Rearrange conditions for export action and fix bug 2956710
[synfig.git] / synfig-core / src / modules / lyr_std / curvewarp.cpp
1 /* === S Y N F I G ========================================================= */
2 /*!     \file curvewarp.cpp
3 **      \brief Implementation of the "Curve Warp" layer
4 **
5 **      $Id$
6 **
7 **      \legal
8 **      Copyright (c) 2002-2005 Robert B. Quattlebaum Jr., Adrian Bentley
9 **      Copyright (c) 2007-2008 Chris Moore
10 **
11 **      This package is free software; you can redistribute it and/or
12 **      modify it under the terms of the GNU General Public License as
13 **      published by the Free Software Foundation; either version 2 of
14 **      the License, or (at your option) any later version.
15 **
16 **      This package is distributed in the hope that it will be useful,
17 **      but WITHOUT ANY WARRANTY; without even the implied warranty of
18 **      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 **      General Public License for more details.
20 **      \endlegal
21 **
22 ** === N O T E S ===========================================================
23 **
24 ** ========================================================================= */
25
26 /* === H E A D E R S ======================================================= */
27
28 #ifdef USING_PCH
29 #       include "pch.h"
30 #else
31 #ifdef HAVE_CONFIG_H
32 #       include <config.h>
33 #endif
34
35 #include "curvewarp.h"
36
37 #include <synfig/context.h>
38 #include <synfig/paramdesc.h>
39 #include <synfig/surface.h>
40 #include <synfig/valuenode.h>
41 #include <ETL/calculus>
42
43 #endif
44
45 /* === M A C R O S ========================================================= */
46
47 #define FAKE_TANGENT_STEP 0.000001
48 #define TOO_THIN 0.01
49
50 /* === G L O B A L S ======================================================= */
51
52 SYNFIG_LAYER_INIT(CurveWarp);
53 SYNFIG_LAYER_SET_NAME(CurveWarp,"curve_warp");
54 SYNFIG_LAYER_SET_LOCAL_NAME(CurveWarp,N_("Curve Warp"));
55 SYNFIG_LAYER_SET_CATEGORY(CurveWarp,N_("Distortions"));
56 SYNFIG_LAYER_SET_VERSION(CurveWarp,"0.0");
57 SYNFIG_LAYER_SET_CVS_ID(CurveWarp,"$Id$");
58
59 /* === P R O C E D U R E S ================================================= */
60
61 inline float calculate_distance(const std::vector<synfig::BLinePoint>& bline)
62 {
63         std::vector<synfig::BLinePoint>::const_iterator iter,next,ret;
64         std::vector<synfig::BLinePoint>::const_iterator end(bline.end());
65
66         float dist(0);
67
68         if (bline.empty()) return dist;
69
70         next=bline.begin();
71         iter=next++;
72
73         for(;next!=end;iter=next++)
74         {
75                 // Setup the curve
76                 etl::hermite<Vector> curve(iter->get_vertex(), next->get_vertex(), iter->get_tangent2(), next->get_tangent1());
77                 dist+=curve.length();
78         }
79
80         return dist;
81 }
82
83 std::vector<synfig::BLinePoint>::const_iterator
84 find_closest_to_bline(bool fast, const std::vector<synfig::BLinePoint>& bline,const Point& p,float& t, float& len, bool& extreme)
85 {
86         std::vector<synfig::BLinePoint>::const_iterator iter,next,ret;
87         std::vector<synfig::BLinePoint>::const_iterator end(bline.end());
88
89         ret=bline.end();
90         float dist(100000000000.0);
91         next=bline.begin();
92         float best_pos(0), best_len(0);
93         etl::hermite<Vector> best_curve;
94         iter=next++;
95         Point bp;
96         float total_len(0);
97         bool first = true, last = false;
98         extreme = false;
99
100         for(;next!=end;iter=next++)
101         {
102                 // Setup the curve
103                 etl::hermite<Vector> curve(iter->get_vertex(), next->get_vertex(), iter->get_tangent2(), next->get_tangent1());
104                 float thisdist(0);
105                 last = false;
106
107                 if (fast)
108                 {
109 #define POINT_CHECK(x) bp=curve(x);     thisdist=(bp-p).mag_squared(); if(thisdist<dist) { extreme = (first&&x<0.01); ret=iter; best_len = total_len; dist=thisdist; best_curve=curve; last=true; best_pos=x;}
110                         POINT_CHECK(0.0001);  POINT_CHECK((1.0/6)); POINT_CHECK((2.0/6)); POINT_CHECK((3.0/6));
111                         POINT_CHECK((4.0/6)); POINT_CHECK((5.0/6)); POINT_CHECK(0.9999);
112                 }
113                 else
114                 {
115                         float pos = curve.find_closest(fast, p);
116                         thisdist=(curve(pos)-p).mag_squared();
117                         if(thisdist<dist)
118                         {
119                                 extreme = (first && pos == 0);
120                                 ret=iter;
121                                 dist=thisdist;
122                                 best_pos = pos;
123                                 best_curve = curve;
