Remove spaces and tabs at end of lines.
[synfig.git] / synfig-core / trunk / src / synfig / valuenode_bline.cpp
1 /* === S Y N F I G ========================================================= */
2 /*!     \file valuenode_bline.cpp
3 **      \brief Implementation of the "BLine" valuenode conversion.
4 **
5 **      $Id$
6 **
7 **      \legal
8 **      Copyright (c) 2002-2005 Robert B. Quattlebaum Jr., Adrian Bentley
9 **      Copyright (c) 2007, 2008 Chris Moore
10 **
11 **      This package is free software; you can redistribute it and/or
12 **      modify it under the terms of the GNU General Public License as
13 **      published by the Free Software Foundation; either version 2 of
14 **      the License, or (at your option) any later version.
15 **
16 **      This package is distributed in the hope that it will be useful,
17 **      but WITHOUT ANY WARRANTY; without even the implied warranty of
18 **      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 **      General Public License for more details.
20 **      \endlegal
21 */
22 /* ========================================================================= */
23
24 /* === H E A D E R S ======================================================= */
25
26 #ifdef USING_PCH
27 #       include "pch.h"
28 #else
29 #ifdef HAVE_CONFIG_H
30 #       include <config.h>
31 #endif
32
33 #include "valuenode_bline.h"
34 #include "valuenode_const.h"
35 #include "valuenode_composite.h"
36 #include "general.h"
37 #include "exception.h"
38 #include "blinepoint.h"
39 #include <vector>
40 #include <list>
41 #include <algorithm>
42 #include <ETL/hermite>
43 #include <ETL/calculus>
44 #include "segment.h"
45 #include "curve_helper.h"
46
47 #endif
48
49 /* === U S I N G =========================================================== */
50
51 using namespace std;
52 using namespace etl;
53 using namespace synfig;
54
55 /* === M A C R O S ========================================================= */
56
57 #define EPSILON 0.0000001f
58
59 /* === G L O B A L S ======================================================= */
60
61 /* === P R O C E D U R E S ================================================= */
62
63 inline float
64 linear_interpolation(const float& a, const float& b, float c)
65 { return (b-a)*c+a; }
66
67 inline Vector
68 linear_interpolation(const Vector& a, const Vector& b, float c)
69 { return (b-a)*c+a; }
70
71 inline Vector
72 radial_interpolation(const Vector& a, const Vector& b, float c)
73 {
74         // if either extreme is zero then use linear interpolation instead
75         if (a.is_equal_to(Vector::zero()) || b.is_equal_to(Vector::zero()))
76                 return linear_interpolation(a, b, c);
77
78         affine_combo<Real,float> mag_combo;
79         affine_combo<Angle,float> ang_combo;
80
81         Real mag(mag_combo(a.mag(),b.mag(),c));
82         Angle angle_a(Angle::tan(a[1],a[0]));
83         Angle angle_b(Angle::tan(b[1],b[0]));
84         float diff = Angle::deg(angle_b - angle_a).get();
85         if (diff < -180) angle_b += Angle::deg(360);
86         else if (diff > 180) angle_a += Angle::deg(360);
87         Angle ang(ang_combo(angle_a, angle_b, c));
88
89         return Point( mag*Angle::cos(ang).get(),mag*Angle::sin(ang).get() );
90 }
91
92 inline void
93 transform_coords(Vector in, Vector& out, const Point& coord_origin, const Point *coord_sys)
94 {
95         in -= coord_origin;
96         out[0] = in * coord_sys[0];
97         out[1] = in * coord_sys[1];
98 }
99
100 inline void
101 untransform_coords(const Vector& in, Vector& out, const Point& coord_origin, const Point *coord_sys)
102 {
103         out[0] = in * coord_sys[0];
104         out[1] = in * coord_sys[1];
105         out += coord_origin;
106 }
107
108 ValueBase
109 synfig::convert_bline_to_segment_list(const ValueBase& bline)
110 {
111         std::vector<Segment> ret;
112
113 //      std::vector<BLinePoint> list(bline.operator std::vector<BLinePoint>());
114         //std::vector<BLinePoint> list(bline);
115         std::vector<BLinePoint> list(bline.get_list().begin(),bline.get_list().end());
116         std::vector<BLinePoint>::const_iterator iter;
117
118         BLinePoint prev,first;
119
120         //start with prev = first and iter on the second...
