Remove ancient trunk folder from svn repository
[synfig.git] / ETL / ETL / _bezier.h
diff --git a/ETL/ETL/_bezier.h b/ETL/ETL/_bezier.h
new file mode 100644 (file)
index 0000000..fe6b170
--- /dev/null
@@ -0,0 +1,992 @@
+/*! ========================================================================
+** Extended Template Library
+** Bezier Template Class Implementation
+** $Id$
+**
+** Copyright (c) 2002 Robert B. Quattlebaum Jr.
+** Copyright (c) 2007 Chris Moore
+**
+** This package is free software; you can redistribute it and/or
+** modify it under the terms of the GNU General Public License as
+** published by the Free Software Foundation; either version 2 of
+** the License, or (at your option) any later version.
+**
+** This package is distributed in the hope that it will be useful,
+** but WITHOUT ANY WARRANTY; without even the implied warranty of
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+** General Public License for more details.
+**
+** === N O T E S ===========================================================
+**
+** This is an internal header file, included by other ETL headers.
+** You should not attempt to use it directly.
+**
+** ========================================================================= */
+
+/* === S T A R T =========================================================== */
+
+#ifndef __ETL__BEZIER_H
+#define __ETL__BEZIER_H
+
+/* === H E A D E R S ======================================================= */
+
+#include "_curve_func.h"
+#include <cmath>                               // for ldexp
+// #include <ETL/fixed>                        // not used
+
+/* === M A C R O S ========================================================= */
+
+#define MAXDEPTH 64    /*  Maximum depth for recursion */
+
+/* take binary sign of a, either -1, or 1 if >= 0 */
+#define SGN(a)         (((a)<0) ? -1 : 1)
+
+/* find minimum of a and b */
+#ifndef MIN
+#define MIN(a,b)       (((a)<(b))?(a):(b))
+#endif
+
+/* find maximum of a and b */
+#ifndef MAX
+#define MAX(a,b)       (((a)>(b))?(a):(b))
+#endif
+
+#define        BEZIER_EPSILON  (ldexp(1.0,-MAXDEPTH-1)) /*Flatness control value */
+//#define      BEZIER_EPSILON  0.00005 /*Flatness control value */
+#define        DEGREE  3                       /*  Cubic Bezier curve          */
+#define        W_DEGREE 5                      /*  Degree of eqn to find roots of */
+
+/* === T Y P E D E F S ===================================================== */
+
+/* === C L A S S E S & S T R U C T S ======================================= */
+
+_ETL_BEGIN_NAMESPACE
+
+template<typename V,typename T> class bezier;
+
+//! Cubic Bezier Curve Base Class
+// This generic implementation uses the DeCasteljau algorithm.
+// Works for just about anything that has an affine combination function
+template <typename V,typename T=float>
+class bezier_base : public std::unary_function<T,V>
+{
+public:
+       typedef V value_type;
+       typedef T time_type;
+
+private:
+       value_type a,b,c,d;
+       time_type r,s;
+
+protected:
+       affine_combo<value_type,time_type> affine_func;
+
+public:
+       bezier_base():r(0.0),s(1.0) { }
+       bezier_base(
+               const value_type &a, const value_type &b, const value_type &c, const value_type &d,
+               const time_type &r=0.0, const time_type &s=1.0):
+               a(a),b(b),c(c),d(d),r(r),s(s) { sync(); }
+
+       void sync()
+       {
+       }
+
+       value_type
+       operator()(time_type t)const
+       {
+               t=(t-r)/(s-r);
+               return
+               affine_func(
+                       affine_func(
+                               affine_func(a,b,t),
+                               affine_func(b,c,t)
+                       ,t),
+                       affine_func(
+                               affine_func(b,c,t),
+                               affine_func(c,d,t)
+                       ,t)
+               ,t);
+       }
+
+       /*
+       void evaluate(time_type t, value_type &f, value_type &df) const
+       {
+               t=(t-r)/(s-r);
+
+               value_type p1 = affine_func(
+                                                       affine_func(a,b,t),
+                                                       affine_func(b,c,t)
+                                                       ,t);
+               value_type p2 = affine_func(
+                                                       affine_func(b,c,t),
+                                                       affine_func(c,d,t)
+                                               ,t);
+
+               f = affine_func(p1,p2,t);
+               df = (p2-p1)*3;
+       }
+       */
+
+       void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; }
+       void set_r(time_type new_r) { r=new_r; }
+       void set_s(time_type new_s) { s=new_s; }
+       const time_type &get_r()const { return r; }
+       const time_type &get_s()const { return s; }
+       time_type get_dt()const { return s-r; }
+
+       bool intersect_hull(const bezier_base<value_type,time_type> &x)const
+       {
+               return 0;
+       }
+
+       //! Bezier curve intersection function
+       /*! Calculates the time of intersection
+       **      for the calling curve.
