Remove ancient trunk folder from svn repository
[synfig.git] / synfig-core / src / synfig / gradient.cpp
diff --git a/synfig-core/src/synfig/gradient.cpp b/synfig-core/src/synfig/gradient.cpp
new file mode 100644 (file)
index 0000000..00f67b0
--- /dev/null
@@ -0,0 +1,574 @@
+/* === S Y N F I G ========================================================= */
+/*!    \file gradient.cpp
+**     \brief Color Gradient Class Member Definitions
+**
+**     $Id$
+**
+**     \legal
+**     Copyright (c) 2002-2005 Robert B. Quattlebaum Jr., Adrian Bentley
+**     Copyright (c) 2007 Chris Moore
+**
+**     This package is free software; you can redistribute it and/or
+**     modify it under the terms of the GNU General Public License as
+**     published by the Free Software Foundation; either version 2 of
+**     the License, or (at your option) any later version.
+**
+**     This package is distributed in the hope that it will be useful,
+**     but WITHOUT ANY WARRANTY; without even the implied warranty of
+**     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+**     General Public License for more details.
+**     \endlegal
+*/
+/* ========================================================================= */
+
+/* === H E A D E R S ======================================================= */
+
+#ifdef USING_PCH
+#      include "pch.h"
+#else
+#ifdef HAVE_CONFIG_H
+#      include <config.h>
+#endif
+
+#include "gradient.h"
+#include "general.h"
+#include <stdexcept>
+#include "exception.h"
+#include <algorithm>
+
+#include <ETL/misc>
+#endif
+
+/* === U S I N G =========================================================== */
+
+using namespace std;
+using namespace etl;
+using namespace synfig;
+
+/* === M A C R O S ========================================================= */
+
+/* === G L O B A L S ======================================================= */
+
+/* === P R O C E D U R E S ================================================= */
+
+/* === M E T H O D S ======================================================= */
+
+synfig::Gradient::Gradient(const Color &c1, const Color &c2)
+{
+       push_back(CPoint(0.0,c1));
+       push_back(CPoint(1.0,c2));
+}
+
+synfig::Gradient::Gradient(const Color &c1, const Color &c2, const Color &c3)
+{
+       push_back(CPoint(0.0,c1));
+       push_back(CPoint(0.5,c2));
+       push_back(CPoint(1.0,c3));
+}
+
+// This sort algorithm MUST be stable
+// ie: it must not change the order of items with the same value.
+// I am using a bubble sort.
+// This algorithm will sort a nearly-sorted list at ~O(N), and
+// it will sort an inverse sorted list at ~O(N*N).
+void
+synfig::Gradient::sort()
+{
+       stable_sort(begin(),end());
+       /*
+       iterator iter;
+       iterator iter2,next;
+
+       for(iter=begin();iter!=end();iter++)
+       {
+               for(next=iter, iter2=next--;iter2!=begin();iter2=next--)
+               {
+                       if(*iter<*next)
+                       {
+                               //insert(next,*iter);
+                               //erase(iter);
+                               iter_swap(next,iter);
+
+                               continue;
+                       }
+                       else
+                               break;
+               }
+       }
+       */
+}
+
+static synfig::ColorAccumulator
+supersample_helper(const synfig::Gradient::CPoint &color1, const synfig::Gradient::CPoint &color2, float begin, float end, float &weight)
+{
+       if(color1.pos==color2.pos || color1.pos>=end || color2.pos<=begin)
+       {
+               weight=0;
+               return Color::alpha();
+       }
+       if(color1.pos>=begin && color2.pos<end)
+       {
+               weight=color2.pos-color1.pos;
+               ColorAccumulator ret=Color::blend(color2.color,color1.color, 0.5, Color::BLEND_STRAIGHT).premult_alpha()*weight;
+               return ret;
+       }
+       if(color1.pos>=begin && color2.pos>=end)
+       {
+               weight=end-color1.pos;
+               float pos((end+color1.pos)*0.5);
+               float amount((pos-color1.pos)/(color2.pos-color1.pos));
+               //if(abs(amount)>1)amount=(amount>0)?1:-1;
+               ColorAccumulator ret(Color::blend(color2.color,color1.color, amount, Color::BLEND_STRAIGHT).premult_alpha()*weight);
+               return ret;
+       }
+       if(color1.pos<begin && color2.pos<end)
+       {
+               weight=color2.pos-begin;
+               float pos((begin+color2.pos)*0.5);
+               float amount((pos-color1.pos)/(color2.pos-color1.pos));
+               //if(abs(amount)>1)amount=(amount>0)?1:-1;