121
122         if(list.empty()) return ValueBase(ret,bline.get_loop());
123         first = prev = list.front();
124
125         for(iter=++list.begin();iter!=list.end();++iter)
126         {
127                 ret.push_back(
128                         Segment(
129                                 prev.get_vertex(),
130                                 prev.get_tangent2(),
131                                 iter->get_vertex(),
132                                 iter->get_tangent1()
133                         )
134                 );
135                 prev=*iter;
136         }
137         if(bline.get_loop())
138         {
139                 ret.push_back(
140                         Segment(
141                                 prev.get_vertex(),
142                                 prev.get_tangent2(),
143                                 first.get_vertex(),
144                                 first.get_tangent1()
145                         )
146                 );
147         }
148         return ValueBase(ret,bline.get_loop());
149 }
150
151 ValueBase
152 synfig::convert_bline_to_width_list(const ValueBase& bline)
153 {
154         std::vector<Real> ret;
155 //      std::vector<BLinePoint> list(bline.operator std::vector<BLinePoint>());
156         //std::vector<BLinePoint> list(bline);
157         std::vector<BLinePoint> list(bline.get_list().begin(),bline.get_list().end());
158         std::vector<BLinePoint>::const_iterator iter;
159
160         if(bline.empty())
161                 return ValueBase(ValueBase::TYPE_LIST);
162
163         for(iter=list.begin();iter!=list.end();++iter)
164                 ret.push_back(iter->get_width());
165
166         if(bline.get_loop())
167                 ret.push_back(list.front().get_width());
168
169         return ValueBase(ret,bline.get_loop());
170 }
171
172 Real
173 synfig::find_closest_point(const ValueBase &bline, const Point &pos, Real &radius, bool loop, Point *out_point)
174 {
175         Real d,step;
176         float time = 0;
177         float best_time = 0;
178         int best_index = -1;
179         synfig::Point best_point;
180
181         if(radius==0)radius=10000000;
182         Real closest(10000000);
183
184         int i=0;
185         std::vector<BLinePoint> list(bline.get_list().begin(),bline.get_list().end());
186         typedef std::vector<BLinePoint>::const_iterator iterT;
187         iterT iter, prev, first;
188         for(iter=list.begin(); iter!=list.end(); ++i, ++iter)
189         {
190                 if( first == iterT() )
191                         first = iter;
192
193                 if( prev != iterT() )
194                 {
195                         bezier<Point>   curve;
196
197                         curve[0] = (*prev).get_vertex();
198                         curve[1] = curve[0] + (*prev).get_tangent2()/3;
199                         curve[3] = (*iter).get_vertex();
200                         curve[2] = curve[3] - (*iter).get_tangent1()/3;
201                         curve.sync();
202
203                         #if 0
204                         // I don't know why this doesn't work
205                         time=curve.find_closest(pos,6);
206                         d=((curve(time)-pos).mag_squared());
207
208                         #else
209                         //set the step size based on the size of the picture
210                         d = (curve[1] - curve[0]).mag() + (curve[2]-curve[1]).mag()     + (curve[3]-curve[2]).mag();
211
212                         step = d/(2*radius); //want to make the distance between lines happy
213
214                         step = max(step,0.01); //100 samples should be plenty
215                         step = min(step,0.1); //10 is minimum
216
217                         d = find_closest(curve,pos,step,&closest,&time);
218                         #endif
219
220                         if(d < closest)
221                         {
222                                 closest = d;
223                                 best_time = time;
224                                 best_index = i;
225                                 best_point = curve(best_time);
226                         }
227
228                 }
229
230                 prev = iter;
231         }
232
233         // Loop if necessary
234         if( loop && ( first != iterT() ) && ( prev != iterT() ) )
235         {
236                 bezier<Point>   curve;
237
238                 curve[0] = (*prev).get_vertex();
239                 curve[1] = curve[0] + (*prev).get_tangent2()/3;
240                 curve[3] = (*first).get_vertex();
241                 curve[2] = curve[3] - (*first).get_tangent1()/3;
242                 curve.sync();
243
244                 #if 0
245                 // I don't know why this doesn't work
246                 time=curve.find_closest(pos,6);