124                                 best_len = total_len;
125                                 last = true;
126                         }
127                 }
128                 total_len += curve.length();
129                 first = false;
130         }
131
132         t = best_pos;
133         if (fast)
134         {
135                 len = best_len + best_curve.find_distance(0,best_curve.find_closest(fast, p));
136                 if (last && t > .99) extreme = true;
137         }
138         else
139         {
140                 len = best_len + best_curve.find_distance(0,best_pos);
141                 if (last && t == 1) extreme = true;
142         }
143         return ret;
144 }
145
146 /* === M E T H O D S ======================================================= */
147
148 inline void
149 CurveWarp::sync()
150 {
151         curve_length_=calculate_distance(bline);
152         perp_ = (end_point - start_point).perp().norm();
153 }
154
155 CurveWarp::CurveWarp():
156         origin(0,0),
157         perp_width(1),
158         start_point(-2.5,-0.5),
159         end_point(2.5,-0.3),
160         fast(true)
161 {
162         bline.push_back(BLinePoint());
163         bline.push_back(BLinePoint());
164         bline[0].set_vertex(Point(-2.5,0));
165         bline[1].set_vertex(Point( 2.5,0));
166         bline[0].set_tangent(Point(1,  0.1));
167         bline[1].set_tangent(Point(1, -0.1));
168         bline[0].set_width(1.0f);
169         bline[1].set_width(1.0f);
170
171         sync();
172 }
173
174 inline Point
175 CurveWarp::transform(const Point &point_, Real *dist, Real *along, int quality)const
176 {
177         Vector tangent;
178         Vector diff;
179         Point p1;
180         Real thickness;
181         bool edge_case = false;
182         float len(0);
183         bool extreme;
184         float t;
185
186         if(bline.size()==0)
187                 return Point();
188         else if(bline.size()==1)
189         {
190                 tangent=bline.front().get_tangent1();
191                 p1=bline.front().get_vertex();
192                 thickness=bline.front().get_width();
193                 t = 0.5;
194                 extreme = false;
195         }
196         else
197         {
198                 Point point(point_-origin);
199
200                 std::vector<synfig::BLinePoint>::const_iterator iter,next;
201
202                 // Figure out the BLinePoint we will be using,
203                 next=find_closest_to_bline(fast,bline,point,t,len,extreme);
204
205                 iter=next++;
206                 if(next==bline.end()) next=bline.begin();
207
208                 // Setup the curve
209                 etl::hermite<Vector> curve(iter->get_vertex(), next->get_vertex(), iter->get_tangent2(), next->get_tangent1());
210
211                 // Setup the derivative function
212                 etl::derivative<etl::hermite<Vector> > deriv(curve);
213
214                 int search_iterations(7);
215
216                 if(quality<=6)search_iterations=7;
217                 else if(quality<=7)search_iterations=6;
218                 else if(quality<=8)search_iterations=5;
219                 else search_iterations=4;
220
221                 // Figure out the closest point on the curve
222                 if (fast) t = curve.find_closest(fast, point,search_iterations);
223
224                 // Calculate our values
225                 p1=curve(t);                     // the closest point on the curve
226                 tangent=deriv(t);                // the tangent at that point
227
228                 // if the point we're nearest to is at either end of the
229                 // bline, our distance from the curve is the distance from the
230                 // point on the curve.  we need to know which side of the
231                 // curve we're on, so find the average of the two tangents at
232                 // this point
233                 if (t<0.00001 || t>0.99999)
234                 {
235                         bool zero_tangent = (tangent[0] == 0 && tangent[1] == 0);
236
237                         if (t<0.5)
238                         {
239                                 if (iter->get_split_tangent_flag() || zero_tangent)
240                                 {
241                                         // fake the current tangent if we need to
242                                         if (zero_tangent) tangent = curve(FAKE_TANGENT_STEP) - curve(0);
243
244                                         // calculate the other tangent
245                                         Vector other_tangent(iter->get_tangent1());
246                                         if (other_tangent[0] == 0 && other_tangent[1] == 0)
247                                         {
248                                                 // find the previous blinepoint
249                                                 std::vector<synfig::BLinePoint>::const_iterator prev;