+               ColorAccumulator ret(Color::blend(color2.color,color1.color, amount, Color::BLEND_STRAIGHT).premult_alpha()*weight);
+               return ret;
+       }
+       synfig::error("color1.pos=%f",color1.pos);
+       synfig::error("color2.pos=%f",color2.pos);
+       synfig::error("begin=%f",begin);
+       synfig::error("end=%f",end);
+
+       weight=0;
+       return Color::alpha();
+
+//     assert(0);
+}
+
+static void show_gradient(const Gradient::CPointList x)
+{
+       int i = 0;
+       for (Gradient::const_iterator iter = x.begin(); iter != x.end(); iter++)
+               printf("%3d : %.3f %s\n", i++, (*iter).pos, (*iter).color.get_string().c_str());
+}
+
+Gradient &
+synfig::Gradient::operator+=(const Gradient &rhs)
+{
+       bool print=false;                       // for debugging
+       if (print) { printf("\nadding lhs:\n"); show_gradient(this->cpoints); printf("\n"); }
+       if (print) { printf("adding rhs:\n"); show_gradient(rhs.cpoints); printf("\n"); }
+       CPointList ret;
+       const_iterator iter1 = begin(), iter2 = rhs.begin(), left_same, right_same;
+       CPoint left, right;
+       if (iter1 != end()) left = *iter1;
+       if (iter2 != rhs.end()) right = *iter2;
+       int pos1 = 0, pos2 = 0;
+       CPoint old1, old2;
+
+       // if there are cpoints in both gradients run through both until one runs out
+       if (iter1 != end() && iter2 != rhs.end())
+               while(true)
+                       // if the left one has the first cpoint
+                       if (left.pos < right.pos)
+                       {
+                               // add on the right gradient's value at this point
+                               if (print) printf("using pos %.2f from left %d in loop\n", left.pos, pos1++);
+                               ret.push_back(CPoint(left.pos, left.color + rhs(left.pos)));
+                               if(++iter1 == end()) break;
+                               left=*iter1;
+                       }
+                       // if the right one has the first cpoint
+                       else if (left.pos > right.pos)
+                       {
+                               // add on the left gradient's value at this point
+                               if (print) printf("using pos %.2f from right %d in loop\n", right.pos, pos2++);
+                               ret.push_back(CPoint(right.pos, right.color + (*this)(right.pos)));
+                               if(++iter2 == rhs.end()) break;
+                               right=*iter2;
+                       }
+                       // they both have a cpoint at the same time
+                       else
+                       {
+                               int tpos1 = pos1, tpos2 = pos2;
+                               // skip past all cpoints at the same position
+                               for(left_same = ++iter1; iter1 != end() && (*iter1).pos == left.pos; iter1++, pos1++)
+                                       if (print) printf("skipping past pos %d in left\n", pos1);
+                               for(right_same = ++iter2; iter2 != rhs.end() && (*iter2).pos == right.pos; iter2++, pos2++)
+                                       if (print) printf("skipping past pos %d in right\n", pos2);
+
+                               // if there is only one cpoint at this position in each gradient,
+                               // there's only one corresponding cpoint in the sum
+                               if (iter1 == left_same && iter2 == right_same)
+                               {
+                                       if (print) printf("two singles at left %d and right %d\n", pos1++, pos2++);
+                                       ret.push_back(CPoint(left.pos, left.color + right.color));
+                               }
+                               // otherwise we sum the first in each, and the last in each
+                               else
+                               {
+                                       if (print) printf("[copying %ld from left %d and %ld from right %d at %.2f]\n", iter1-left_same+1, tpos1, iter2-right_same+1, tpos2, left.pos);
+                                       // merge the front two cpoints
+                                       if (print) printf("  copy front from left %d right %d\n", tpos1++, tpos2++);
+                                       ret.push_back(CPoint(left.pos, left.color + right.color));
+
+                                       // merge the middle pairs of points - each middle point merges with its counterpart
+                                       while(left_same < iter1-1 && right_same < iter2-1)
+                                       {