+       **
+       **      I still have not figured out a good generic
+       **      method of doing this for a bi-infinite
+       **      cubic bezier curve calculated with the DeCasteljau
+       **      algorithm.
+       **
+       **      One method, although it does not work for the
+       **      entire bi-infinite curve, is to iteratively
+       **      intersect the hulls. However, we would only detect
+       **      intersections that occur between R and S.
+       **
+       **      It is entirely possible that a new construct similar
+       **      to the affine combination function will be necessary
+       **      for this to work properly.
+       **
+       **      For now, this function is BROKEN. (although it works
+       **      for the floating-point specializations, using newton's method)
+       */
+       time_type intersect(const bezier_base<value_type,time_type> &x, time_type near=0.0)const
+       {
+               return 0;
+       }
+
+       /* subdivide at some time t into 2 separate curves left and right
+
+               b0 l1
+               *               0+1 l2
+               b1              *               1+2*1+2 l3
+               *               1+2             *                       0+3*1+3*2+3 l4,r1
+               b2              *               1+2*2+2 r2      *
+               *               2+3     r3      *
+               b3 r4   *
+               *
+
+               0.1 2.3 ->      0.1 2 3 4 5.6
+       */
+/*     void subdivide(bezier_base *left, bezier_base *right, const time_type &time = (time_type)0.5) const
+       {
+               time_type t = (time-r)/(s-r);
+               bezier_base lt,rt;
+
+               value_type temp;
+
+               //1st stage points to keep
+               lt.a = a;
+               rt.d = d;
+
+               //2nd stage calc
+               lt.b = affine_func(a,b,t);
+               temp = affine_func(b,c,t);
+               rt.c = affine_func(c,d,t);
+
+               //3rd stage calc
+               lt.c = affine_func(lt.b,temp,t);
+               rt.b = affine_func(temp,rt.c,t);
+
+               //last stage calc
+               lt.d = rt.a = affine_func(lt.c,rt.b,t);
+
+               //set the time range for l,r (the inside values should be 1, 0 respectively)
+               lt.r = r;
+               rt.s = s;
+
+               //give back the curves
+               if(left) *left = lt;
+               if(right) *right = rt;
+       }
+       */
+       value_type &
+       operator[](int i)
+       { return (&a)[i]; }
+
+       const value_type &
+       operator[](int i) const
+       { return (&a)[i]; }
+};
+
+
+#if 1
+// Fast float implementation of a cubic bezier curve
+template <>
+class bezier_base<float,float> : public std::unary_function<float,float>
+{
+public:
+       typedef float value_type;
+       typedef float time_type;
+private:
+       affine_combo<value_type,time_type> affine_func;
+       value_type a,b,c,d;
+       time_type r,s;
+
+       value_type _coeff[4];
+       time_type drs; // reciprocal of (s-r)
+public:
+       bezier_base():r(0.0),s(1.0),drs(1.0) { }
+       bezier_base(
+               const value_type &a, const value_type &b, const value_type &c, const value_type &d,
+               const time_type &r=0.0, const time_type &s=1.0):
+               a(a),b(b),c(c),d(d),r(r),s(s),drs(1.0/(s-r)) { sync(); }
+
+       void sync()
+       {
+//             drs=1.0/(s-r);
+               _coeff[0]=                 a;
+               _coeff[1]=           b*3 - a*3;
+               _coeff[2]=     c*3 - b*6 + a*3;
+               _coeff[3]= d - c*3 + b*3 - a;
+       }
+
+       // Cost Summary: 4 products, 3 sums, and 1 difference.
