROLLBACK" statement is executed, or
** an error or constraint causes an implicit rollback to occur.
** The rollback callback is not invoked if a transaction is
** rolled back because a commit callback returned non-zero.
** <todo> Check on this </todo>
**
-** These are experimental interfaces and are subject to change.
-**
** INVARIANTS:
**
-** {F12951} The [sqlite3_commit_hook(D,F,P)] interface registers the
+** {H12951} The [sqlite3_commit_hook(D,F,P)] interface registers the
** callback function F to be invoked with argument P whenever
-** a transaction commits on [database connection] D.
+** a transaction commits on the [database connection] D.
**
-** {F12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P
-** argument from the previous call with the same
-** [database connection ] D , or NULL on the first call
-** for a particular [database connection] D.
+** {H12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P argument
+** from the previous call with the same [database connection] D,
+** or NULL on the first call for a particular database connection D.
**
-** {F12953} Each call to [sqlite3_commit_hook()] overwrites the callback
+** {H12953} Each call to [sqlite3_commit_hook()] overwrites the callback
** registered by prior calls.
**
-** {F12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL
-** then the commit hook callback is cancelled and no callback
+** {H12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL
+** then the commit hook callback is canceled and no callback
** is invoked when a transaction commits.
**
-** {F12955} If the commit callback returns non-zero then the commit is
+** {H12955} If the commit callback returns non-zero then the commit is
** converted into a rollback.
**
-** {F12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the
+** {H12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the
** callback function F to be invoked with argument P whenever
-** a transaction rolls back on [database connection] D.
+** a transaction rolls back on the [database connection] D.
**
-** {F12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P
-** argument from the previous call with the same
-** [database connection ] D , or NULL on the first call
-** for a particular [database connection] D.
+** {H12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P
+** argument from the previous call with the same
+** [database connection] D, or NULL on the first call
+** for a particular database connection D.
**
-** {F12963} Each call to [sqlite3_rollback_hook()] overwrites the callback
+** {H12963} Each call to [sqlite3_rollback_hook()] overwrites the callback
** registered by prior calls.
**
-** {F12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL
-** then the rollback hook callback is cancelled and no callback
+** {H12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL
+** then the rollback hook callback is canceled and no callback
** is invoked when a transaction rolls back.
*/
void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
/*
-** CAPI3REF: Data Change Notification Callbacks {F12970}
-**
-** The sqlite3_update_hook() interface
-** registers a callback function with the database connection identified by the
-** first argument to be invoked whenever a row is updated, inserted or deleted.
-** Any callback set by a previous call to this function for the same
-** database connection is overridden.
-**
-** The second argument is a pointer to the function to invoke when a
-** row is updated, inserted or deleted.
-** The first argument to the callback is
-** a copy of the third argument to sqlite3_update_hook().
-** The second callback
-** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
-** depending on the operation that caused the callback to be invoked.
-** The third and
-** fourth arguments to the callback contain pointers to the database and
-** table name containing the affected row.
-** The final callback parameter is
-** the rowid of the row.
-** In the case of an update, this is the rowid after
-** the update takes place.
+** CAPI3REF: Data Change Notification Callbacks {H12970} <S60400>
+**
+** The sqlite3_update_hook() interface registers a callback function
+** with the [database connection] identified by the first argument
+** to be invoked whenever a row is updated, inserted or deleted.
+** Any callback set by a previous call to this function
+** for the same database connection is overridden.
+**
+** The second argument is a pointer to the function to invoke when a
+** row is updated, inserted or deleted.
+** The first argument to the callback is a copy of the third argument
+** to sqlite3_update_hook().
+** The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
+** or [SQLITE_UPDATE], depending on the operation that caused the callback
+** to be invoked.
+** The third and fourth arguments to the callback contain pointers to the
+** database and table name containing the affected row.
+** The final callback parameter is the rowid of the row. In the case of
+** an update, this is the rowid after the update takes place.
**
** The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).
**
** INVARIANTS:
**
-** {F12971} The [sqlite3_update_hook(D,F,P)] interface causes callback
+** {H12971} The [sqlite3_update_hook(D,F,P)] interface causes the callback
** function F to be invoked with first parameter P whenever
** a table row is modified, inserted, or deleted on
-** [database connection] D.
+** the [database connection] D.
**
-** {F12973} The [sqlite3_update_hook(D,F,P)] interface returns the value
+** {H12973} The [sqlite3_update_hook(D,F,P)] interface returns the value
** of P for the previous call on the same [database connection] D,
** or NULL for the first call.
**
-** {F12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)]
+** {H12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)]
** is NULL then the no update callbacks are made.
**
-** {F12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls
+** {H12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls
** to the same interface on the same [database connection] D.
**
-** {F12979} The update hook callback is not invoked when internal system
+** {H12979} The update hook callback is not invoked when internal system
** tables such as sqlite_master and sqlite_sequence are modified.
**
-** {F12981} The second parameter to the update callback
+** {H12981} The second parameter to the update callback
** is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
** depending on the operation that caused the callback to be invoked.
**
-** {F12983} The third and fourth arguments to the callback contain pointers
+** {H12983} The third and fourth arguments to the callback contain pointers
** to zero-terminated UTF-8 strings which are the names of the
** database and table that is being updated.
-** {F12985} The final callback parameter is the rowid of the row after
+** {H12985} The final callback parameter is the rowid of the row after
** the change occurs.
*/
void *sqlite3_update_hook(
);
/*
-** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330}
+** CAPI3REF: Enable Or Disable Shared Pager Cache {H10330} <S30900>
+** KEYWORDS: {shared cache} {shared cache mode}
**
** This routine enables or disables the sharing of the database cache
-** and schema data structures between connections to the same database.
-** Sharing is enabled if the argument is true and disabled if the argument
-** is false.
+** and schema data structures between [database connection | connections]
+** to the same database. Sharing is enabled if the argument is true
+** and disabled if the argument is false.
**
-** Cache sharing is enabled and disabled
-** for an entire process. {END} This is a change as of SQLite version 3.5.0.
-** In prior versions of SQLite, sharing was
-** enabled or disabled for each thread separately.
+** Cache sharing is enabled and disabled for an entire process. {END}
+** This is a change as of SQLite version 3.5.0. In prior versions of SQLite,
+** sharing was enabled or disabled for each thread separately.
**
** The cache sharing mode set by this interface effects all subsequent
** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
** Existing database connections continue use the sharing mode
** that was in effect at the time they were opened.
**
-** Virtual tables cannot be used with a shared cache. When shared
+** Virtual tables cannot be used with a shared cache. When shared
** cache is enabled, the [sqlite3_create_module()] API used to register
** virtual tables will always return an error.
**
-** This routine returns [SQLITE_OK] if shared cache was
-** enabled or disabled successfully. An [error code]
-** is returned otherwise.
+** This routine returns [SQLITE_OK] if shared cache was enabled or disabled
+** successfully. An [error code] is returned otherwise.
**
** Shared cache is disabled by default. But this might change in
** future releases of SQLite. Applications that care about shared
** cache setting should set it explicitly.
**
** INVARIANTS:
-**
-** {F10331} A successful invocation of [sqlite3_enable_shared_cache(B)]
+**
+** {H10331} A successful invocation of [sqlite3_enable_shared_cache(B)]
** will enable or disable shared cache mode for any subsequently
** created [database connection] in the same process.
**
-** {F10336} When shared cache is enabled, the [sqlite3_create_module()]
+** {H10336} When shared cache is enabled, the [sqlite3_create_module()]
** interface will always return an error.
**
-** {F10337} The [sqlite3_enable_shared_cache(B)] interface returns
+** {H10337} The [sqlite3_enable_shared_cache(B)] interface returns
** [SQLITE_OK] if shared cache was enabled or disabled successfully.
**
-** {F10339} Shared cache is disabled by default.
+** {H10339} Shared cache is disabled by default.