250                                                 if (iter != bline.begin()) (prev = iter)--;
251                                                 else prev = iter;
252
253                                                 etl::hermite<Vector> other_curve(prev->get_vertex(), iter->get_vertex(), prev->get_tangent2(), iter->get_tangent1());
254                                                 other_tangent = other_curve(1) - other_curve(1-FAKE_TANGENT_STEP);
255                                         }
256
257                                         // normalise and sum the two tangents
258                                         tangent=(other_tangent.norm()+tangent.norm());
259                                         edge_case=true;
260                                 }
261                         }
262                         else
263                         {
264                                 if (next->get_split_tangent_flag() || zero_tangent)
265                                 {
266                                         // fake the current tangent if we need to
267                                         if (zero_tangent) tangent = curve(1) - curve(1-FAKE_TANGENT_STEP);
268
269                                         // calculate the other tangent
270                                         Vector other_tangent(next->get_tangent2());
271                                         if (other_tangent[0] == 0 && other_tangent[1] == 0)
272                                         {
273                                                 // find the next blinepoint
274                                                 std::vector<synfig::BLinePoint>::const_iterator next2(next);
275                                                 if (++next2 == bline.end())
276                                                         next2 = next;
277
278                                                 etl::hermite<Vector> other_curve(next->get_vertex(), next2->get_vertex(), next->get_tangent2(), next2->get_tangent1());
279                                                 other_tangent = other_curve(FAKE_TANGENT_STEP) - other_curve(0);
280                                         }
281
282                                         // normalise and sum the two tangents
283                                         tangent=(other_tangent.norm()+tangent.norm());
284                                         edge_case=true;
285                                 }
286                         }
287                 }
288                 tangent = tangent.norm();
289
290                 // the width of the bline at the closest point on the curve
291                 thickness=(next->get_width()-iter->get_width())*t+iter->get_width();
292         }
293
294         if (thickness < TOO_THIN && thickness > -TOO_THIN)
295         {
296                 if (thickness > 0) thickness = TOO_THIN;
297                 else thickness = -TOO_THIN;
298         }
299
300         if (extreme)
301         {
302                 Vector tangent;
303
304                 if (t < 0.5)
305                 {
306                         std::vector<synfig::BLinePoint>::const_iterator iter(bline.begin());
307                         tangent = iter->get_tangent1().norm();
308                         len = 0;
309                 }
310                 else
311                 {
312                         std::vector<synfig::BLinePoint>::const_iterator iter(--bline.end());
313                         tangent = iter->get_tangent2().norm();
314                         len = curve_length_;
315                 }
316                 len += (point_-origin - p1)*tangent;
317                 diff = tangent.perp();
318         }
319         else if (edge_case)
320         {
321                 diff=(p1-(point_-origin));
322                 if(diff*tangent.perp()<0) diff=-diff;
323                 diff=diff.norm();
324         }
325         else
326                 diff=tangent.perp();
327
328         // diff is a unit vector perpendicular to the bline
329         const Real unscaled_distance((point_-origin - p1)*diff);
330         if (dist) *dist = unscaled_distance;
331         if (along) *along = len;
332         return ((start_point + (end_point - start_point) * len / curve_length_) +
333                         perp_ * unscaled_distance/(thickness*perp_width));
334 }
335
336 synfig::Layer::Handle
337 CurveWarp::hit_check(synfig::Context context, const synfig::Point &point)const
338 {
339         return context.hit_check(transform(point));
340 }
341
342 bool
343 CurveWarp::set_param(const String & param, const ValueBase &value)
344 {
345         IMPORT(origin);
346         IMPORT(start_point);
347         IMPORT(end_point);
348         IMPORT(fast);
349         IMPORT(perp_width);
350
351         if(param=="bline" && value.get_type()==ValueBase::TYPE_LIST)
352         {
353                 bline=value;