+                                               old1 = *(left_same++);
+                                               old2 = *(right_same++);
+                                               if (print) printf("  copy middle from left %d and right %d\n", tpos1++, tpos2++);
+                                               ret.push_back(CPoint(old1.pos, old1.color+old2.color));
+                                       }
+                                       // if one gradient has more middle points than the other, merge the rest with the last point in the other gradient
+                                       for(old2 = (*(iter2-1)); left_same < iter1-1; left_same++)
+                                       {
+                                               old1 = *left_same;
+                                               if (print) printf("  copy middle from left %d plus end of right\n", tpos1++);
+                                               ret.push_back(CPoint(old1.pos, old1.color + old2.color));
+                                       }
+                                       for(old1 = (*(iter1-1)); right_same < iter2-1; right_same++)
+                                       {
+                                               old2 = *right_same;
+                                               if (print) printf("  copy middle from right %d plus end of left\n", tpos2++);
+                                               ret.push_back(CPoint(old2.pos, old1.color + old2.color));
+                                       }
+                                       // merge the back two cpoints
+                                       if (print) printf("  copy end from left %d right %d\n", pos1++, pos2++);
+                                       ret.push_back(CPoint(left.pos, (*(iter1-1)).color + (*(iter2-1)).color));
+                               }
+                               // make sure we update 'left' and 'right'
+                               if (iter1 != end()) left=*iter1;
+                               if (iter2 == rhs.end()) break;
+                               right = *iter2;
+                               if (iter1 == end()) break;
+                       }
+
+       // one of the gradients has run out of points
+       // does the left one have points left?
+       if (iter1 != end())
+               while(true)
+               {
+                       if (print) printf("finish end from left %d\n", pos1++);
+                       ret.push_back(CPoint(left.pos, left.color + rhs(left.pos)));
+                       if(++iter1 == end()) break;
+                       left = *iter1;
+               }
+       // the left one was empty, so maybe the right one has points left
+       else if (iter2 != rhs.end())
+               while(true)
+               {
+                       if (print) printf("finish end from right %d\n", pos2++);
+                       ret.push_back(CPoint(right.pos, right.color + (*this)(right.pos)));
+                       if(++iter2 == rhs.end()) break;
+                       right = *iter2;
+               }
+
+       if (print) { printf("\nsummed ret:\n"); show_gradient(ret); printf("\n"); }
+       cpoints = ret;
+       return *this;
+}
+
+Gradient &
+synfig::Gradient::operator-=(const Gradient &rhs)
+{
+       return (*this)+=(rhs*-1);
+}
+
+Gradient &
+synfig::Gradient::operator*=(const float    &rhs)
+{
+       if (rhs == 0)
+               cpoints.clear();
+       else
+               for (iterator iter = cpoints.begin(); iter!=cpoints.end(); iter++)
+                       (*iter).color *= rhs;
+       return *this;
+}
+
+Gradient &
+synfig::Gradient::operator/=(const float    &rhs)
+{
+       for (iterator iter = cpoints.begin(); iter!=cpoints.end(); iter++)
+               (*iter).color /= rhs;
+       return *this;
+}
+
+Color
+synfig::Gradient::operator()(const Real &x,float supersample)const
+{
+       if(cpoints.empty())
+               return Color(0,0,0,0);
+       if(supersample<0)
+               supersample=-supersample;
+       if(supersample>2.0)
+               supersample=2.0f;
+
+       float begin_sample(x-supersample*0.5);
+       float end_sample(x+supersample*0.5);
+
+       if(cpoints.size()==1 || end_sample<=cpoints.front().pos || isnan(x))
+               return cpoints.front().color;
+
+       if(begin_sample>=cpoints.back().pos)
+               return cpoints.back().color;
+
+       /*
+       if(end_sample>=back().pos)
+               end_sample=back().pos;
+
+       if(begin_sample<=front().pos)
+               begin_sample=front().pos;
+       */
+
+       const_iterator iter,next;
+
+       /*
+       //optimize...