*/
int sqlite3_enable_shared_cache(int);
/*
-** CAPI3REF: Attempt To Free Heap Memory {F17340}
+** CAPI3REF: Attempt To Free Heap Memory {H17340} <S30220>
**
-** The sqlite3_release_memory() interface attempts to
-** free N bytes of heap memory by deallocating non-essential memory
-** allocations held by the database labrary. {END} Memory used
-** to cache database pages to improve performance is an example of
-** non-essential memory. Sqlite3_release_memory() returns
-** the number of bytes actually freed, which might be more or less
-** than the amount requested.
+** The sqlite3_release_memory() interface attempts to free N bytes
+** of heap memory by deallocating non-essential memory allocations
+** held by the database library. {END} Memory used to cache database
+** pages to improve performance is an example of non-essential memory.
+** sqlite3_release_memory() returns the number of bytes actually freed,
+** which might be more or less than the amount requested.
**
** INVARIANTS:
**
-** {F17341} The [sqlite3_release_memory(N)] interface attempts to
+** {H17341} The [sqlite3_release_memory(N)] interface attempts to
** free N bytes of heap memory by deallocating non-essential
-** memory allocations held by the database labrary.
+** memory allocations held by the database library.
**
-** {F16342} The [sqlite3_release_memory(N)] returns the number
+** {H16342} The [sqlite3_release_memory(N)] returns the number
** of bytes actually freed, which might be more or less
** than the amount requested.
*/
int sqlite3_release_memory(int);
/*
-** CAPI3REF: Impose A Limit On Heap Size {F17350}
+** CAPI3REF: Impose A Limit On Heap Size {H17350} <S30220>
**
-** The sqlite3_soft_heap_limit() interface
-** places a "soft" limit on the amount of heap memory that may be allocated
-** by SQLite. If an internal allocation is requested
-** that would exceed the soft heap limit, [sqlite3_release_memory()] is
-** invoked one or more times to free up some space before the allocation
-** is made.
+** The sqlite3_soft_heap_limit() interface places a "soft" limit
+** on the amount of heap memory that may be allocated by SQLite.
+** If an internal allocation is requested that would exceed the
+** soft heap limit, [sqlite3_release_memory()] is invoked one or
+** more times to free up some space before the allocation is performed.
**
-** The limit is called "soft", because if
-** [sqlite3_release_memory()] cannot
-** free sufficient memory to prevent the limit from being exceeded,
+** The limit is called "soft", because if [sqlite3_release_memory()]
+** cannot free sufficient memory to prevent the limit from being exceeded,
** the memory is allocated anyway and the current operation proceeds.
**
** A negative or zero value for N means that there is no soft heap limit and
** [sqlite3_release_memory()] will only be called when memory is exhausted.
** The default value for the soft heap limit is zero.
**
-** SQLite makes a best effort to honor the soft heap limit.
-** But if the soft heap limit cannot honored, execution will
-** continue without error or notification. This is why the limit is
+** SQLite makes a best effort to honor the soft heap limit.
+** But if the soft heap limit cannot be honored, execution will
+** continue without error or notification. This is why the limit is
** called a "soft" limit. It is advisory only.
**
** Prior to SQLite version 3.5.0, this routine only constrained the memory
**
** INVARIANTS:
**
-** {F16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit
+** {H16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit
** of N bytes on the amount of heap memory that may be allocated
** using [sqlite3_malloc()] or [sqlite3_realloc()] at any point
** in time.
**
-** {F16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would
+** {H16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would
** cause the total amount of allocated memory to exceed the
** soft heap limit, then [sqlite3_release_memory()] is invoked
** in an attempt to reduce the memory usage prior to proceeding
** with the memory allocation attempt.
**
-** {F16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger
+** {H16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger
** attempts to reduce memory usage through the soft heap limit
** mechanism continue even if the attempt to reduce memory
** usage is unsuccessful.
**
-** {F16354} A negative or zero value for N in a call to
+** {H16354} A negative or zero value for N in a call to
** [sqlite3_soft_heap_limit(N)] means that there is no soft
** heap limit and [sqlite3_release_memory()] will only be
** called when memory is completely exhausted.
**
-** {F16355} The default value for the soft heap limit is zero.
+** {H16355} The default value for the soft heap limit is zero.
**
-** {F16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the
+** {H16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the
** values set by all prior calls.
*/
void sqlite3_soft_heap_limit(int);
/*
-** CAPI3REF: Extract Metadata About A Column Of A Table {F12850}
+** CAPI3REF: Extract Metadata About A Column Of A Table {H12850} <S60300>
**
-** This routine
-** returns meta-data about a specific column of a specific database
-** table accessible using the connection handle passed as the first function
-** argument.
+** This routine returns metadata about a specific column of a specific
+** database table accessible using the [database connection] handle
+** passed as the first function argument.
**
-** The column is identified by the second, third and fourth parameters to
+** The column is identified by the second, third and fourth parameters to
** this function. The second parameter is either the name of the database
** (i.e. "main", "temp" or an attached database) containing the specified
** table or NULL. If it is NULL, then all attached databases are searched
-** for the table using the same algorithm as the database engine uses to
+** for the table using the same algorithm used by the database engine to
** resolve unqualified table references.
**
-** The third and fourth parameters to this function are the table and column
-** name of the desired column, respectively. Neither of these parameters
+** The third and fourth parameters to this function are the table and column
+** name of the desired column, respectively. Neither of these parameters
** may be NULL.
**
-** Meta information is returned by writing to the memory locations passed as
-** the 5th and subsequent parameters to this function. Any of these
-** arguments may be NULL, in which case the corresponding element of meta
-** information is ommitted.
+** Metadata is returned by writing to the memory locations passed as the 5th
+** and subsequent parameters to this function. Any of these arguments may be
+** NULL, in which case the corresponding element of metadata is omitted.
**
-** <pre>
-** Parameter Output Type Description
-** -----------------------------------
-**
-** 5th const char* Data type
-** 6th const char* Name of the default collation sequence
-** 7th int True if the column has a NOT NULL constraint
-** 8th int True if the column is part of the PRIMARY KEY
-** 9th int True if the column is AUTOINCREMENT
-** </pre>
+** <blockquote>
+** <table border="1">
+** <tr><th> Parameter <th> Output<br>Type <th> Description
**
+** <tr><td> 5th <td> const char* <td> Data type
+** <tr><td> 6th <td> const char* <td> Name of default collation sequence
+** <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint
+** <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY
+** <tr><td> 9th <td> int <td> True if column is AUTOINCREMENT
+** </table>
+** </blockquote>
**
-** The memory pointed to by the character pointers returned for the
-** declaration type and collation sequence is valid only until the next
-** call to any sqlite API function.
+** The memory pointed to by the character pointers returned for the
+** declaration type and collation sequence is valid only until the next
+** call to any SQLite API function.
**
-** If the specified table is actually a view, then an error is returned.
+** If the specified table is actually a view, an [error code] is returned.
**
-** If the specified column is "rowid", "oid" or "_rowid_" and an
-** INTEGER PRIMARY KEY column has been explicitly declared, then the output
+** If the specified column is "rowid", "oid" or "_rowid_" and an
+** INTEGER PRIMARY KEY column has been explicitly declared, then the output
** parameters are set for the explicitly declared column. If there is no
-** explicitly declared IPK column, then the output parameters are set as
-** follows:
+** explicitly declared INTEGER PRIMARY KEY column, then the output
+** parameters are set as follows:
**
** <pre>
** data type: "INTEGER"
**
** This function may load one or more schemas from database files. If an
** error occurs during this process, or if the requested table or column
-** cannot be found, an SQLITE error code is returned and an error message
-** left in the database handle (to be retrieved using sqlite3_errmsg()).
+** cannot be found, an [error code] is returned and an error message left
+** in the [database connection] (to be retrieved using sqlite3_errmsg()).
**
** This API is only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
*/
int sqlite3_table_column_metadata(
sqlite3 *db, /* Connection handle */
);
/*
-** CAPI3REF: Load An Extension {F12600}
+** CAPI3REF: Load An Extension {H12600} <S20500>
+**
+** This interface loads an SQLite extension library from the named file.