354                 sync();
355
356                 return true;
357         }
358
359         IMPORT_AS(origin,"offset");
360
361         return false;
362 }
363
364 ValueBase
365 CurveWarp::get_param(const String & param)const
366 {
367         EXPORT(origin);
368         EXPORT(start_point);
369         EXPORT(end_point);
370         EXPORT(bline);
371         EXPORT(fast);
372         EXPORT(perp_width);
373
374         EXPORT_NAME();
375         EXPORT_VERSION();
376
377         return ValueBase();
378 }
379
380 Layer::Vocab
381 CurveWarp::get_param_vocab()const
382 {
383         Layer::Vocab ret;
384
385         ret.push_back(ParamDesc("origin")
386                                   .set_local_name(_("Origin")));
387
388         ret.push_back(ParamDesc("perp_width")
389                                   .set_local_name(_("Width"))
390                                   .set_origin("start_point"));
391
392         ret.push_back(ParamDesc("start_point")
393                                   .set_local_name(_("Start Point"))
394                                   .set_connect("end_point"));
395
396         ret.push_back(ParamDesc("end_point")
397                                   .set_local_name(_("End Point")));
398
399         ret.push_back(ParamDesc("bline")
400                                   .set_local_name(_("Vertices"))
401                                   .set_origin("origin")
402                                   .set_hint("width")
403                                   .set_description(_("A list of BLine Points")));
404
405         ret.push_back(ParamDesc("fast")
406                                   .set_local_name(_("Fast")));
407
408         return ret;
409 }
410
411 Color
412 CurveWarp::get_color(Context context, const Point &point)const
413 {
414         return context.get_color(transform(point));
415 }
416
417 bool
418 CurveWarp::accelerated_render(Context context,Surface *surface,int quality, const RendDesc &renddesc, ProgressCallback *cb)const
419 {
420         SuperCallback stageone(cb,0,9000,10000);
421         SuperCallback stagetwo(cb,9000,10000,10000);
422
423         int x,y;
424
425         const Real pw(renddesc.get_pw()),ph(renddesc.get_ph());
426         Point tl(renddesc.get_tl());
427         Point br(renddesc.get_br());
428         const int w(renddesc.get_w());
429         const int h(renddesc.get_h());
430
431         // find a bounding rectangle for the context we need to render
432         // todo: find a better way of doing this - this way doesn't work
433         Rect src_rect(transform(tl));
434         Point pos1, pos2;
435         Real dist, along;
436         Real min_dist(999999), max_dist(-999999), min_along(999999), max_along(-999999);
437
438 #define UPDATE_DIST \
439         if (dist < min_dist) min_dist = dist; \
440         if (dist > max_dist) max_dist = dist; \
441         if (along < min_along) min_along = along; \
442         if (along > max_along) max_along = along
443
444         // look along the top and bottom edges
445         pos1[0] = pos2[0] = tl[0]; pos1[1] = tl[1]; pos2[1] = br[1];
446         for (x = 0; x < w; x++, pos1[0] += pw, pos2[0] += pw)
447         {
448                 src_rect.expand(transform(pos1, &dist, &along)); UPDATE_DIST;
449                 src_rect.expand(transform(pos2, &dist, &along)); UPDATE_DIST;
450         }
451
452         // look along the left and right edges
453         pos1[0] = tl[0]; pos2[0] = br[0]; pos1[1] = pos2[1] = tl[1];
454         for (y = 0; y < h; y++, pos1[1] += ph, pos2[1] += ph)
455         {
456                 src_rect.expand(transform(pos1, &dist, &along)); UPDATE_DIST;
457                 src_rect.expand(transform(pos2, &dist, &along)); UPDATE_DIST;
458         }
459
460         // look along the diagonals
461         const int max_wh(std::max(w,h));
462         const Real inc_x((br[0]-tl[0])/max_wh),inc_y((br[1]-tl[1])/max_wh);
463         pos1[0] = pos2[0] = tl[0]; pos1[1] = tl[1]; pos2[1] = br[1];
464         for (x = 0; x < max_wh; x++, pos1[0] += inc_x, pos2[0] = pos1[0], pos1[1]+=inc_y, pos2[1]-=inc_y)
465         {
466                 src_rect.expand(transform(pos1, &dist, &along)); UPDATE_DIST;
467                 src_rect.expand(transform(pos2, &dist, &along)); UPDATE_DIST;
468         }
469
470 #if 0
471         // look at each blinepoint
472         std::vector<synfig::BLinePoint>::const_iterator iter;
473         for (iter=bline.begin(); iter!=bline.end(); iter++)
474                 src_rect.expand(transform(iter->get_vertex()+origin, &dist, &along)); UPDATE_DIST;
475 #endif
476
477         Point src_tl(src_rect.get_min());
478         Point src_br(src_rect.get_max());
479
480         Vector ab((end_point - start_point).norm());
481         Angle::tan ab_angle(ab[1], ab[0]);
482
483         Real used_length = max_along - min_along;
484         Real render_width = max_dist - min_dist;
485