+       inline value_type
+       operator()(time_type t)const
+       { t-=r; t*=drs; return _coeff[0]+(_coeff[1]+(_coeff[2]+(_coeff[3])*t)*t)*t; }
+
+       void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; drs=1.0/(s-r); }
+       void set_r(time_type new_r) { r=new_r; drs=1.0/(s-r); }
+       void set_s(time_type new_s) { s=new_s; drs=1.0/(s-r); }
+       const time_type &get_r()const { return r; }
+       const time_type &get_s()const { return s; }
+       time_type get_dt()const { return s-r; }
+
+       //! Bezier curve intersection function
+       /*! Calculates the time of intersection
+       **      for the calling curve.
+       */
+       time_type intersect(const bezier_base<value_type,time_type> &x, time_type t=0.0,int i=15)const
+       {
+               //BROKEN - the time values of the 2 curves should be independent
+               value_type system[4];
+               system[0]=_coeff[0]-x._coeff[0];
+               system[1]=_coeff[1]-x._coeff[1];
+               system[2]=_coeff[2]-x._coeff[2];
+               system[3]=_coeff[3]-x._coeff[3];
+
+               t-=r;
+               t*=drs;
+
+               // Newton's method
+               // Inner loop cost summary: 7 products, 5 sums, 1 difference
+               for(;i;i--)
+                       t-= (system[0]+(system[1]+(system[2]+(system[3])*t)*t)*t)/
+                               (system[1]+(system[2]*2+(system[3]*3)*t)*t);
+
+               t*=(s-r);
+               t+=r;
+
+               return t;
+       }
+
+       value_type &
+       operator[](int i)
+       { return (&a)[i]; }
+
+       const value_type &
+       operator[](int i) const
+       { return (&a)[i]; }
+};
+
+
+// Fast double implementation of a cubic bezier curve
+template <>
+class bezier_base<double,float> : public std::unary_function<float,double>
+{
+public:
+       typedef double value_type;
+       typedef float time_type;
+private:
+       affine_combo<value_type,time_type> affine_func;
+       value_type a,b,c,d;
+       time_type r,s;
+
+       value_type _coeff[4];
+       time_type drs; // reciprocal of (s-r)
+public:
+       bezier_base():r(0.0),s(1.0),drs(1.0) { }
+       bezier_base(
+               const value_type &a, const value_type &b, const value_type &c, const value_type &d,
+               const time_type &r=0.0, const time_type &s=1.0):
+               a(a),b(b),c(c),d(d),r(r),s(s),drs(1.0/(s-r)) { sync(); }
+
+       void sync()
+       {
+//             drs=1.0/(s-r);
+               _coeff[0]=                 a;
+               _coeff[1]=           b*3 - a*3;
+               _coeff[2]=     c*3 - b*6 + a*3;
+               _coeff[3]= d - c*3 + b*3 - a;
+       }
+
+       // 4 products, 3 sums, and 1 difference.
+       inline value_type
+       operator()(time_type t)const
+       { t-=r; t*=drs; return _coeff[0]+(_coeff[1]+(_coeff[2]+(_coeff[3])*t)*t)*t; }
+
+       void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; drs=1.0/(s-r); }
+       void set_r(time_type new_r) { r=new_r; drs=1.0/(s-r); }
+       void set_s(time_type new_s) { s=new_s; drs=1.0/(s-r); }
+       const time_type &get_r()const { return r; }
+       const time_type &get_s()const { return s; }
+       time_type get_dt()const { return s-r; }
+
+       //! Bezier curve intersection function
+       /*! Calculates the time of intersection
+       **      for the calling curve.