+       Real    left = x-supersample/2, right = x+supersample/2;
+
+       if(left < front().pos) left = front().pos;
+       if(right > back().pos) right = back().pos;
+
+       //find using binary search...
+       const_iterator iterl,iterr;
+
+       //the binary search should give us the values BEFORE the point we're looking for...
+       iterl = binary_find(begin(),end(),left);
+       iterr = binary_find(iterl,end(),right);
+
+       //now integrate over the range of left to right...
+
+       if(iterl == iterr)
+       {
+               iterr++; //let's look at the next one shall we :)
+
+               //interpolate neighboring colors
+               const Real one = iterr->pos - iterl->pos;
+               const Real lambda = (x - iterl->pos)/one;
+
+               //(1-l)iterl + (l)iterr
+               return iterl->color.premult_alpha()*(1-lambda) + iterr->color.premult_alpha()*lambda;
+
+               //return Color::blend(iterr->color,iterl->color,lambda,Color::BLEND_STRAIGHT);
+       }else
+       {
+               //integration madness
+               const_iterator i = iterl, ie = iterr+1;
+               Real wlast = left;
+
+               ColorAccumulator clast,cwork;
+               {
+                       const Real lambda = (x - iterl->pos)/(iterr->pos - iterl->pos);
+
+                       //premultiply because that's the form in which we can combine things...
+                       clast = iterl->color.premult_alpha()*(1-lambda) + iterr->color.premult_alpha()*lambda;
+                       //Color::blend((i+1)->color,i->color,(left - i->pos)/((i+1)->pos - i->pos),Color::BLEND_STRAIGHT);
+               }
+
+               ColorAccumulator        accum = 0;
+
+               //loop through all the trapezoids and integrate them as we go...
+               //      area of trap = (yi + yi1)*(xi1 - xi)
+               //      yi = clast, xi = wlast, yi1 = i->color, xi1 = i->pos
+
+               for(;i<=iterr; wlast=i->pos,clast=i->color.premult_alpha(),++i)
+               {
+                       const Real diff = i->pos - wlast;
+                       if(diff > 0) //only accumulate if there will be area to add
+                       {
+                               cwork = i->color.premult_alpha();
+                               accum += (cwork + clast)*diff;
+                       }
+               }
+
+               {
+                       const_iterator ibef = i-1;
+                       const Real diff = right - ibef->pos;
+
+                       if(diff > 0)
+                       {
+                               const Real lambda = diff/(i->pos - ibef->pos);
+                               cwork = ibef->color.premult_alpha()*(1-lambda) + i->color.premult_alpha()*lambda;
+
+                               accum += (cwork + clast)*diff; //can probably optimize this more... but it's not too bad
+                       }
+               }
+
+               accum /= supersample; //should be the total area it was sampled over...
+               return accum.demult_alpha();
+       }*/
+
+       next=begin(),iter=next++;
+
+       //add for optimization
+       next = binary_find(begin(),end(),(Real)begin_sample);
+       iter = next++;
+
+       //! As a future optimization, this could be performed faster
+       //! using a binary search.
+       for(;iter<end();iter=next++)
+       {
+               if(next==end() || (x>=iter->pos && x<next->pos && iter->pos!=next->pos))
+               {
+                       // If the supersample region falls square in between
+                       // two CPoints, then we don't have to do anything special.
+                       if(next!=end() && (!supersample || (iter->pos<=begin_sample && next->pos>=end_sample)))
+                       {
+                               const Real dist(next->pos-iter->pos);
+                               const Real pos(x-iter->pos);
+                               const Real amount(pos/dist);
+                               return Color::blend(next->color,iter->color, amount, Color::BLEND_STRAIGHT);
+                       }
+                       // In this case our supersample region extends over one or more
+                       // CPoints. So, we need to calculate our coverage amount.