486         int src_w = (abs(used_length*Angle::cos(ab_angle).get()) +
487                                  abs(render_width*Angle::sin(ab_angle).get())) / abs(pw);
488         int src_h = (abs(used_length*Angle::sin(ab_angle).get()) +
489                                  abs(render_width*Angle::cos(ab_angle).get())) / abs(ph);
490
491         Real src_pw((src_br[0] - src_tl[0]) / src_w);
492         Real src_ph((src_br[1] - src_tl[1]) / src_h);
493
494         if (src_pw > abs(pw))
495         {
496                 src_w = int((src_br[0] - src_tl[0]) / abs(pw));
497                 src_pw = (src_br[0] - src_tl[0]) / src_w;
498         }
499
500         if (src_ph > abs(ph))
501         {
502                 src_h = int((src_br[1] - src_tl[1]) / abs(ph));
503                 src_ph = (src_br[1] - src_tl[1]) / src_h;
504         }
505
506 #define MAXPIX 10000
507         if (src_w > MAXPIX) src_w = MAXPIX;
508         if (src_h > MAXPIX) src_h = MAXPIX;
509
510         // this is an attempt to remove artifacts around tile edges - the
511         // cubic interpolation uses at most 2 pixels either side of the
512         // target pixel, so add an extra 2 pixels around the tile on all
513         // sides
514         src_tl -= (Point(src_pw,src_ph)*2);
515         src_br += (Point(src_pw,src_ph)*2);
516         src_w += 4;
517         src_h += 4;
518         src_pw = (src_br[0] - src_tl[0]) / src_w;
519         src_ph = (src_br[1] - src_tl[1]) / src_h;
520
521         // set up a renddesc for the context to render
522         RendDesc src_desc(renddesc);
523         src_desc.clear_flags();
524         src_desc.set_tl(src_tl);
525         src_desc.set_br(src_br);
526         src_desc.set_wh(src_w, src_h);
527
528         // render the context onto a new surface
529         Surface source;
530         source.set_wh(src_w,src_h);
531         if(!context.accelerated_render(&source,quality,src_desc,&stageone))
532                 return false;
533
534         float u,v;
535         Point pos, tmp;
536
537         surface->set_wh(w,h);
538         surface->clear();
539
540         if(quality<=4)                          // CUBIC
541                 for(y=0,pos[1]=tl[1];y<h;y++,pos[1]+=ph)
542                 {
543                         for(x=0,pos[0]=tl[0];x<w;x++,pos[0]+=pw)
544                         {
545                                 tmp=transform(pos);
546                                 u=(tmp[0]-src_tl[0])/src_pw;
547                                 v=(tmp[1]-src_tl[1])/src_ph;
548                                 if(u<0 || v<0 || u>=src_w || v>=src_h || isnan(u) || isnan(v))
549                                         (*surface)[y][x]=context.get_color(tmp);
550                                 else
551                                         (*surface)[y][x]=source.cubic_sample(u,v);
552                         }
553                         if((y&31)==0 && cb && !stagetwo.amount_complete(y,h)) return false;
554                 }
555         else if (quality<=6)            // INTERPOLATION_LINEAR
556                 for(y=0,pos[1]=tl[1];y<h;y++,pos[1]+=ph)
557                 {
558                         for(x=0,pos[0]=tl[0];x<w;x++,pos[0]+=pw)
559                         {
560                                 tmp=transform(pos);
561                                 u=(tmp[0]-src_tl[0])/src_pw;
562                                 v=(tmp[1]-src_tl[1])/src_ph;
563                                 if(u<0 || v<0 || u>=src_w || v>=src_h || isnan(u) || isnan(v))
564                                         (*surface)[y][x]=context.get_color(tmp);
565                                 else
566                                         (*surface)[y][x]=source.linear_sample(u,v);
567                         }
568                         if((y&31)==0 && cb && !stagetwo.amount_complete(y,h)) return false;
569                 }
570         else                                            // NEAREST_NEIGHBOR
571                 for(y=0,pos[1]=tl[1];y<h;y++,pos[1]+=ph)
572                 {
573                         for(x=0,pos[0]=tl[0];x<w;x++,pos[0]+=pw)
574                         {
575                                 tmp=transform(pos);
576                                 u=(tmp[0]-src_tl[0])/src_pw;
577                                 v=(tmp[1]-src_tl[1])/src_ph;
578                                 if(u<0 || v<0 || u>=src_w || v>=src_h || isnan(u) || isnan(v))
579                                         (*surface)[y][x]=context.get_color(tmp);
580                                 else
581                                         (*surface)[y][x]=source[floor_to_int(v)][floor_to_int(u)];
582                         }
583                         if((y&31)==0 && cb && !stagetwo.amount_complete(y,h)) return false;
584                 }
585
586         // Mark our progress as finished
587         if(cb && !cb->amount_complete(10000,10000))
588                 return false;
589
590         return true;
591 }