+**
+** {H12601} The sqlite3_load_extension() interface attempts to load an
+** SQLite extension library contained in the file zFile.
**
-** {F12601} The sqlite3_load_extension() interface
-** attempts to load an SQLite extension library contained in the file
-** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0
-** in which case the name of the entry point defaults
-** to "sqlite3_extension_init".
+** {H12602} The entry point is zProc.
**
-** {F12604} The sqlite3_load_extension() interface shall
-** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+** {H12603} zProc may be 0, in which case the name of the entry point
+** defaults to "sqlite3_extension_init".
**
-** {F12605}
-** If an error occurs and pzErrMsg is not 0, then the
-** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with
-** error message text stored in memory obtained from [sqlite3_malloc()].
-** {END} The calling function should free this memory
-** by calling [sqlite3_free()].
+** {H12604} The sqlite3_load_extension() interface shall return
+** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
**
-** {F12606}
-** Extension loading must be enabled using [sqlite3_enable_load_extension()]
-** prior to calling this API or an error will be returned.
+** {H12605} If an error occurs and pzErrMsg is not 0, then the
+** [sqlite3_load_extension()] interface shall attempt to
+** fill *pzErrMsg with error message text stored in memory
+** obtained from [sqlite3_malloc()]. {END} The calling function
+** should free this memory by calling [sqlite3_free()].
+**
+** {H12606} Extension loading must be enabled using
+** [sqlite3_enable_load_extension()] prior to calling this API,
+** otherwise an error will be returned.
*/
int sqlite3_load_extension(
sqlite3 *db, /* Load the extension into this database connection */
);
/*
-** CAPI3REF: Enable Or Disable Extension Loading {F12620}
+** CAPI3REF: Enable Or Disable Extension Loading {H12620} <S20500>
**
** So as not to open security holes in older applications that are
** unprepared to deal with extension loading, and as a means of disabling
-** extension loading while evaluating user-entered SQL, the following
-** API is provided to turn the [sqlite3_load_extension()] mechanism on and
-** off. {F12622} It is off by default. {END} See ticket #1863.
+** extension loading while evaluating user-entered SQL, the following API
+** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
+**
+** Extension loading is off by default. See ticket #1863.
+**
+** {H12621} Call the sqlite3_enable_load_extension() routine with onoff==1
+** to turn extension loading on and call it with onoff==0 to turn
+** it back off again.
**
-** {F12621} Call the sqlite3_enable_load_extension() routine
-** with onoff==1 to turn extension loading on
-** and call it with onoff==0 to turn it back off again. {END}
+** {H12622} Extension loading is off by default.
*/
int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
/*
-** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640}
-**
-** {F12641} This function
-** registers an extension entry point that is automatically invoked
-** whenever a new database connection is opened using
-** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END}
+** CAPI3REF: Automatically Load An Extensions {H12640} <S20500>
**
** This API can be invoked at program startup in order to register
** one or more statically linked extensions that will be available
-** to all new database connections.
+** to all new [database connections]. {END}
**
-** {F12642} Duplicate extensions are detected so calling this routine multiple
-** times with the same extension is harmless.
+** This routine stores a pointer to the extension in an array that is
+** obtained from [sqlite3_malloc()]. If you run a memory leak checker
+** on your program and it reports a leak because of this array, invoke
+** [sqlite3_reset_auto_extension()] prior to shutdown to free the memory.
**
-** {F12643} This routine stores a pointer to the extension in an array
-** that is obtained from sqlite_malloc(). {END} If you run a memory leak
-** checker on your program and it reports a leak because of this
-** array, then invoke [sqlite3_reset_auto_extension()] prior
-** to shutdown to free the memory.
+** {H12641} This function registers an extension entry point that is
+** automatically invoked whenever a new [database connection]
+** is opened using [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()].
**
-** {F12644} Automatic extensions apply across all threads. {END}
+** {H12642} Duplicate extensions are detected so calling this routine
+** multiple times with the same extension is harmless.
**
-** This interface is experimental and is subject to change or
-** removal in future releases of SQLite.
+** {H12643} This routine stores a pointer to the extension in an array
+** that is obtained from [sqlite3_malloc()].
+**
+** {H12644} Automatic extensions apply across all threads.
*/
int sqlite3_auto_extension(void *xEntryPoint);
-
/*
-** CAPI3REF: Reset Automatic Extension Loading {F12660}
+** CAPI3REF: Reset Automatic Extension Loading {H12660} <S20500>
**
-** {F12661} This function disables all previously registered
-** automatic extensions. {END} This
-** routine undoes the effect of all prior [sqlite3_auto_extension()]
-** calls.
+** This function disables all previously registered automatic
+** extensions. {END} It undoes the effect of all prior
+** [sqlite3_auto_extension()] calls.
**
-** {F12662} This call disabled automatic extensions in all threads. {END}
+** {H12661} This function disables all previously registered
+** automatic extensions.
**
-** This interface is experimental and is subject to change or
-** removal in future releases of SQLite.
+** {H12662} This function disables automatic extensions in all threads.
*/
void sqlite3_reset_auto_extension(void);
-
/*
****** EXPERIMENTAL - subject to change without notice **************
**
** to be experimental. The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
-** When the virtual-table mechanism stablizes, we will declare the
+** When the virtual-table mechanism stabilizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
*/
typedef struct sqlite3_module sqlite3_module;
/*
-** CAPI3REF: Virtual Table Object {F18000}
+** CAPI3REF: Virtual Table Object {H18000} <S20400>
** KEYWORDS: sqlite3_module
+** EXPERIMENTAL
**
** A module is a class of virtual tables. Each module is defined
** by an instance of the following structure. This structure consists
** mostly of methods for the module.
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
struct sqlite3_module {
int iVersion;
int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
void **ppArg);
-
int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
};
/*
-** CAPI3REF: Virtual Table Indexing Information {F18100}
+** CAPI3REF: Virtual Table Indexing Information {H18100} <S20400>
** KEYWORDS: sqlite3_index_info
+** EXPERIMENTAL
**
** The sqlite3_index_info structure and its substructures is used to
** pass information into and receive the reply from the xBestIndex
** inputs to xBestIndex and are read-only. xBestIndex inserts its
** results into the **Outputs** fields.
**
-** The aConstraint[] array records WHERE clause constraints of the
-** form:
+** The aConstraint[] array records WHERE clause constraints of the form:
**
-** column OP expr
+** <pre>column OP expr</pre>
**
-** Where OP is =, <, <=, >, or >=.
-** The particular operator is stored
-** in aConstraint[].op. The index of the column is stored in
+** where OP is =, <, <=, >, or >=. The particular operator is
+** stored in aConstraint[].op. The index of the column is stored in
** aConstraint[].iColumn. aConstraint[].usable is TRUE if the
** expr on the right-hand side can be evaluated (and thus the constraint
** is usable) and false if it cannot.
** particular lookup. A full scan of a table with N entries should have
** a cost of N. A binary search of a table of N entries should have a
** cost of approximately log(N).
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
struct sqlite3_index_info {
/* Inputs */
int iColumn; /* Column number */
unsigned char desc; /* True for DESC. False for ASC. */
} *aOrderBy; /* The ORDER BY clause */
-
/* Outputs */
struct sqlite3_index_constraint_usage {
int argvIndex; /* if >0, constraint is part of argv to xFilter */
#define SQLITE_INDEX_CONSTRAINT_MATCH 64
/*
-** CAPI3REF: Register A Virtual Table Implementation {F18200}
+** CAPI3REF: Register A Virtual Table Implementation {H18200} <S20400>
+** EXPERIMENTAL
+**
+** This routine is used to register a new module name with a
+** [database connection]. Module names must be registered before
+** creating new virtual tables on the module, or before using
+** preexisting virtual tables of the module.