+       */
+       time_type intersect(const bezier_base<value_type,time_type> &x, time_type t=0.0,int i=15)const
+       {
+               //BROKEN - the time values of the 2 curves should be independent
+               value_type system[4];
+               system[0]=_coeff[0]-x._coeff[0];
+               system[1]=_coeff[1]-x._coeff[1];
+               system[2]=_coeff[2]-x._coeff[2];
+               system[3]=_coeff[3]-x._coeff[3];
+
+               t-=r;
+               t*=drs;
+
+               // Newton's method
+               // Inner loop: 7 products, 5 sums, 1 difference
+               for(;i;i--)
+                       t-= (system[0]+(system[1]+(system[2]+(system[3])*t)*t)*t)/
+                               (system[1]+(system[2]*2+(system[3]*3)*t)*t);
+
+               t*=(s-r);
+               t+=r;
+
+               return t;
+       }
+
+       value_type &
+       operator[](int i)
+       { return (&a)[i]; }
+
+       const value_type &
+       operator[](int i) const
+       { return (&a)[i]; }
+};
+
+//#ifdef __FIXED__
+
+// Fast double implementation of a cubic bezier curve
+/*
+template <>
+template <class T,unsigned int FIXED_BITS>
+class bezier_base<fixed_base<T,FIXED_BITS> > : std::unary_function<fixed_base<T,FIXED_BITS>,fixed_base<T,FIXED_BITS> >
+{
+public:
+       typedef fixed_base<T,FIXED_BITS> value_type;
+       typedef fixed_base<T,FIXED_BITS> time_type;
+
+private:
+       affine_combo<value_type,time_type> affine_func;
+       value_type a,b,c,d;
+       time_type r,s;
+
+       value_type _coeff[4];
+       time_type drs; // reciprocal of (s-r)
+public:
+       bezier_base():r(0.0),s(1.0),drs(1.0) { }
+       bezier_base(
+               const value_type &a, const value_type &b, const value_type &c, const value_type &d,
+               const time_type &r=0, const time_type &s=1):
+               a(a),b(b),c(c),d(d),r(r),s(s),drs(1.0/(s-r)) { sync(); }
+
+       void sync()
+       {
+               drs=time_type(1)/(s-r);
+               _coeff[0]=                 a;
+               _coeff[1]=           b*3 - a*3;
+               _coeff[2]=     c*3 - b*6 + a*3;
+               _coeff[3]= d - c*3 + b*3 - a;
+       }
+
+       // 4 products, 3 sums, and 1 difference.
+       inline value_type
+       operator()(time_type t)const
+       { t-=r; t*=drs; return _coeff[0]+(_coeff[1]+(_coeff[2]+(_coeff[3])*t)*t)*t; }
+
+       void set_rs(time_type new_r, time_type new_s) { r=new_r; s=new_s; drs=time_type(1)/(s-r); }
+       void set_r(time_type new_r) { r=new_r; drs=time_type(1)/(s-r); }
+       void set_s(time_type new_s) { s=new_s; drs=time_type(1)/(s-r); }
+       const time_type &get_r()const { return r; }
+       const time_type &get_s()const { return s; }
+       time_type get_dt()const { return s-r; }
+
+       //! Bezier curve intersection function
+       //! Calculates the time of intersection
+       //      for the calling curve.
+       //
+       time_type intersect(const bezier_base<value_type,time_type> &x, time_type t=0,int i=15)const
+       {
+               value_type system[4];
+               system[0]=_coeff[0]-x._coeff[0];
+               system[1]=_coeff[1]-x._coeff[1];
+               system[2]=_coeff[2]-x._coeff[2];
+               system[3]=_coeff[3]-x._coeff[3];
+
+               t-=r;
+               t*=drs;
+
+               // Newton's method
+               // Inner loop: 7 products, 5 sums, 1 difference
+               for(;i;i--)
+                       t-=(time_type) ( (system[0]+(system[1]+(system[2]+(system[3])*t)*t)*t)/
+                               (system[1]+(system[2]*2+(system[3]*3)*t)*t) );
+
+               t*=(s-r);
+               t+=r;
+
+               return t;
+       }
+
+       value_type &
+       operator[](int i)
+       { return (&a)[i]; }
+
+       const value_type &
+       operator[](int i) const
+       { return (&a)[i]; }
+};
+*/
+//#endif
+
+#endif
+
+
+
+template <typename V, typename T>
+class bezier_iterator
+{
+public:
+
+       struct iterator_category {};
+       typedef V value_type;
+       typedef T difference_type;
+       typedef V reference;
+
+private:
+       difference_type t;
+       difference_type dt;
+       bezier_base<V,T>        curve;
+
+public:
+
+/*
+       reference
+       operator*(void)const { return curve(t); }
+       const surface_iterator&
+
+       operator++(void)
+       { t+=dt; return &this; }
+
+       const surface_iterator&
+       operator++(int)
+       { hermite_iterator _tmp=*this; t+=dt; return _tmp; }
+
+       const surface_iterator&
+       operator--(void)
+       { t-=dt; return &this; }
+
+       const surface_iterator&
+       operator--(int)
+       { hermite_iterator _tmp=*this; t-=dt; return _tmp; }
+
+
+       surface_iterator
+       operator+(difference_type __n) const
+       { return surface_iterator(data+__n[0]+__n[1]*pitch,pitch); }
+
+       surface_iterator
+       operator-(difference_type __n) const
+       { return surface_iterator(data-__n[0]-__n[1]*pitch,pitch); }
+*/
+
+};
+
+template <typename V,typename T=float>
+class bezier : public bezier_base<V,T>
+{
+public:
+       typedef V value_type;
+       typedef T time_type;
+       typedef float distance_type;
+       typedef bezier_iterator<V,T> iterator;