247                 d=((curve(time)-pos).mag_squared());
248
249                 #else
250                 //set the step size based on the size of the picture
251                 d = (curve[1] - curve[0]).mag() + (curve[2]-curve[1]).mag()     + (curve[3]-curve[2]).mag();
252
253                 step = d/(2*radius); //want to make the distance between lines happy
254
255                 step = max(step,0.01); //100 samples should be plenty
256                 step = min(step,0.1); //10 is minimum
257
258                         d = find_closest(curve,pos,step,&closest,&time);
259                 #endif
260
261                 if(d < closest)
262                 {
263                         closest = d;
264                         best_time = time;
265                         best_index = 0;
266                         best_point = curve(best_time);
267                 }
268         }
269
270         if(best_index != -1)
271         {
272                 if(out_point)
273                         *out_point = best_point;
274
275                 int loop_adjust(loop ? 0 : -1);
276                 int size = list.size();
277                 Real amount = (best_index + best_time + loop_adjust) / (size + loop_adjust);
278                 return amount;
279         }
280
281         return 0.0;
282
283 }
284
285 /* === M E T H O D S ======================================================= */
286
287
288 ValueNode_BLine::ValueNode_BLine():
289         ValueNode_DynamicList(ValueBase::TYPE_BLINEPOINT)
290 {
291 }
292
293 ValueNode_BLine::~ValueNode_BLine()
294 {
295 }
296
297 ValueNode_BLine*
298 ValueNode_BLine::create(const ValueBase &value)
299 {
300         if(value.get_type()!=ValueBase::TYPE_LIST)
301                 return 0;
302
303         ValueNode_BLine* value_node(new ValueNode_BLine());
304
305         if(!value.empty())
306         {
307                 switch(value.get_contained_type())
308                 {
309                 case ValueBase::TYPE_BLINEPOINT:
310                 {
311 //                      std::vector<BLinePoint> bline_points(value.operator std::vector<BLinePoint>());
312                         //std::vector<BLinePoint> bline_points(value);
313                         std::vector<BLinePoint> bline_points(value.get_list().begin(),value.get_list().end());
314                         std::vector<BLinePoint>::const_iterator iter;
315
316                         for(iter=bline_points.begin();iter!=bline_points.end();iter++)
317                         {
318                                 value_node->add(ValueNode::Handle(ValueNode_Composite::create(*iter)));
319                         }
320                         value_node->set_loop(value.get_loop());
321                 }
322                         break;
323                 case ValueBase::TYPE_SEGMENT:
324                 {
325                         // Here, we want to convert a list of segments
326                         // into a list of BLinePoints. We make an assumption
327                         // that the segment list is continuous(sp), but not necessarily
328                         // smooth.
329
330                         value_node->set_loop(false);
331 //                      std::vector<Segment> segments(value.operator std::vector<Segment>());
332 //                      std::vector<Segment> segments(value);
333                         std::vector<Segment> segments(value.get_list().begin(),value.get_list().end());
334                         std::vector<Segment>::const_iterator iter,last(segments.end());
335                         --last;
336                         ValueNode_Const::Handle prev,first;
337
338                         for(iter=segments.begin();iter!=segments.end();iter++)
339                         {
340 #define PREV_POINT      prev->get_value().get(BLinePoint())
341 #define FIRST_POINT     first->get_value().get(BLinePoint())
342 #define CURR_POINT      curr->get_value().get(BLinePoint())
343                                 if(iter==segments.begin())
344                                 {
345                                         prev=ValueNode_Const::create(ValueBase::TYPE_BLINEPOINT);
346                                         {
347                                                 BLinePoint prev_point(PREV_POINT);
348                                                 prev_point.set_vertex(iter->p1);
349                                                 prev_point.set_tangent1(iter->t1);
350                                                 prev_point.set_width(0.01);
351                                                 prev_point.set_origin(0.5);
352                                                 prev_point.set_split_tangent_flag(false);
353                                                 prev->set_value(prev_point);
354                                         }