**
-** This routine is used to register a new module name with an SQLite
-** connection. Module names must be registered before creating new
-** virtual tables on the module, or before using preexisting virtual
-** tables of the module.
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
int sqlite3_create_module(
sqlite3 *db, /* SQLite connection to register module with */
);
/*
-** CAPI3REF: Register A Virtual Table Implementation {F18210}
+** CAPI3REF: Register A Virtual Table Implementation {H18210} <S20400>
+** EXPERIMENTAL
**
-** This routine is identical to the sqlite3_create_module() method above,
+** This routine is identical to the [sqlite3_create_module()] method above,
** except that it allows a destructor function to be specified. It is
** even more experimental than the rest of the virtual tables API.
*/
);
/*
-** CAPI3REF: Virtual Table Instance Object {F18010}
+** CAPI3REF: Virtual Table Instance Object {H18010} <S20400>
** KEYWORDS: sqlite3_vtab
+** EXPERIMENTAL
**
** Every module implementation uses a subclass of the following structure
** to describe a particular instance of the module. Each subclass will
-** be tailored to the specific needs of the module implementation. The
-** purpose of this superclass is to define certain fields that are common
-** to all module implementations.
+** be tailored to the specific needs of the module implementation.
+** The purpose of this superclass is to define certain fields that are
+** common to all module implementations.
**
** Virtual tables methods can set an error message by assigning a
-** string obtained from sqlite3_mprintf() to zErrMsg. The method should
-** take care that any prior string is freed by a call to sqlite3_free()
+** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
+** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg. After the error message
** is delivered up to the client application, the string will be automatically
** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note
** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
** since virtual tables are commonly implemented in loadable extensions which
** do not have access to sqlite3MPrintf() or sqlite3Free().
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
struct sqlite3_vtab {
const sqlite3_module *pModule; /* The module for this virtual table */
};
/*
-** CAPI3REF: Virtual Table Cursor Object {F18020}
+** CAPI3REF: Virtual Table Cursor Object {H18020} <S20400>
** KEYWORDS: sqlite3_vtab_cursor
+** EXPERIMENTAL
**
** Every module implementation uses a subclass of the following structure
** to describe cursors that point into the virtual table and are used
**
** This superclass exists in order to define fields of the cursor that
** are common to all implementations.
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
struct sqlite3_vtab_cursor {
sqlite3_vtab *pVtab; /* Virtual table of this cursor */
};
/*
-** CAPI3REF: Declare The Schema Of A Virtual Table {F18280}
+** CAPI3REF: Declare The Schema Of A Virtual Table {H18280} <S20400>
+** EXPERIMENTAL
**
** The xCreate and xConnect methods of a module use the following API
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
*/
int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
/*
-** CAPI3REF: Overload A Function For A Virtual Table {F18300}
+** CAPI3REF: Overload A Function For A Virtual Table {H18300} <S20400>
+** EXPERIMENTAL
**
** Virtual tables can provide alternative implementations of functions
** using the xFindFunction method. But global versions of those functions
** before this API is called, a new function is created. The implementation
** of the new function always causes an exception to be thrown. So
** the new function is not good for anything by itself. Its only
-** purpose is to be a place-holder function that can be overloaded
+** purpose is to be a placeholder function that can be overloaded
** by virtual tables.
**
** This API should be considered part of the virtual table interface,
*/
/*
-** CAPI3REF: A Handle To An Open BLOB {F17800}
+** CAPI3REF: A Handle To An Open BLOB {H17800} <S30230>
+** KEYWORDS: {BLOB handle} {BLOB handles}
**
** An instance of this object represents an open BLOB on which
-** incremental I/O can be preformed.
-** Objects of this type are created by
-** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()].
+** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
+** Objects of this type are created by [sqlite3_blob_open()]
+** and destroyed by [sqlite3_blob_close()].
** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
-** can be used to read or write small subsections of the blob.
-** The [sqlite3_blob_bytes()] interface returns the size of the
-** blob in bytes.
+** can be used to read or write small subsections of the BLOB.
+** The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
*/
typedef struct sqlite3_blob sqlite3_blob;
/*
-** CAPI3REF: Open A BLOB For Incremental I/O {F17810}
+** CAPI3REF: Open A BLOB For Incremental I/O {H17810} <S30230>
**
-** This interfaces opens a handle to the blob located
+** This interfaces opens a [BLOB handle | handle] to the BLOB located
** in row iRow, column zColumn, table zTable in database zDb;
-** in other words, the same blob that would be selected by:
+** in other words, the same BLOB that would be selected by:
**
** <pre>
** SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
** </pre> {END}
**
-** If the flags parameter is non-zero, the blob is opened for
-** read and write access. If it is zero, the blob is opened for read
-** access.
+** If the flags parameter is non-zero, the the BLOB is opened for read
+** and write access. If it is zero, the BLOB is opened for read access.
**
** Note that the database name is not the filename that contains
** the database but rather the symbolic name of the database that
** is assigned when the database is connected using [ATTACH].
-** For the main database file, the database name is "main". For
-** TEMP tables, the database name is "temp".
-**
-** On success, [SQLITE_OK] is returned and the new
-** [sqlite3_blob | blob handle] is written to *ppBlob.
-** Otherwise an error code is returned and
-** any value written to *ppBlob should not be used by the caller.
-** This function sets the database-handle error code and message
+** For the main database file, the database name is "main".
+** For TEMP tables, the database name is "temp".
+**
+** On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
+** to *ppBlob. Otherwise an [error code] is returned and any value written
+** to *ppBlob should not be used by the caller.
+** This function sets the [database connection] error code and message
** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].
-**
+**
+** If the row that a BLOB handle points to is modified by an
+** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
+** then the BLOB handle is marked as "expired".
+** This is true if any column of the row is changed, even a column
+** other than the one the BLOB handle is open on.
+** Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
+** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
+** Changes written into a BLOB prior to the BLOB expiring are not
+** rollback by the expiration of the BLOB. Such changes will eventually
+** commit if the transaction continues to completion.
+**
** INVARIANTS:
**
-** {F17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)]
-** interface opens an [sqlite3_blob] object P on the blob
-** in column C of table T in database B on [database connection] D.
+** {H17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)]
+** interface shall open an [sqlite3_blob] object P on the BLOB
+** in column C of the table T in the database B on
+** the [database connection] D.
**
-** {F17814} A successful invocation of [sqlite3_blob_open(D,...)] starts
-** a new transaction on [database connection] D if that connection
-** is not already in a transaction.
+** {H17814} A successful invocation of [sqlite3_blob_open(D,...)] shall start
+** a new transaction on the [database connection] D if that
+** connection is not already in a transaction.
**
-** {F17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface opens the blob
-** for read and write access if and only if the F parameter
-** is non-zero.
+** {H17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface shall open
+** the BLOB for read and write access if and only if the F
+** parameter is non-zero.
**
-** {F17819} The [sqlite3_blob_open()] interface returns [SQLITE_OK] on
+** {H17819} The [sqlite3_blob_open()] interface shall return [SQLITE_OK] on
** success and an appropriate [error code] on failure.
**
-** {F17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)]
+** {H17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)]
** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error.
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] shall return
+** information appropriate for that error.
+**
+** {H17824} If any column in the row that a [sqlite3_blob] has open is
+** changed by a separate [UPDATE] or [DELETE] statement or by
+** an [ON CONFLICT] side effect, then the [sqlite3_blob] shall
+** be marked as invalid.
*/
int sqlite3_blob_open(
sqlite3*,
);
/*
-** CAPI3REF: Close A BLOB Handle {F17830}
+** CAPI3REF: Close A BLOB Handle {H17830} <S30230>
**
-** Close an open [sqlite3_blob | blob handle].
+** Closes an open [BLOB handle].
**
** Closing a BLOB shall cause the current transaction to commit
** if there are no other BLOBs, no pending prepared statements, and the
-** database connection is in autocommit mode.
+** database connection is in [autocommit mode].