+       typedef bezier_iterator<V,T> const_iterator;
+
+       distance_func<value_type> dist;
+
+       using bezier_base<V,T>::get_r;
+       using bezier_base<V,T>::get_s;
+       using bezier_base<V,T>::get_dt;
+
+public:
+       bezier() { }
+       bezier(const value_type &a, const value_type &b, const value_type &c, const value_type &d):
+               bezier_base<V,T>(a,b,c,d) { }
+
+
+       const_iterator begin()const;
+       const_iterator end()const;
+
+       time_type find_closest(bool fast, const value_type& x, int i=7)const
+       {
+           if (!fast)
+           {
+                       value_type array[4] = {
+                               bezier<V,T>::operator[](0),
+                               bezier<V,T>::operator[](1),
+                               bezier<V,T>::operator[](2),
+                               bezier<V,T>::operator[](3)};
+                       return NearestPointOnCurve(x, array);
+           }
+           else
+           {
+                       time_type r(0), s(1);
+                       float t((r+s)*0.5); /* half way between r and s */
+
+                       for(;i;i--)
+                       {
+                               // compare 33% of the way between r and s with 67% of the way between r and s
+                               if(dist(operator()((s-r)*(1.0/3.0)+r), x) <
+                                  dist(operator()((s-r)*(2.0/3.0)+r), x))
+                                       s=t;
+                               else
+                                       r=t;
+                               t=((r+s)*0.5);
+                       }
+                       return t;
+               }
+       }
+
+       distance_type find_distance(time_type r, time_type s, int steps=7)const
+       {
+               const time_type inc((s-r)/steps);
+               if (!inc) return 0;
+               distance_type ret(0);
+               value_type last(operator()(r));
+
+               for(r+=inc;r<s;r+=inc)
+               {
+                       const value_type n(operator()(r));
+                       ret+=dist.uncook(dist(last,n));
+                       last=n;
+               }
+               ret+=dist.uncook(dist(last,operator()(r)))*(s-(r-inc))/inc;
+
+               return ret;
+       }
+
+       distance_type length()const { return find_distance(get_r(),get_s()); }
+
+       /* subdivide at some time t into 2 separate curves left and right
+
+               b0 l1
+               *               0+1 l2
+               b1              *               1+2*1+2 l3
+               *               1+2             *                       0+3*1+3*2+3 l4,r1
+               b2              *               1+2*2+2 r2      *
+               *               2+3     r3      *
+               b3 r4   *
+               *
+
+               0.1 2.3 ->      0.1 2 3 4 5.6
+       */
+       void subdivide(bezier *left, bezier *right, const time_type &time = (time_type)0.5) const
+       {
+               time_type t=(time-get_r())/get_dt();
+               bezier lt,rt;
+
+               value_type temp;
+               const value_type& a((*this)[0]);
+               const value_type& b((*this)[1]);
+               const value_type& c((*this)[2]);
+               const value_type& d((*this)[3]);
+
+               //1st stage points to keep
+               lt[0] = a;
+               rt[3] = d;
+
+               //2nd stage calc
+               lt[1] = affine_func(a,b,t);
+               temp = affine_func(b,c,t);
+               rt[2] = affine_func(c,d,t);
+
+               //3rd stage calc
+               lt[2] = affine_func(lt[1],temp,t);
+               rt[1] = affine_func(temp,rt[2],t);
+
+               //last stage calc
+               lt[3] = rt[0] = affine_func(lt[2],rt[1],t);
+
+               //set the time range for l,r (the inside values should be 1, 0 respectively)
+               lt.set_r(get_r());
+               rt.set_s(get_s());
+
+               lt.sync();
+               rt.sync();
+
+               //give back the curves
+               if(left) *left = lt;
+               if(right) *right = rt;
+       }
+
+
+       void evaluate(time_type t, value_type &f, value_type &df) const
+       {
+               t=(t-get_r())/get_dt();
+
+               const value_type& a((*this)[0]);
+               const value_type& b((*this)[1]);
+               const value_type& c((*this)[2]);
+               const value_type& d((*this)[3]);
+
+               const value_type p1 = affine_func(
+                                                       affine_func(a,b,t),
+                                                       affine_func(b,c,t)
+                                                       ,t);
+               const value_type p2 = affine_func(
+                                                       affine_func(b,c,t),
+                                                       affine_func(c,d,t)
+                                               ,t);
+
+               f = affine_func(p1,p2,t);
+               df = (p2-p1)*3;
+       }
+
+private:
+       /*
+        *  Bezier :
+        *      Evaluate a Bezier curve at a particular parameter value
+        *      Fill in control points for resulting sub-curves if "Left" and
+        *      "Right" are non-null.