+                       ColorAccumulator pool(Color::alpha());
+                       float divisor(0.0),weight(0);
+
+                       const_iterator iter2,next2;
+                       iter2=iter;
+                       if(iter==begin() && iter->pos>x)
+                       {
+                               weight=x-iter->pos;
+                               //weight*=iter->color.get_a();
+                               pool+=ColorAccumulator(iter->color).premult_alpha()*weight;
+                               divisor+=weight;
+                       }
+                       else
+                       {
+                               while(iter2->pos>=begin_sample)
+                               {
+                                       if(iter2==begin())
+                                       {
+                                               weight=iter2->pos-(begin_sample);
+                                               //weight*=iter2->color.get_a();
+                                               pool+=ColorAccumulator(iter2->color).premult_alpha()*weight;
+                                               divisor+=weight;
+                                               break;
+                                       }
+                                       next2=iter2--;
+                                       pool+=supersample_helper(*iter2, *next2, begin_sample, end_sample, weight);
+                                       divisor+=weight;
+                               }
+                       }
+
+                       next2=iter;
+                       iter2=next2++;
+                       while(iter2->pos<=end_sample)
+                       {
+                               if(next2==end())
+                               {
+                                       weight=(end_sample)-iter2->pos;
+                                       pool+=ColorAccumulator(iter2->color).premult_alpha()*weight;
+                                       divisor+=weight;
+                                       break;
+                               }
+                               pool+=supersample_helper(*iter2, *next2, begin_sample, end_sample, weight);
+                               divisor+=weight;
+                               iter2=next2++;
+                       }
+
+                       if(divisor && pool.get_a() && pool.is_valid())
+                       {
+/*
+                               pool.set_r(pool.get_r()/pool.get_a());
+                               pool.set_g(pool.get_g()/pool.get_a());
+                               pool.set_b(pool.get_b()/pool.get_a());
+                               pool.set_a(pool.get_a()/divisor);
+*/
+                               pool/=divisor;
+                               pool.set_r(pool.get_r()/pool.get_a());
+                               pool.set_g(pool.get_g()/pool.get_a());
+                               pool.set_b(pool.get_b()/pool.get_a());
+                               if(pool.is_valid())
+                                       return pool;
+                               else
+                                       return Color::alpha();
+                       }
+                       else
+                               return Color::alpha();
+               }
+       }
+
+       // We should never get to this point.
+
+       synfig::error("synfig::Gradient::operator()(): Logic Error (x=%f)",x);
+       assert(0);
+       throw std::logic_error(strprintf("synfig::Gradient::operator()(): Logic Error (x=%f)",x));
+}
+
+synfig::Gradient::iterator
+synfig::Gradient::proximity(const Real &x)
+{
+       iterator iter;
+       float dist(100000000);
+       float prev_pos(-0230);
+       // This algorithm requires a sorted list.
+       for(iter=begin();iter<end();iter++)
+       {
+               float new_dist;
+
+               if(prev_pos==iter->pos)
+                       new_dist=(abs(x-iter->pos-0.00001));
+               else
+                       new_dist=(abs(x-iter->pos));
+
+               if(new_dist>dist)
+               {
+                       iter--;
+                       return iter;
+               }
+               dist=new_dist;
+               prev_pos=iter->pos;
+       }
+       iter--;
+       return iter;
+}
+
+synfig::Gradient::const_iterator
+synfig::Gradient::proximity(const Real &x)const
+{
+       return const_cast<Gradient*>(this)->proximity(x);
+       /*
+       const_iterator iter;
+       float dist(100000000);
+
+       // This algorithm requires a sorted list.
+       for(iter=begin();iter<end();iter++)
+       {
+               const float new_dist(abs(x-iter->pos));
+               if(new_dist>dist)
+               {
+                       iter--;
+                       return iter;
+               }
+               dist=new_dist;
+       }
+       iter--;
+       return iter;
+       */
+}
+
+synfig::Gradient::iterator
+synfig::Gradient::find(const UniqueID &id)
+{
+       iterator iter;
+
+       for(iter=begin();iter<end();iter++)
+       {
+               if(id==*iter)
+                       return iter;
+       }
+
+       throw Exception::NotFound("synfig::Gradient::find(): Unable to find UniqueID in gradient");
+}
+
+synfig::Gradient::const_iterator
+synfig::Gradient::find(const UniqueID &id)const
+{
+       const_iterator iter;
+
+       for(iter=begin();iter<end();iter++)
+       {
+               if(id==*iter)
+                       return iter;
+       }
+
+       throw Exception::NotFound("synfig::Gradient::find()const: Unable to find UniqueID in gradient");
+}