** If any writes were made to the BLOB, they might be held in cache
** until the close operation if they will fit. {END}
+**
** Closing the BLOB often forces the changes
** out to disk and so if any I/O errors occur, they will likely occur
-** at the time when the BLOB is closed. {F17833} Any errors that occur during
+** at the time when the BLOB is closed. {H17833} Any errors that occur during
** closing are reported as a non-zero return value.
**
** The BLOB is closed unconditionally. Even if this routine returns
**
** INVARIANTS:
**
-** {F17833} The [sqlite3_blob_close(P)] interface closes an
-** [sqlite3_blob] object P previously opened using
-** [sqlite3_blob_open()].
+** {H17833} The [sqlite3_blob_close(P)] interface closes an [sqlite3_blob]
+** object P previously opened using [sqlite3_blob_open()].
**
-** {F17836} Closing an [sqlite3_blob] object using
+** {H17836} Closing an [sqlite3_blob] object using
** [sqlite3_blob_close()] shall cause the current transaction to
** commit if there are no other open [sqlite3_blob] objects
** or [prepared statements] on the same [database connection] and
-** the [database connection] is in
-** [sqlite3_get_autocommit | autocommit mode].
+** the database connection is in [autocommit mode].
**
-** {F17839} The [sqlite3_blob_close(P)] interfaces closes the
+** {H17839} The [sqlite3_blob_close(P)] interfaces shall close the
** [sqlite3_blob] object P unconditionally, even if
** [sqlite3_blob_close(P)] returns something other than [SQLITE_OK].
-**
*/
int sqlite3_blob_close(sqlite3_blob *);
/*
-** CAPI3REF: Return The Size Of An Open BLOB {F17840}
+** CAPI3REF: Return The Size Of An Open BLOB {H17840} <S30230>
**
-** Return the size in bytes of the blob accessible via the open
-** [sqlite3_blob] object in its only argument.
+** Returns the size in bytes of the BLOB accessible via the open
+** []BLOB handle] in its only argument.
**
** INVARIANTS:
**
-** {F17843} The [sqlite3_blob_bytes(P)] interface returns the size
+** {H17843} The [sqlite3_blob_bytes(P)] interface returns the size
** in bytes of the BLOB that the [sqlite3_blob] object P
** refers to.
*/
int sqlite3_blob_bytes(sqlite3_blob *);
/*
-** CAPI3REF: Read Data From A BLOB Incrementally {F17850}
+** CAPI3REF: Read Data From A BLOB Incrementally {H17850} <S30230>
**
-** This function is used to read data from an open
-** [sqlite3_blob | blob-handle] into a caller supplied buffer.
-** N bytes of data are copied into buffer
-** Z from the open blob, starting at offset iOffset.
+** This function is used to read data from an open [BLOB handle] into a
+** caller-supplied buffer. N bytes of data are copied into buffer Z
+** from the open BLOB, starting at offset iOffset.
**
-** If offset iOffset is less than N bytes from the end of the blob,
+** If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is
-** less than zero [SQLITE_ERROR] is returned and no data is read.
+** less than zero, [SQLITE_ERROR] is returned and no data is read.
+**
+** An attempt to read from an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT].
**
-** On success, SQLITE_OK is returned. Otherwise, an
-** [error code] or an [extended error code] is returned.
+** On success, SQLITE_OK is returned.
+** Otherwise, an [error code] or an [extended error code] is returned.
**
** INVARIANTS:
**
-** {F17853} The [sqlite3_blob_read(P,Z,N,X)] interface reads N bytes
-** beginning at offset X from
-** the blob that [sqlite3_blob] object P refers to
-** and writes those N bytes into buffer Z.
+** {H17853} A successful invocation of [sqlite3_blob_read(P,Z,N,X)]
+** shall reads N bytes of data out of the BLOB referenced by
+** [BLOB handle] P beginning at offset X and store those bytes
+** into buffer Z.
**
-** {F17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the blob
-** is less than N+X bytes, then the function returns [SQLITE_ERROR]
-** and nothing is read from the blob.
+** {H17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the BLOB
+** is less than N+X bytes, then the function shall leave the
+** Z buffer unchanged and return [SQLITE_ERROR].
**
-** {F17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero
-** then the function returns [SQLITE_ERROR]
-** and nothing is read from the blob.
+** {H17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero
+** then the function shall leave the Z buffer unchanged
+** and return [SQLITE_ERROR].
**
-** {F17862} The [sqlite3_blob_read(P,Z,N,X)] interface returns [SQLITE_OK]
-** if N bytes where successfully read into buffer Z.
+** {H17862} The [sqlite3_blob_read(P,Z,N,X)] interface shall return [SQLITE_OK]
+** if N bytes are successfully read into buffer Z.
**
-** {F17865} If the requested read could not be completed,
-** the [sqlite3_blob_read(P,Z,N,X)] interface returns an
+** {H17863} If the [BLOB handle] P is expired and X and N are within bounds
+** then [sqlite3_blob_read(P,Z,N,X)] shall leave the Z buffer
+** unchanged and return [SQLITE_ABORT].
+**
+** {H17865} If the requested read could not be completed,
+** the [sqlite3_blob_read(P,Z,N,X)] interface shall return an
** appropriate [error code] or [extended error code].
**
-** {F17868} If an error occurs during evaluation of [sqlite3_blob_read(P,...)]
+** {H17868} If an error occurs during evaluation of [sqlite3_blob_read(P,...)]
** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error, where D is the
-** database handle that was used to open blob handle P.
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] shall return
+** information appropriate for that error, where D is the
+** [database connection] that was used to open the [BLOB handle] P.
*/
int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
/*
-** CAPI3REF: Write Data Into A BLOB Incrementally {F17870}
+** CAPI3REF: Write Data Into A BLOB Incrementally {H17870} <S30230>
**
-** This function is used to write data into an open
-** [sqlite3_blob | blob-handle] from a user supplied buffer.
-** n bytes of data are copied from the buffer
-** pointed to by z into the open blob, starting at offset iOffset.
+** This function is used to write data into an open [BLOB handle] from a
+** caller-supplied buffer. N bytes of data are copied from the buffer Z
+** into the open BLOB, starting at offset iOffset.
**
-** If the [sqlite3_blob | blob-handle] passed as the first argument
-** was not opened for writing (the flags parameter to [sqlite3_blob_open()]
-*** was zero), this function returns [SQLITE_READONLY].
+** If the [BLOB handle] passed as the first argument was not opened for
+** writing (the flags parameter to [sqlite3_blob_open()] was zero),
+** this function returns [SQLITE_READONLY].
**
-** This function may only modify the contents of the blob; it is
-** not possible to increase the size of a blob using this API.
-** If offset iOffset is less than n bytes from the end of the blob,
-** [SQLITE_ERROR] is returned and no data is written. If n is
+** This function may only modify the contents of the BLOB; it is
+** not possible to increase the size of a BLOB using this API.
+** If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is written. If N is
** less than zero [SQLITE_ERROR] is returned and no data is written.
**
-** On success, SQLITE_OK is returned. Otherwise, an
-** [error code] or an [extended error code] is returned.
+** An attempt to write to an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT]. Writes to the BLOB that occurred
+** before the [BLOB handle] expired are not rolled back by the
+** expiration of the handle, though of course those changes might
+** have been overwritten by the statement that expired the BLOB handle
+** or by other independent statements.
+**
+** On success, SQLITE_OK is returned.
+** Otherwise, an [error code] or an [extended error code] is returned.
**
** INVARIANTS:
**
-** {F17873} The [sqlite3_blob_write(P,Z,N,X)] interface writes N bytes
-** from buffer Z into
-** the blob that [sqlite3_blob] object P refers to
-** beginning at an offset of X into the blob.
+** {H17873} A successful invocation of [sqlite3_blob_write(P,Z,N,X)]
+** shall write N bytes of data from buffer Z into the BLOB
+** referenced by [BLOB handle] P beginning at offset X into
+** the BLOB.