+        *
+        *    int                       degree;         Degree of bezier curve
+        *    value_type        *VT;            Control pts
+        *    time_type         t;                      Parameter value
+        *    value_type        *Left;          RETURN left half ctl pts
+        *    value_type        *Right;         RETURN right half ctl pts
+        */
+       static value_type Bezier(value_type *VT, int degree, time_type t, value_type *Left, value_type *Right)
+       {
+               int             i, j;           /* Index variables      */
+               value_type      Vtemp[W_DEGREE+1][W_DEGREE+1];
+
+               /* Copy control points  */
+               for (j = 0; j <= degree; j++)
+                       Vtemp[0][j] = VT[j];
+
+               /* Triangle computation */
+               for (i = 1; i <= degree; i++)
+                       for (j =0 ; j <= degree - i; j++)
+                       {
+                               Vtemp[i][j][0] = (1.0 - t) * Vtemp[i-1][j][0] + t * Vtemp[i-1][j+1][0];
+                               Vtemp[i][j][1] = (1.0 - t) * Vtemp[i-1][j][1] + t * Vtemp[i-1][j+1][1];
+                       }
+
+               if (Left != NULL)
+                       for (j = 0; j <= degree; j++)
+                               Left[j]  = Vtemp[j][0];
+
+               if (Right != NULL)
+                       for (j = 0; j <= degree; j++)
+                               Right[j] = Vtemp[degree-j][j];
+
+               return (Vtemp[degree][0]);
+       }
+
+       /*
+        * CrossingCount :
+        *      Count the number of times a Bezier control polygon
+        *      crosses the 0-axis. This number is >= the number of roots.
+        *
+        *    value_type        *VT;                    Control pts of Bezier curve
+        */
+       static int CrossingCount(value_type *VT)
+       {
+               int     i;
+               int     n_crossings = 0;        /*  Number of zero-crossings    */
+               int             sign, old_sign;         /*  Sign of coefficients                */
+
+               sign = old_sign = SGN(VT[0][1]);
+               for (i = 1; i <= W_DEGREE; i++)
+               {
+                       sign = SGN(VT[i][1]);
+                       if (sign != old_sign) n_crossings++;
+                       old_sign = sign;
+               }
+
+               return n_crossings;
+       }
+
+       /*
+        *  ControlPolygonFlatEnough :
+        *      Check if the control polygon of a Bezier curve is flat enough
+        *      for recursive subdivision to bottom out.
+        *
+        *    value_type        *VT;            Control points
+        */
+       static int ControlPolygonFlatEnough(value_type *VT)
+       {
+               int                     i;                                      /* Index variable                                       */
+               distance_type   distance[W_DEGREE];     /* Distances from pts to line           */
+               distance_type   max_distance_above;     /* maximum of these                                     */
+               distance_type   max_distance_below;
+               time_type               intercept_1, intercept_2, left_intercept, right_intercept;
+               distance_type   a, b, c;                        /* Coefficients of implicit                     */
+               /* eqn for line from VT[0]-VT[deg]                      */
+               /* Find the  perpendicular distance                     */
+               /* from each interior control point to          */
+               /* line connecting VT[0] and VT[W_DEGREE]       */
+               {
+                       distance_type   abSquared;
+
+                       /* Derive the implicit equation for line connecting first *
+                        *  and last control points */
+                       a = VT[0][1] - VT[W_DEGREE][1];
+                       b = VT[W_DEGREE][0] - VT[0][0];
+                       c = VT[0][0] * VT[W_DEGREE][1] - VT[W_DEGREE][0] * VT[0][1];
+
+                       abSquared = (a * a) + (b * b);
+
+                       for (i = 1; i < W_DEGREE; i++)
+                       {
+                               /* Compute distance from each of the points to that line        */
+                               distance[i] = a * VT[i][0] + b * VT[i][1] + c;
+                               if (distance[i] > 0.0) distance[i] =  (distance[i] * distance[i]) / abSquared;
+                               if (distance[i] < 0.0) distance[i] = -(distance[i] * distance[i]) / abSquared;