355                                         first=prev;
356                                         value_node->add(ValueNode::Handle(prev));
357
358                                 }
359                                 if(iter==last && iter->p2.is_equal_to(FIRST_POINT.get_vertex()))
360                                 {
361                                         value_node->set_loop(true);
362                                         if(!iter->t2.is_equal_to(FIRST_POINT.get_tangent1()))
363                                         {
364                                                 BLinePoint first_point(FIRST_POINT);
365                                                 first_point.set_tangent1(iter->t2);
366                                                 first->set_value(first_point);
367                                         }
368                                         continue;
369                                 }
370
371                                 ValueNode_Const::Handle curr;
372                                 curr=ValueNode_Const::create(ValueBase::TYPE_BLINEPOINT);
373                                 {
374                                         BLinePoint curr_point(CURR_POINT);
375                                         curr_point.set_vertex(iter->p2);
376                                         curr_point.set_tangent1(iter->t2);
377                                         curr_point.set_width(0.01);
378                                         curr_point.set_origin(0.5);
379                                         curr_point.set_split_tangent_flag(false);
380                                         curr->set_value(curr_point);
381                                 }
382                                 if(!PREV_POINT.get_tangent1().is_equal_to(iter->t1))
383                                 {
384                                         BLinePoint prev_point(PREV_POINT);
385                                         prev_point.set_split_tangent_flag(true);
386                                         prev_point.set_tangent2(iter->t1);
387                                         prev->set_value(prev_point);
388                                 }
389                                 value_node->add(ValueNode::Handle(curr));
390                                 prev=curr;
391                         }
392
393                 }
394                         break;
395                 default:
396                         // We got a list of who-knows-what. We don't have any idea
397                         // what to do with it.
398                         return 0;
399                         break;
400                 }
401         }
402
403         return value_node;
404 }
405
406 ValueNode_BLine::ListEntry
407 ValueNode_BLine::create_list_entry(int index, Time time, Real origin)
408 {
409         ValueNode_BLine::ListEntry ret;
410
411         synfig::BLinePoint prev,next;
412
413         int prev_i,next_i;
414
415         index=index%link_count();
416
417         assert(index>=0);
418         ret.index=index;
419         ret.set_parent_value_node(this);
420
421         if(!list[index].status_at_time(time))
422                 next_i=find_next_valid_entry(index,time);
423         else
424                 next_i=index;
425         prev_i=find_prev_valid_entry(index,time);
426
427         //synfig::info("index=%d, next_i=%d, prev_i=%d",index,next_i,prev_i);
428
429         next=(*list[next_i].value_node)(time);
430         prev=(*list[prev_i].value_node)(time);
431
432         etl::hermite<Vector> curve(prev.get_vertex(),next.get_vertex(),prev.get_tangent2(),next.get_tangent1());
433         etl::derivative< etl::hermite<Vector> > deriv(curve);
434
435         synfig::BLinePoint bline_point;
436         bline_point.set_vertex(curve(origin));
437         bline_point.set_width((next.get_width()-prev.get_width())*origin+prev.get_width());
438         bline_point.set_tangent1(deriv(origin)*min(1.0-origin,origin));
439         bline_point.set_tangent2(bline_point.get_tangent1());
440         bline_point.set_split_tangent_flag(false);
441         bline_point.set_origin(origin);
442
443         ret.value_node=ValueNode_Composite::create(bline_point);
444
445         return ret;
446 }
447
448 ValueBase
449 ValueNode_BLine::operator()(Time t)const
450 {
451         std::vector<BLinePoint> ret_list;
452
453         std::vector<ListEntry>::const_iterator iter,first_iter;
454         bool first_flag(true);
455         bool rising;
456         int index(0);
457         float next_scale(1.0f);
458
459         BLinePoint prev,first;
460         first.set_origin(100.0f);
461
462         // loop through all the list's entries
463         for(iter=list.begin();iter!=list.end();++iter,index++)
464         {
465                 // how 'on' is this vertex?