**
-** {F17875} The [sqlite3_blob_write(P,Z,N,X)] interface returns
-** [SQLITE_READONLY] if the [sqlite3_blob] object P was
-** [sqlite3_blob_open | opened] for reading only.
+** {H17874} In the absence of other overridding changes, the changes
+** written to a BLOB by [sqlite3_blob_write()] shall
+** remain in effect after the associated [BLOB handle] expires.
**
-** {F17876} In [sqlite3_blob_write(P,Z,N,X)] if the size of the blob
-** is less than N+X bytes, then the function returns [SQLITE_ERROR]
-** and nothing is written into the blob.
+** {H17875} If the [BLOB handle] P was opened for reading only then
+** an invocation of [sqlite3_blob_write(P,Z,N,X)] shall leave
+** the referenced BLOB unchanged and return [SQLITE_READONLY].
**
-** {F17879} In [sqlite3_blob_write(P,Z,N,X)] if X or N is less than zero
-** then the function returns [SQLITE_ERROR]
-** and nothing is written into the blob.
+** {H17876} If the size of the BLOB referenced by [BLOB handle] P is
+** less than N+X bytes then [sqlite3_blob_write(P,Z,N,X)] shall
+** leave the BLOB unchanged and return [SQLITE_ERROR].
**
-** {F17882} The [sqlite3_blob_write(P,Z,N,X)] interface returns [SQLITE_OK]
-** if N bytes where successfully written into blob.
+** {H17877} If the [BLOB handle] P is expired and X and N are within bounds
+** then [sqlite3_blob_read(P,Z,N,X)] shall leave the BLOB
+** unchanged and return [SQLITE_ABORT].
**
-** {F17885} If the requested write could not be completed,
-** the [sqlite3_blob_write(P,Z,N,X)] interface returns an
+** {H17879} If X or N are less than zero then [sqlite3_blob_write(P,Z,N,X)]
+** shall leave the BLOB referenced by [BLOB handle] P unchanged
+** and return [SQLITE_ERROR].
+**
+** {H17882} The [sqlite3_blob_write(P,Z,N,X)] interface shall return
+** [SQLITE_OK] if N bytes where successfully written into the BLOB.
+**
+** {H17885} If the requested write could not be completed,
+** the [sqlite3_blob_write(P,Z,N,X)] interface shall return an
** appropriate [error code] or [extended error code].
**
-** {F17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)]
+** {H17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)]
** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error.
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] shall return
+** information appropriate for that error.
*/
int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
/*
-** CAPI3REF: Virtual File System Objects {F11200}
+** CAPI3REF: Virtual File System Objects {H11200} <S20100>
**
** A virtual filesystem (VFS) is an [sqlite3_vfs] object
** that SQLite uses to interact
** New VFSes can be registered and existing VFSes can be unregistered.
** The following interfaces are provided.
**
-** The sqlite3_vfs_find() interface returns a pointer to
-** a VFS given its name. Names are case sensitive.
+** The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
+** Names are case sensitive.
** Names are zero-terminated UTF-8 strings.
-** If there is no match, a NULL
-** pointer is returned. If zVfsName is NULL then the default
-** VFS is returned.
+** If there is no match, a NULL pointer is returned.
+** If zVfsName is NULL then the default VFS is returned.
**
** New VFSes are registered with sqlite3_vfs_register().
** Each new VFS becomes the default VFS if the makeDflt flag is set.
** same name are registered, the behavior is undefined. If a
** VFS is registered with a name that is NULL or an empty string,
** then the behavior is undefined.
-**
+**
** Unregister a VFS with the sqlite3_vfs_unregister() interface.
** If the default VFS is unregistered, another VFS is chosen as
** the default. The choice for the new VFS is arbitrary.
**
** INVARIANTS:
**
-** {F11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the
+** {H11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the
** registered [sqlite3_vfs] object whose name exactly matches
** the zero-terminated UTF-8 string N, or it returns NULL if
** there is no match.
**
-** {F11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then
+** {H11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then
** the function returns a pointer to the default [sqlite3_vfs]
-** object if there is one, or NULL if there is no default
+** object if there is one, or NULL if there is no default
** [sqlite3_vfs] object.
**
-** {F11209} The [sqlite3_vfs_register(P,F)] interface registers the
+** {H11209} The [sqlite3_vfs_register(P,F)] interface registers the
** well-formed [sqlite3_vfs] object P using the name given
** by the zName field of the object.
**
-** {F11212} Using the [sqlite3_vfs_register(P,F)] interface to register
+** {H11212} Using the [sqlite3_vfs_register(P,F)] interface to register
** the same [sqlite3_vfs] object multiple times is a harmless no-op.
**
-** {F11215} The [sqlite3_vfs_register(P,F)] interface makes the
-** the [sqlite3_vfs] object P the default [sqlite3_vfs] object
-** if F is non-zero.
+** {H11215} The [sqlite3_vfs_register(P,F)] interface makes the [sqlite3_vfs]
+** object P the default [sqlite3_vfs] object if F is non-zero.
**
-** {F11218} The [sqlite3_vfs_unregister(P)] interface unregisters the
+** {H11218} The [sqlite3_vfs_unregister(P)] interface unregisters the
** [sqlite3_vfs] object P so that it is no longer returned by
** subsequent calls to [sqlite3_vfs_find()].
*/
int sqlite3_vfs_unregister(sqlite3_vfs*);
/*
-** CAPI3REF: Mutexes {F17000}
+** CAPI3REF: Mutexes {H17000} <S20000>
**
** The SQLite core uses these routines for thread
-** synchronization. Though they are intended for internal
+** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is
** permitted to use any of these routines.
**
-** The SQLite source code contains multiple implementations
+** The SQLite source code contains multiple implementations
** of these mutex routines. An appropriate implementation
** is selected automatically at compile-time. The following
** implementations are available in the SQLite core:
** <li> SQLITE_MUTEX_NOOP
** </ul>
**
-** The SQLITE_MUTEX_NOOP implementation is a set of routines
-** that does no real locking and is appropriate for use in
+** The SQLITE_MUTEX_NOOP implementation is a set of routines
+** that does no real locking and is appropriate for use in
** a single-threaded application. The SQLITE_MUTEX_OS2,
** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
-** are appropriate for use on os/2, unix, and windows.
-**
+** are appropriate for use on OS/2, Unix, and Windows.
+**
** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
-** implementation is included with the library. The
-** mutex interface routines defined here become external
-** references in the SQLite library for which implementations
-** must be provided by the application. This facility allows an
-** application that links against SQLite to provide its own mutex
-** implementation without having to modify the SQLite core.
-**
-** {F17011} The sqlite3_mutex_alloc() routine allocates a new
-** mutex and returns a pointer to it. {F17012} If it returns NULL
-** that means that a mutex could not be allocated. {F17013} SQLite
-** will unwind its stack and return an error. {F17014} The argument
+** implementation is included with the library. In this case the
+** application must supply a custom mutex implementation using the
+** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
+** before calling sqlite3_initialize() or any other public sqlite3_
+** function that calls sqlite3_initialize().
+**
+** {H17011} The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. {H17012} If it returns NULL
+** that means that a mutex could not be allocated. {H17013} SQLite
+** will unwind its stack and return an error. {H17014} The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li> SQLITE_MUTEX_STATIC_PRNG
** <li> SQLITE_MUTEX_STATIC_LRU
** <li> SQLITE_MUTEX_STATIC_LRU2
-** </ul> {END}
+** </ul>
**
-** {F17015} The first two constants cause sqlite3_mutex_alloc() to create
+** {H17015} The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
-** not want to. {F17016} But SQLite will only request a recursive mutex in
+** not want to. {H17016} But SQLite will only request a recursive mutex in
** cases where it really needs one. {END} If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
-** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return
+** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex. {END} Four static mutexes are
** used by the current version of SQLite. Future versions of SQLite
** may add additional static mutexes. Static mutexes are for internal
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
-** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
-** returns a different mutex on every call. {F17034} But for the static
+** returns a different mutex on every call. {H17034} But for the static
** mutex types, the same mutex is returned on every call that has
-** the same type number. {END}
+** the same type number.