+                       }
+               }
+
+               /* Find the largest distance */
+               max_distance_above = max_distance_below = 0.0;
+
+               for (i = 1; i < W_DEGREE; i++)
+               {
+                       if (distance[i] < 0.0) max_distance_below = MIN(max_distance_below, distance[i]);
+                       if (distance[i] > 0.0) max_distance_above = MAX(max_distance_above, distance[i]);
+               }
+
+               /* Implicit equation for "above" line */
+               intercept_1 = -(c + max_distance_above)/a;
+
+               /*  Implicit equation for "below" line */
+               intercept_2 = -(c + max_distance_below)/a;
+
+               /* Compute intercepts of bounding box   */
+               left_intercept = MIN(intercept_1, intercept_2);
+               right_intercept = MAX(intercept_1, intercept_2);
+
+               return 0.5 * (right_intercept-left_intercept) < BEZIER_EPSILON ? 1 : 0;
+       }
+
+       /*
+        *  ComputeXIntercept :
+        *      Compute intersection of chord from first control point to last
+        *  with 0-axis.
+        *
+        *    value_type        *VT;                    Control points
+        */
+       static time_type ComputeXIntercept(value_type *VT)
+       {
+               distance_type YNM = VT[W_DEGREE][1] - VT[0][1];
+               return (YNM*VT[0][0] - (VT[W_DEGREE][0] - VT[0][0])*VT[0][1]) / YNM;
+       }
+
+       /*
+        *  FindRoots :
+        *      Given a 5th-degree equation in Bernstein-Bezier form, find
+        *      all of the roots in the interval [0, 1].  Return the number
+        *      of roots found.
+        *
+        *    value_type        *w;                             The control points
+        *    time_type         *t;                             RETURN candidate t-values
+        *    int                       depth;                  The depth of the recursion
+        */
+       static int FindRoots(value_type *w, time_type *t, int depth)
+       {
+               int             i;
+               value_type      Left[W_DEGREE+1];       /* New left and right   */
+               value_type      Right[W_DEGREE+1];      /* control polygons             */
+               int             left_count;                     /* Solution count from  */
+               int                     right_count;            /* children                             */
+               time_type       left_t[W_DEGREE+1];     /* Solutions from kids  */
+               time_type       right_t[W_DEGREE+1];
+
+               switch (CrossingCount(w))
+               {
+                       case 0 :
+                       {       /* No solutions here    */
+                               return 0;
+                       }
+                       case 1 :
+                       {       /* Unique solution      */
+                               /* Stop recursion when the tree is deep enough          */
+                               /* if deep enough, return 1 solution at midpoint        */
+                               if (depth >= MAXDEPTH)
+                               {
+                                       t[0] = (w[0][0] + w[W_DEGREE][0]) / 2.0;
+                                       return 1;
+                               }
+                               if (ControlPolygonFlatEnough(w))
+                               {
+                                       t[0] = ComputeXIntercept(w);
+                                       return 1;
+                               }
+                               break;
+                       }
+               }
+
+               /* Otherwise, solve recursively after   */
+               /* subdividing control polygon                  */
+               Bezier(w, W_DEGREE, 0.5, Left, Right);
+               left_count  = FindRoots(Left,  left_t,  depth+1);
+               right_count = FindRoots(Right, right_t, depth+1);
+
+               /* Gather solutions together    */
+               for (i = 0; i < left_count;  i++) t[i] = left_t[i];
+               for (i = 0; i < right_count; i++) t[i+left_count] = right_t[i];
+
+               /* Send back total number of solutions  */
+               return (left_count+right_count);
+       }
+
+       /*
+        *  ConvertToBezierForm :
+        *              Given a point and a Bezier curve, generate a 5th-degree
+        *              Bezier-format equation whose solution finds the point on the
+        *      curve nearest the user-defined point.