466                 float amount(iter->amount_at_time(t,&rising));
467
468                 assert(amount>=0.0f);
469                 assert(amount<=1.0f);
470
471                 // it's fully on
472                 if (amount > 1.0f - EPSILON)
473                 {
474                         if(first_flag)
475                         {
476                                 first_iter=iter;
477                                 first=prev=(*iter->value_node)(t).get(prev);
478                                 first_flag=false;
479                                 ret_list.push_back(first);
480                                 continue;
481                         }
482
483                         BLinePoint curr;
484                         curr=(*iter->value_node)(t).get(prev);
485
486                         if(next_scale!=1.0f)
487                         {
488                                 ret_list.back().set_split_tangent_flag(true);
489                                 ret_list.back().set_tangent2(prev.get_tangent2()*next_scale);
490
491                                 ret_list.push_back(curr);
492
493                                 ret_list.back().set_split_tangent_flag(true);
494                                 ret_list.back().set_tangent2(curr.get_tangent2());
495                                 ret_list.back().set_tangent1(curr.get_tangent1()*next_scale);
496
497                                 next_scale=1.0f;
498                         }
499                         else
500                         {
501                                 ret_list.push_back(curr);
502                         }
503
504                         prev=curr;
505                 }
506                 // it's partly on
507                 else if(amount>0.0f)
508                 {
509                         std::vector<ListEntry>::const_iterator begin_iter,end_iter;
510
511                         // This is where the interesting stuff happens
512                         // We need to seek forward in the list to see what the next
513                         // active point is
514
515                         BLinePoint blp_here_on;  // the current vertex, when fully on
516                         BLinePoint blp_here_off; // the current vertex, when fully off
517                         BLinePoint blp_here_now; // the current vertex, right now (between on and off)
518                         BLinePoint blp_prev_off; // the beginning of dynamic group when fully off
519                         BLinePoint blp_next_off; // the end of the dynamic group when fully off
520
521                         int dist_from_begin(0), dist_from_end(0);
522                         Time off_time, on_time;
523
524                         if(!rising)     // if not rising, then we were fully on in the past, and will be fully off in the future
525                         {
526                                 try{ on_time=iter->find_prev(t)->get_time(); }
527                                 catch(...) { on_time=Time::begin(); }
528                                 try{ off_time=iter->find_next(t)->get_time(); }
529                                 catch(...) { off_time=Time::end(); }
530                         }
531                         else // otherwise we were fully off in the past, and will be fully on in the future
532                         {
533                                 try{ off_time=iter->find_prev(t)->get_time(); }
534                                 catch(...) { off_time=Time::begin(); }
535                                 try{ on_time=iter->find_next(t)->get_time(); }
536                                 catch(...) { on_time=Time::end(); }
537                         }
538
539                         blp_here_on=(*iter->value_node)(on_time).get(blp_here_on);
540 //                      blp_here_on=(*iter->value_node)(t).get(blp_here_on);
541
542                         // Find "end" of dynamic group - ie. search forward along
543                         // the bline from the current point until we find a point
544                         // which is more 'on' than the current one
545                         end_iter=iter;
546 //                      for(++end_iter;begin_iter!=list.end();++end_iter)
547                         for(++end_iter;end_iter!=list.end();++end_iter)
548                                 if(end_iter->amount_at_time(t)>amount)
549                                         break;
550
551                         // If we did not find an end of the dynamic group...
552                         // Writeme!  at least now it doesn't crash if first_iter
553                         // isn't set yet
554                         if(end_iter==list.end())
555                         {
556                                 if(get_loop() && !first_flag)
557                                         end_iter=first_iter;
558                                 else
559                                         end_iter=--list.end();
560                         }
561
562                         blp_next_off=(*end_iter->value_node)(off_time).get(prev);
563
564                         // Find "begin" of dynamic group
565                         begin_iter=iter;
566                         blp_prev_off.set_origin(100.0f); // set the origin to 100 (which is crazy) so that we can check to see if it was found
567                         do
568                         {
569                                 if(begin_iter==list.begin())