**
-** {F17019} The sqlite3_mutex_free() routine deallocates a previously
-** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every
-** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in
-** use when they are deallocated. {U17022} Attempting to deallocate a static
-** mutex results in undefined behavior. {F17023} SQLite never deallocates
+** {H17019} The sqlite3_mutex_free() routine deallocates a previously
+** allocated dynamic mutex. {H17020} SQLite is careful to deallocate every
+** dynamic mutex that it allocates. {A17021} The dynamic mutexes must not be in
+** use when they are deallocated. {A17022} Attempting to deallocate a static
+** mutex results in undefined behavior. {H17023} SQLite never deallocates
** a static mutex. {END}
**
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
-** to enter a mutex. {F17024} If another thread is already within the mutex,
+** to enter a mutex. {H17024} If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
-** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK
-** upon successful entry. {F17026} Mutexes created using
+** SQLITE_BUSY. {H17025} The sqlite3_mutex_try() interface returns [SQLITE_OK]
+** upon successful entry. {H17026} Mutexes created using
** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
-** {F17027} In such cases the,
+** {H17027} In such cases the,
** mutex must be exited an equal number of times before another thread
-** can enter. {U17028} If the same thread tries to enter any other
+** can enter. {A17028} If the same thread tries to enter any other
** kind of mutex more than once, the behavior is undefined.
-** {F17029} SQLite will never exhibit
-** such behavior in its own use of mutexes. {END}
+** {H17029} SQLite will never exhibit
+** such behavior in its own use of mutexes.
**
-** Some systems (ex: windows95) do not the operation implemented by
-** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will
-** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses
-** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END}
+** Some systems (for example, Windows 95) do not support the operation
+** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
+** will always return SQLITE_BUSY. {H17030} The SQLite core only ever uses
+** sqlite3_mutex_try() as an optimization so this is acceptable behavior.
**
-** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was
-** previously entered by the same thread. {U17032} The behavior
+** {H17031} The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. {A17032} The behavior
** is undefined if the mutex is not currently entered by the
-** calling thread or is not currently allocated. {F17033} SQLite will
+** calling thread or is not currently allocated. {H17033} SQLite will
** never do either. {END}
**
+** If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
+** sqlite3_mutex_leave() is a NULL pointer, then all three routines
+** behave as no-ops.
+**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
sqlite3_mutex *sqlite3_mutex_alloc(int);
void sqlite3_mutex_leave(sqlite3_mutex*);
/*
-** CAPI3REF: Mutex Verifcation Routines {F17080}
+** CAPI3REF: Mutex Methods Object {H17120} <S20130>
+** EXPERIMENTAL
+**
+** An instance of this structure defines the low-level routines
+** used to allocate and use mutexes.
+**
+** Usually, the default mutex implementations provided by SQLite are
+** sufficient, however the user has the option of substituting a custom
+** implementation for specialized deployments or systems for which SQLite
+** does not provide a suitable implementation. In this case, the user
+** creates and populates an instance of this structure to pass
+** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
+** Additionally, an instance of this structure can be used as an
+** output variable when querying the system for the current mutex
+** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
+**
+** The xMutexInit method defined by this structure is invoked as
+** part of system initialization by the sqlite3_initialize() function.
+** {H17001} The xMutexInit routine shall be called by SQLite once for each
+** effective call to [sqlite3_initialize()].
+**
+** The xMutexEnd method defined by this structure is invoked as
+** part of system shutdown by the sqlite3_shutdown() function. The
+** implementation of this method is expected to release all outstanding
+** resources obtained by the mutex methods implementation, especially
+** those obtained by the xMutexInit method. {H17003} The xMutexEnd()
+** interface shall be invoked once for each call to [sqlite3_shutdown()].
+**
+** The remaining seven methods defined by this structure (xMutexAlloc,
+** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
+** xMutexNotheld) implement the following interfaces (respectively):
+**
+** <ul>
+** <li> [sqlite3_mutex_alloc()] </li>
+** <li> [sqlite3_mutex_free()] </li>
+** <li> [sqlite3_mutex_enter()] </li>
+** <li> [sqlite3_mutex_try()] </li>
+** <li> [sqlite3_mutex_leave()] </li>
+** <li> [sqlite3_mutex_held()] </li>
+** <li> [sqlite3_mutex_notheld()] </li>
+** </ul>
+**
+** The only difference is that the public sqlite3_XXX functions enumerated
+** above silently ignore any invocations that pass a NULL pointer instead
+** of a valid mutex handle. The implementations of the methods defined
+** by this structure are not required to handle this case, the results
+** of passing a NULL pointer instead of a valid mutex handle are undefined
+** (i.e. it is acceptable to provide an implementation that segfaults if
+** it is passed a NULL pointer).
+*/
+typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
+struct sqlite3_mutex_methods {
+ int (*xMutexInit)(void);
+ int (*xMutexEnd)(void);
+ sqlite3_mutex *(*xMutexAlloc)(int);
+ void (*xMutexFree)(sqlite3_mutex *);
+ void (*xMutexEnter)(sqlite3_mutex *);
+ int (*xMutexTry)(sqlite3_mutex *);
+ void (*xMutexLeave)(sqlite3_mutex *);
+ int (*xMutexHeld)(sqlite3_mutex *);
+ int (*xMutexNotheld)(sqlite3_mutex *);
+};
+
+/*
+** CAPI3REF: Mutex Verification Routines {H17080} <S20130> <S30800>
**
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
-** are intended for use inside assert() statements. {F17081} The SQLite core
+** are intended for use inside assert() statements. {H17081} The SQLite core
** never uses these routines except inside an assert() and applications
-** are advised to follow the lead of the core. {F17082} The core only
+** are advised to follow the lead of the core. {H17082} The core only
** provides implementations for these routines when it is compiled
-** with the SQLITE_DEBUG flag. {U17087} External mutex implementations
+** with the SQLITE_DEBUG flag. {A17087} External mutex implementations
** are only required to provide these routines if SQLITE_DEBUG is
** defined and if NDEBUG is not defined.
**
-** {F17083} These routines should return true if the mutex in their argument
-** is held or not held, respectively, by the calling thread. {END}
+** {H17083} These routines should return true if the mutex in their argument
+** is held or not held, respectively, by the calling thread.
**
** {X17084} The implementation is not required to provided versions of these
-** routines that actually work.
-** If the implementation does not provide working
-** versions of these routines, it should at least provide stubs
-** that always return true so that one does not get spurious
-** assertion failures. {END}
+** routines that actually work. If the implementation does not provide working
+** versions of these routines, it should at least provide stubs that always
+** return true so that one does not get spurious assertion failures.
**
-** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
+** {H17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
** the routine should return 1. {END} This seems counter-intuitive since
** clearly the mutex cannot be held if it does not exist. But the
** the reason the mutex does not exist is because the build is not
** using mutexes. And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
-** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld()
+** the appropriate thing to do. {H17086} The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
int sqlite3_mutex_held(sqlite3_mutex*);
int sqlite3_mutex_notheld(sqlite3_mutex*);
/*
-** CAPI3REF: Mutex Types {F17001}
+** CAPI3REF: Mutex Types {H17001} <H17000>
**
-** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument
-** which is one of these integer constants. {END}
+** The [sqlite3_mutex_alloc()] interface takes a single argument
+** which is one of these integer constants.
+**
+** The set of static mutexes may change from one SQLite release to the
+** next. Applications that override the built-in mutex logic must be
+** prepared to accommodate additional static mutexes.