+        *
+        *    value_type&       P;                              The point to find t for
+        *    value_type        *VT;                    The control points
+        */
+       static void ConvertToBezierForm(const value_type& P, value_type *VT, value_type w[W_DEGREE+1])
+       {
+               int     i, j, k, m, n, ub, lb;
+               int     row, column;                            /* Table indices                                */
+               value_type      c[DEGREE+1];                    /* VT(i)'s - P                                  */
+               value_type      d[DEGREE];                              /* VT(i+1) - VT(i)                              */
+               distance_type   cdTable[3][4];          /* Dot product of c, d                  */
+               static distance_type z[3][4] = {        /* Precomputed "z" for cubics   */
+                       {1.0, 0.6, 0.3, 0.1},
+                       {0.4, 0.6, 0.6, 0.4},
+                       {0.1, 0.3, 0.6, 1.0}};
+
+               /* Determine the c's -- these are vectors created by subtracting */
+               /* point P from each of the control points                                               */
+               for (i = 0; i <= DEGREE; i++)
+                       c[i] = VT[i] - P;
+
+               /* Determine the d's -- these are vectors created by subtracting */
+               /* each control point from the next                                                              */
+               for (i = 0; i <= DEGREE - 1; i++)
+                       d[i] = (VT[i+1] - VT[i]) * 3.0;
+
+               /* Create the c,d table -- this is a table of dot products of the */
+               /* c's and d's                                                                                                    */
+               for (row = 0; row <= DEGREE - 1; row++)
+                       for (column = 0; column <= DEGREE; column++)
+                               cdTable[row][column] = d[row] * c[column];
+
+               /* Now, apply the z's to the dot products, on the skew diagonal */
+               /* Also, set up the x-values, making these "points"                             */
+               for (i = 0; i <= W_DEGREE; i++)
+               {
+                       w[i][0] = (distance_type)(i) / W_DEGREE;
+                       w[i][1] = 0.0;
+               }
+
+               n = DEGREE;
+               m = DEGREE-1;
+               for (k = 0; k <= n + m; k++)
+               {
+                       lb = MAX(0, k - m);
+                       ub = MIN(k, n);
+                       for (i = lb; i <= ub; i++)
+                       {
+                               j = k - i;
+                               w[i+j][1] += cdTable[j][i] * z[j][i];
+                       }
+               }
+       }
+
+       /*
+        *  NearestPointOnCurve :
+        *      Compute the parameter value of the point on a Bezier
+        *              curve segment closest to some arbitrary, user-input point.
+        *              Return the point on the curve at that parameter value.
+        *
+        *    value_type&       P;                      The user-supplied point
+        *    value_type        *VT;            Control points of cubic Bezier
+        */
+       static time_type NearestPointOnCurve(const value_type& P, value_type VT[4])
+       {
+               value_type      w[W_DEGREE+1];                  /* Ctl pts of 5th-degree curve  */
+               time_type       t_candidate[W_DEGREE];  /* Possible roots                                */
+               int             n_solutions;                    /* Number of roots found                 */
+               time_type       t;                                              /* Parameter value of closest pt */
+
+               /*  Convert problem to 5th-degree Bezier form */
+               ConvertToBezierForm(P, VT, w);
+
+               /* Find all possible roots of 5th-degree equation */
+               n_solutions = FindRoots(w, t_candidate, 0);
+
+               /* Compare distances of P to all candidates, and to t=0, and t=1 */
+               {
+                       distance_type   dist, new_dist;
+                       value_type              p, v;
+                       int                             i;
+
+                       /* Check distance to beginning of curve, where t = 0    */
+                       dist = (P - VT[0]).mag_squared();
+                       t = 0.0;
+
+                       /* Find distances for candidate points  */
+                       for (i = 0; i < n_solutions; i++)
+                       {
+                               p = Bezier(VT, DEGREE, t_candidate[i], (value_type *)NULL, (value_type *)NULL);
+                               new_dist = (P - p).mag_squared();
+                               if (new_dist < dist)
+                               {
+                                       dist = new_dist;
+                                       t = t_candidate[i];
+                               }
+                       }
+
+                       /* Finally, look at distance to end point, where t = 1.0 */
+                       new_dist = (P - VT[DEGREE]).mag_squared();
+                       if (new_dist < dist)
+                       {
+                               dist = new_dist;
+                               t = 1.0;
+                       }
+               }
+
+               /*  Return the point on the curve at parameter value t */
+               return t;
+       }
+};
+
+_ETL_END_NAMESPACE
+
+/* === E X T E R N S ======================================================= */
+
+/* === E N D =============================================================== */
+
+#endif