570                                 {
571                                         if(get_loop())
572                                                 begin_iter=list.end();
573                                         else
574                                                 break;
575                                 }
576
577                                 --begin_iter;
578                                 dist_from_begin++;
579
580                                 // if we've gone all around the loop, give up
581                                 if(begin_iter==iter)
582                                         break;
583
584                                 if(begin_iter->amount_at_time(t)>amount)
585                                 {
586                                         blp_prev_off=(*begin_iter->value_node)(off_time).get(prev);
587                                         break;
588                                 }
589                         }while(true);
590
591                         // If we did not find a begin
592                         if(blp_prev_off.get_origin()==100.0f)
593                         {
594                                 // Writeme! - this needs work, but at least now it
595                                 // doesn't crash
596                                 if(first_flag)
597                                         begin_iter=list.begin();
598                                 else
599                                         begin_iter=first_iter;
600                                 blp_prev_off=(*begin_iter->value_node)(off_time).get(prev);
601                         }
602
603                         // this is how the curve looks when we have completely vanished
604                         etl::hermite<Vector> curve(blp_prev_off.get_vertex(),   blp_next_off.get_vertex(),
605                                                                            blp_prev_off.get_tangent2(), blp_next_off.get_tangent1());
606                         etl::derivative< etl::hermite<Vector> > deriv(curve);
607
608                         // where would we be on this curve, how wide will we be, and
609                         // where will our tangents point (all assuming that we hadn't vanished)
610                         blp_here_off.set_vertex(curve(blp_here_on.get_origin()));
611                         blp_here_off.set_width((blp_next_off.get_width()-blp_prev_off.get_width())*blp_here_on.get_origin()+blp_prev_off.get_width());
612                         blp_here_off.set_tangent1(deriv(blp_here_on.get_origin()));
613                         blp_here_off.set_tangent2(deriv(blp_here_on.get_origin()));
614
615                         float prev_tangent_scalar(1.0f);
616                         float next_tangent_scalar(1.0f);
617
618                         //synfig::info("index_%d:dist_from_begin=%d",index,dist_from_begin);
619                         //synfig::info("index_%d:dist_from_end=%d",index,dist_from_end);
620
621                         // If we are the next to the begin
622                         if(begin_iter==--std::vector<ListEntry>::const_iterator(iter) || dist_from_begin==1)
623                                 prev_tangent_scalar=linear_interpolation(blp_here_on.get_origin(), 1.0f, amount);
624                         else
625                                 prev_tangent_scalar=linear_interpolation(blp_here_on.get_origin()-prev.get_origin(), 1.0f, amount);
626
627                         // If we are the next to the end
628                         if(end_iter==++std::vector<ListEntry>::const_iterator(iter) || dist_from_end==1)
629                                 next_tangent_scalar=linear_interpolation(1.0-blp_here_on.get_origin(), 1.0f, amount);
630                         else if(list.end()!=++std::vector<ListEntry>::const_iterator(iter))
631                         {
632                                 BLinePoint next;
633                                 next=((*(++std::vector<ListEntry>::const_iterator(iter))->value_node)(t).get(prev));
634                                 next_tangent_scalar=linear_interpolation(next.get_origin()-blp_here_on.get_origin(), 1.0f, amount);
635                         }
636                         else
637                                 //! \todo this isn't quite right; we should handle looped blines identically no matter where the loop happens
638                                 //! and we currently don't.  this at least makes it a lot better than it was before
639                                 next_tangent_scalar=linear_interpolation(blp_next_off.get_origin()-blp_here_on.get_origin(), 1.0f, amount);
640                         next_scale=next_tangent_scalar;
641
642                         //blp_here_now.set_vertex(linear_interpolation(blp_here_off.get_vertex(), blp_here_on.get_vertex(), amount));
643                         // if(false)
644                         // {
645                         //      // My first try
646                         //      Point ref_point_begin(((*begin_iter->value_node)(off_time).get(prev).get_vertex() +
647                         //                                                 (*end_iter->value_node)(off_time).get(prev).get_vertex()) * 0.5);
648                         //      Point ref_point_end(((*begin_iter->value_node)(on_time).get(prev).get_vertex() +
649                         //                                               (*end_iter->value_node)(on_time).get(prev).get_vertex()) * 0.5);