*/
#define SQLITE_MUTEX_FAST 0
#define SQLITE_MUTEX_RECURSIVE 1
#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */
/*
-** CAPI3REF: Low-Level Control Of Database Files {F11300}
+** CAPI3REF: Low-Level Control Of Database Files {H11300} <S30800>
**
-** {F11301} The [sqlite3_file_control()] interface makes a direct call to the
+** {H11301} The [sqlite3_file_control()] interface makes a direct call to the
** xFileControl method for the [sqlite3_io_methods] object associated
-** with a particular database identified by the second argument. {F11302} The
+** with a particular database identified by the second argument. {H11302} The
** name of the database is the name assigned to the database by the
** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
-** database. {F11303} To control the main database file, use the name "main"
-** or a NULL pointer. {F11304} The third and fourth parameters to this routine
+** database. {H11303} To control the main database file, use the name "main"
+** or a NULL pointer. {H11304} The third and fourth parameters to this routine
** are passed directly through to the second and third parameters of
-** the xFileControl method. {F11305} The return value of the xFileControl
+** the xFileControl method. {H11305} The return value of the xFileControl
** method becomes the return value of this routine.
**
-** {F11306} If the second parameter (zDbName) does not match the name of any
-** open database file, then SQLITE_ERROR is returned. {F11307} This error
+** {H11306} If the second parameter (zDbName) does not match the name of any
+** open database file, then SQLITE_ERROR is returned. {H11307} This error
** code is not remembered and will not be recalled by [sqlite3_errcode()]
-** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might
-** also return SQLITE_ERROR. {U11309} There is no way to distinguish between
+** or [sqlite3_errmsg()]. {A11308} The underlying xFileControl method might
+** also return SQLITE_ERROR. {A11309} There is no way to distinguish between
** an incorrect zDbName and an SQLITE_ERROR return from the underlying
** xFileControl method. {END}
**
int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
/*
-** CAPI3REF: Testing Interface {F11400}
+** CAPI3REF: Testing Interface {H11400} <S30800>
**
** The sqlite3_test_control() interface is used to read out internal
** state of SQLite and to inject faults into SQLite for testing
-** purposes. The first parameter a operation code that determines
+** purposes. The first parameter is an operation code that determines
** the number, meaning, and operation of all subsequent parameters.
**
** This interface is not for use by applications. It exists solely
int sqlite3_test_control(int op, ...);
/*
-** CAPI3REF: Testing Interface Operation Codes {F11410}
+** CAPI3REF: Testing Interface Operation Codes {H11410} <H11400>
**
** These constants are the valid operation code parameters used
** as the first argument to [sqlite3_test_control()].
**
-** These parameters and their meansing are subject to change
+** These parameters and their meanings are subject to change
** without notice. These values are for testing purposes only.
** Applications should not use any of these parameters or the
** [sqlite3_test_control()] interface.
*/
-#define SQLITE_TESTCTRL_FAULT_CONFIG 1
-#define SQLITE_TESTCTRL_FAULT_FAILURES 2
-#define SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES 3
-#define SQLITE_TESTCTRL_FAULT_PENDING 4
#define SQLITE_TESTCTRL_PRNG_SAVE 5
#define SQLITE_TESTCTRL_PRNG_RESTORE 6
#define SQLITE_TESTCTRL_PRNG_RESET 7
#define SQLITE_TESTCTRL_BITVEC_TEST 8
+#define SQLITE_TESTCTRL_FAULT_INSTALL 9
+#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10
+
+/*
+** CAPI3REF: SQLite Runtime Status {H17200} <S60200>
+** EXPERIMENTAL
+**
+** This interface is used to retrieve runtime status information
+** about the preformance of SQLite, and optionally to reset various
+** highwater marks. The first argument is an integer code for
+** the specific parameter to measure. Recognized integer codes
+** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].
+** The current value of the parameter is returned into *pCurrent.
+** The highest recorded value is returned in *pHighwater. If the
+** resetFlag is true, then the highest record value is reset after
+** *pHighwater is written. Some parameters do not record the highest
+** value. For those parameters
+** nothing is written into *pHighwater and the resetFlag is ignored.
+** Other parameters record only the highwater mark and not the current
+** value. For these latter parameters nothing is written into *pCurrent.
+**
+** This routine returns SQLITE_OK on success and a non-zero
+** [error code] on failure.
+**
+** This routine is threadsafe but is not atomic. This routine can
+** called while other threads are running the same or different SQLite
+** interfaces. However the values returned in *pCurrent and
+** *pHighwater reflect the status of SQLite at different points in time
+** and it is possible that another thread might change the parameter
+** in between the times when *pCurrent and *pHighwater are written.
+**
+** See also: [sqlite3_db_status()]
+*/
+int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
+
+/*
+** CAPI3REF: Database Connection Status {H17201} <S60200>
+** EXPERIMENTAL
+**
+** This interface is used to retrieve runtime status information
+** about a single [database connection]. The first argument is the
+** database connection object to be interrogated. The second argument
+** is the parameter to interrogate. Currently, the only allowed value
+** for the second parameter is [SQLITE_DBSTATUS_LOOKASIDE_USED].
+** Additional options will likely appear in future releases of SQLite.
+**
+** The current value of the request parameter is written into *pCur
+** and the highest instantaneous value is written into *pHiwtr. If
+** the resetFlg is true, then the highest instantaneous value is
+** reset back down to the current value.
+**
+** See also: [sqlite3_status()].
+*/
+int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
+/*
+** CAPI3REF: Status Parameters {H17250} <H17200>
+** EXPERIMENTAL
+**
+** These integer constants designate various run-time status parameters
+** that can be returned by [sqlite3_status()].
+**
+** <dl>
+** <dt>SQLITE_STATUS_MEMORY_USED</dt>
+** <dd>This parameter is the current amount of memory checked out
+** using [sqlite3_malloc()], either directly or indirectly. The
+** figure includes calls made to [sqlite3_malloc()] by the application
+** and internal memory usage by the SQLite library. Scratch memory
+** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache
+** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
+** this parameter. The amount returned is the sum of the allocation
+** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>
+**
+** <dt>SQLITE_STATUS_MALLOC_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
+** internal equivalents). Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_USED</dt>
+** <dd>This parameter returns the number of pages used out of the
+** [pagecache memory allocator] that was configured using
+** [SQLITE_CONFIG_PAGECACHE]. The
+** value returned is in pages, not in bytes.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of page cache
+** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The
+** returned value includes allocations that overflowed because they
+** where too large (they were larger than the "sz" parameter to
+** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
+** no space was left in the page cache.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [pagecache memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_USED</dt>
+** <dd>This parameter returns the number of allocations used out of the
+** [scratch memory allocator] configured using
+** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not
+** in bytes. Since a single thread may only have one scratch allocation
+** outstanding at time, this parameter also reports the number of threads
+** using scratch memory at the same time.</dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of scratch memory
+** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The values
+** returned include overflows because the requested allocation was too
+** larger (that is, because the requested allocation was larger than the
+** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer
+** slots were available.
+** </dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [scratch memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_PARSER_STACK</dt>
+** <dd>This parameter records the deepest parser stack. It is only
+** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>
+** </dl>
+**
+** New status parameters may be added from time to time.
+*/
+#define SQLITE_STATUS_MEMORY_USED 0
+#define SQLITE_STATUS_PAGECACHE_USED 1
+#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2
+#define SQLITE_STATUS_SCRATCH_USED 3
+#define SQLITE_STATUS_SCRATCH_OVERFLOW 4
+#define SQLITE_STATUS_MALLOC_SIZE 5
+#define SQLITE_STATUS_PARSER_STACK 6
+#define SQLITE_STATUS_PAGECACHE_SIZE 7
+#define SQLITE_STATUS_SCRATCH_SIZE 8
+
+/*
+** CAPI3REF: Status Parameters for database connections {H17275} <H17200>
+** EXPERIMENTAL
+**
+** Status verbs for [sqlite3_db_status()].
+**
+** <dl>
+** <dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
+** <dd>This parameter returns the number of lookaside memory slots currently
+** checked out.</dd>
+** </dl>
+*/
+#define SQLITE_DBSTATUS_LOOKASIDE_USED 0
/*
** Undo the hack that converts floating point types to integer for