650                         //      Point ref_point_now(((*begin_iter->value_node)(t).get(prev).get_vertex() +
651                         //                                               (*end_iter->value_node)(t).get(prev).get_vertex()) * 0.5);
652                         //      Point ref_point_linear(linear_interpolation(ref_point_begin, ref_point_end, amount));
653                         //
654                         //      blp_here_now.set_vertex(linear_interpolation(blp_here_off.get_vertex(), blp_here_on.get_vertex(), amount) +
655                         //                                                      (ref_point_now-ref_point_linear));
656                         //      blp_here_now.set_tangent1(linear_interpolation(blp_here_off.get_tangent1(), blp_here_on.get_tangent1(), amount));
657                         //      blp_here_now.set_split_tangent_flag(blp_here_on.get_split_tangent_flag());
658                         //      if(blp_here_now.get_split_tangent_flag())
659                         //              blp_here_now.set_tangent2(linear_interpolation(blp_here_off.get_tangent2(), blp_here_on.get_tangent2(), amount));
660                         // }
661                         // else
662                         {
663                                 // My second try
664
665                                 // define 3 coordinate systems:
666                                 Point off_coord_sys[2],   off_coord_origin; // when the current vertex is completely off
667                                 Point on_coord_sys[2] ,    on_coord_origin; // when the current vertex is completely on
668                                 Point curr_coord_sys[2], curr_coord_origin; // the current state - somewhere in between
669
670                                 // for each of the 3 systems, the origin is half way between the previous and next active point
671                                 // and the axes are based on a vector from the next active point to the previous
672                                 {
673                                         const Point   end_pos_at_off_time((  *end_iter->value_node)(off_time).get(prev).get_vertex());
674                                         const Point begin_pos_at_off_time((*begin_iter->value_node)(off_time).get(prev).get_vertex());
675                                         off_coord_origin=(begin_pos_at_off_time + end_pos_at_off_time)/2;
676                                         off_coord_sys[0]=(begin_pos_at_off_time - end_pos_at_off_time).norm();
677                                         off_coord_sys[1]=off_coord_sys[0].perp();
678
679                                         const Point   end_pos_at_on_time((  *end_iter->value_node)(on_time).get(prev).get_vertex());
680                                         const Point begin_pos_at_on_time((*begin_iter->value_node)(on_time).get(prev).get_vertex());
681                                         on_coord_origin=(begin_pos_at_on_time + end_pos_at_on_time)/2;
682                                         on_coord_sys[0]=(begin_pos_at_on_time - end_pos_at_on_time).norm();
683                                         on_coord_sys[1]=on_coord_sys[0].perp();
684
685                                         const Point   end_pos_at_current_time((  *end_iter->value_node)(t).get(prev).get_vertex());
686                                         const Point begin_pos_at_current_time((*begin_iter->value_node)(t).get(prev).get_vertex());
687                                         curr_coord_origin=(begin_pos_at_current_time + end_pos_at_current_time)/2;
688                                         curr_coord_sys[0]=(begin_pos_at_current_time - end_pos_at_current_time).norm();
689                                         curr_coord_sys[1]=curr_coord_sys[0].perp();
690
691                                         // Invert (transpose) the last of these matrices, since we use it for transform back
692                                         swap(curr_coord_sys[0][1],curr_coord_sys[1][0]);
693                                 }
694
695                                 /* The code that was here before used just end_iter as the origin, rather than the mid-point */
696
697                                 // We know our location and tangent(s) when fully on and fully off
698                                 // Transform each of these into their corresponding coordinate system
699                                 Point trans_on_point, trans_off_point;
700                                 Vector trans_on_t1, trans_on_t2, trans_off_t1, trans_off_t2;
701
702                                 transform_coords(blp_here_on.get_vertex(),  trans_on_point,  on_coord_origin,  on_coord_sys);
703                                 transform_coords(blp_here_off.get_vertex(), trans_off_point, off_coord_origin, off_coord_sys);
704
705 #define COORD_SYS_RADIAL_TAN_INTERP 1
706
707 #ifdef COORD_SYS_RADIAL_TAN_INTERP
708                                 transform_coords(blp_here_on.get_tangent1(),  trans_on_t1,  Point::zero(), on_coord_sys);
709                                 transform_coords(blp_here_off.get_tangent1(), trans_off_t1, Point::zero(), off_coord_sys);
710
711                                 if(blp_here_on.get_split_tangent_flag())
712                                 {
713                                         transform_coords(blp_here_on.get_tangent2(),  trans_on_t2,  Point::zero(), on_coord_sys);
714                                         transform_coords(blp_here_off.get_tangent2(), trans_off_t2, Point::zero(), off_coord_sys);
715                                 }
716 #endif
717
718                                 {
719                                         // Interpolate between the 'on' point and the 'off' point and untransform to get our point's location
720                                         Point tmp;
721                                         untransform_coords(linear_interpolation(trans_off_point, trans_on_point, amount),
722                                                                            tmp, curr_coord_origin, curr_coord_sys);
723                                         blp_here_now.set_vertex(tmp);
724                                 }
725
726 #define INTERP_FUNCTION         radial_interpolation
727 //#define INTERP_FUNCTION       linear_interpolation
728
729 #ifdef COORD_SYS_RADIAL_TAN_INTERP
730                                 {
731                                         Vector tmp;
732                                         untransform_coords(INTERP_FUNCTION(trans_off_t1,trans_on_t1,amount), tmp, Point::zero(), curr_coord_sys);
733                                         blp_here_now.set_tangent1(tmp);
734                                 }
735 #else
736                                 blp_here_now.set_tangent1(radial_interpolation(blp_here_off.get_tangent1(),blp_here_on.get_tangent1(),amount));
737 #endif
738
739                                 if (blp_here_on.get_split_tangent_flag())
740                                 {
741                                         blp_here_now.set_split_tangent_flag(true);
742 #ifdef COORD_SYS_RADIAL_TAN_INTERP
743                                         {
744                                                 Vector tmp;
745                                                 untransform_coords(INTERP_FUNCTION(trans_off_t2,trans_on_t2,amount), tmp, Point::zero(), curr_coord_sys);
746                                                 blp_here_now.set_tangent2(tmp);
747                                         }
748 #else
749                                         blp_here_now.set_tangent2(radial_interpolation(blp_here_off.get_tangent2(),blp_here_on.get_tangent2(),amount));
750 #endif
751                                 }
752                                 else
753                                         blp_here_now.set_split_tangent_flag(false);
754                         }
755
756                         blp_here_now.set_origin(blp_here_on.get_origin());
757                         blp_here_now.set_width(linear_interpolation(blp_here_off.get_width(), blp_here_on.get_width(), amount));
758
759                         // Handle the case where we are the first vertex
760                         if(first_flag)
761                         {
762                                 blp_here_now.set_tangent1(blp_here_now.get_tangent1()*prev_tangent_scalar);
763                                 first_iter=iter;
764                                 first=prev=blp_here_now;
765                                 first_flag=false;
766                                 ret_list.push_back(blp_here_now);
767                                 continue;
768                         }
769
770                         ret_list.back().set_split_tangent_flag(true);
771                         ret_list.back().set_tangent2(prev.get_tangent2()*prev_tangent_scalar);
772                         ret_list.push_back(blp_here_now);
773                         ret_list.back().set_split_tangent_flag(true);
774                         //ret_list.back().set_tangent2(blp_here_now.get_tangent1());
775                         ret_list.back().set_tangent1(blp_here_now.get_tangent1()*prev_tangent_scalar);
776
777                         prev=blp_here_now;
778                 }
779         }
780
781         if(next_scale!=1.0f)
782         {
783                 ret_list.back().set_split_tangent_flag(true);
784                 ret_list.back().set_tangent2(prev.get_tangent2()*next_scale);
785         }
786
787 /*
788         if(get_loop() && !first_flag)
789         {
790                 ret_list.push_back(
791                         Segment(
792                         prev.get_vertex(),
793                         prev.get_tangent2(),
794                         first.get_vertex(),
795                         first.get_tangent1()
796                         )
797                 );
798         }
799 */
800
801         if(list.empty())
802                 synfig::warning(string("ValueNode_BLine::operator()():")+_("No entries in list"));
803         else
804         if(ret_list.empty())
805                 synfig::warning(string("ValueNode_BLine::operator()():")+_("No entries in ret_list"));
806
807         return ValueBase(ret_list,get_loop());
808 }
809
810 String
811 ValueNode_BLine::link_local_name(int i)const
812 {
813         assert(i>=0 && (unsigned)i<list.size());
814         return etl::strprintf(_("Vertex %03d"),i+1);
815 }
816
817 String
818 ValueNode_BLine::get_name()const
819 {
820         return "bline";
821 }
822
823 String
824 ValueNode_BLine::get_local_name()const
825 {
826         return _("BLine");
827 }
828
829 LinkableValueNode*
830 ValueNode_BLine::create_new()const
831 {
832         return new ValueNode_BLine();
833 }
834
835 bool
836 ValueNode_BLine::check_type(ValueBase::Type type)
837 {
838         return type==ValueBase::TYPE_LIST;
839 }